
Data-intensive
computing systems

Relational Algebra with MapReduce

University of Verona
Computer Science Department

 Damiano Carra

 2

Acknowledgements

!  Credits

–  Part of the course material is based on slides provided by the following

authors

•  Pietro Michiardi, Jimmy Lin

 3

Relational Algebra Operators

!  There are a number of operations on data that fit well the relational
algebra model

–  In traditional RDBMS, queries involve retrieval of small amounts of data

–  In this course, we should keep in mind the particular workload underlying
MapReduce

" Full scans of large amounts of data

" Queries are not selective, they process all data

!  A review of some terminology

–  A relation is a table

–  Attributes are the column headers of the table

–  The set of attributes of a relation is called a schema

–  Example: R(A1, A2, ..., An) indicates a relation called R whose attributes
are A1, A2, ..., An

 4

Relational Algebra Operators

!  Relations (however big) can be stored in a distributed filesystem

–  If they don’t fit in a single machine, they’re broken into pieces (think HDFS)

!  Next, we review and describe a set of relational algebra operators

–  Intuitive explanation of what they do

–  “Pseudo-code” of their implementation in/by MapReduce

 5

Selection

!  Selection: σC(R)

–  Apply condition C to each tuple of relation R

–  Produce in output a relation containing only tuples that satisfy C

R1

σ

R2

R3

R4

R5

R1

R3

 6

Selection in MapReduce

!  A full-blown MapReduce implementation is not necessary in practice

–  It can be implemented in the map portion alone

–  Alternatively, it could also be implemented in the reduce portion

!  A MapReduce implementation of σC(R)

Map: For each tuple t in R, check if t satisfies C

 If so, emit a key/value pair (t, t)

Reduce: Identity reducer

 Question: single or multiple reducers?

!  NOTE: the output is not exactly a relation

–  WHY?

 7

Projections

!  Projection: πS(R)

–  Given a subset S of relation R attributes

–  Produce in output a relation containing only tuples for the attributes in S

R1

π

R2

R3

R4

R5

R1

R2

R3

R4

R5

 8

Projections in MapReduce

!  Similar process to selection

–  But, projection may cause same tuple to appear several times

!  A MapReduce implementation of πS(R)

Map: - For each tuple t in R, construct a tuple t’ by eliminating those
 components whose attributes are not in S

 - Emit a key/value pair (t’, t’)

Reduce: - For each key produced by any of the Map tasks, fetch t′, [t′, · · · , t′]

 - Emit a key/value pair (t’, t’)

!  NOTE: the reduce operation is duplicate elimination

–  This operation is associative and commutative, so it is possible to optimize
MapReduce by using a Combiner in each mapper

 9

Union, Intersection and Difference

!  Well known operators on sets

!  Apply to the set of tuples in two relations that have the same schema

–  Variations on the theme: work on bags

 10

Unions in MapReduce

!  Suppose relations R and S have the same schema

–  Map tasks will be assigned chunks from either R or S

–  Mappers don’t do much, just pass by to reducers

–  Reducers do duplicate elimination

!  A MapReduce implementation of Union

Map: For each tuple t in R or S, emit a key/value pair (t, t)

Reduce: For each key t, emit a key/value pair (t, t)

 Note: each key will have either one or two values

 11

Intersection in MapReduce

!  Very similar to computing Union

–  Suppose relations R and S have the same schema

–  The map function is the same (an identity mapper) as for union

–  The reduce function must produce a tuple only if both relations have that tuple

!  A MapReduce implementation of Intersection

Map: For each tuple t in R or S, emit a key/value pair (t, t)

Reduce: If key t has value list [t,t], emit a key/value pair (t, t)

 Otherwise, emit a key/value pair (t, NULL)

 12

Difference in MapReduce

!  Assume we have two relations R and S with the same schema

–  The only way a tuple t can appear in the output is if it is in R but not in S

–  The map function can pass tuples from R and S to the reducer

–  NOTE: it must inform the reducer whether the tuple came from R or S

!  A MapReduce implementation of Difference

Map: For a tuple t in R emit a key/value pair (t, ‘R’)

 For a tuple t in S, emit a key/value pair (t, ‘S’)

Reduce: If key t has value list [R], emit a key/value pair (t, t)

 Otherwise, emit a key/value pair (t, NULL)

 i.e., [‘R’, ‘S’] or [‘S’, ‘R’] or [‘S’]

 13

Grouping and Aggregation

!  Grouping and Aggregation: γX (R)

–  Given a relation R, partition its tuples according to their values in one set of
attributes G

•  The set G is called the grouping attributes

–  Then, for each group, aggregate the values in certain other attributes

•  Aggregation functions: SUM, COUNT, AVG, MIN, MAX, ...

!  In the notation, X is a list of elements that can be:

–  A grouping attribute

–  An expression θ(A), where θ is one of the (five) aggregation functions and A is
an attribute NOT among the grouping attributes

 14

Grouping and Aggregation

!  Grouping and Aggregation: γX (R)

–  The result of this operation is a relation with one tuple for each group

–  That tuple has a component for each of the grouping attributes, with the value
common to tuples of that group

–  That tuple has another component for each aggregation, with the aggregate
value for that group

!  Let’s work with an example

–  Imagine that a social-networking site has a relation Friends(User, Friend)!

–  The tuples are pairs (a, b) such that b is a friend of a

–  Question: compute the number of friends each member has

 15

Grouping and Aggregation: Example

!  How to satisfy the query γUser,COUNT(Friend))(Friends)

–  This operation groups all the tuples by the value in their first component

" There is one group for each user

–  Then, for each group, it counts the number of friends

!  Some details

–  The COUNT operation applied to an attribute does not consider the values of
that attribute

–  In fact, it counts the number of tuples in the group

–  In SQL, there is a “count distinct” operator that counts the number of different
values

 16

Grouping and Aggregation in MapReduce

!  Let R(A, B, C) be a relation to which we apply γA,θ(B)(R)

–  The map operation prepares the grouping

–  The grouping is done by the framework

–  The reducer computes the aggregation

–  Simplifying assumptions: one grouping attribute and one aggregation function

!  MapReduce implementation of γA,θ(B)(R)

Map: For a tuple (a,b,c) emit a key/value pair (a, b)

Reduce: Each key a represents a group, with values [b1, b2, …, bn]

 Apply θ to the list [b1, b2, …, bn]

 Emit the key/value pair (a,x), where x = θ ([b1, b2, …, bn])

 17

Join

!  Natural join R S

–  Given two relations, compare each pair of tuples, one from each relation

–  If the tuples agree on all the attributes common to both schema " produce an
output tuple that has components on each attribute

–  Otherwise produce nothing

–  Join condition can be on a subset of attributes

 18

Join: Example

!  Below, we have part of a relation called Links describing the structure of
the Web

–  There are two attributes: From and To

–  A row, or tuple, of the relation is a pair of URLs, indicating the existence of a
link between them

–  The number of tuples in a real dataset is in the order of billions (109)

!  Question: find the paths of length two in the Web

From To

url-1 url-2

url-1 url-3

url-2 url-3

... ...

 19

Join: Example

!  Informally, to satisfy the query we must:

–  find the triples of URLs in the form (u,v,w) such that there is a link from u to v
and a link from v to w

!  Using the join operator

–  Imagine we have two relations (with different schemas), and let’s try to apply
the natural join operator

–  There are two copies of Links: L1(U1, U2) and L2(U2, U3)

–  Let’s compute L1 L2

•  For each tuple t1 of L1 and each tuple t2 of L2, see if their U2 component are the
same

•  If yes, then produce a tuple in output, with the schema (U1,U2,U3)

 20

Join in MapReduce (Reduce-side Join)

!  Assume to have two relations: R(A, B) and S(B, C)

–  We must find tuples that agree on their B components

!  A MapReduce implementation of Natural Join

Map: For a tuple (a,b) in R emit a key/value pair (b, (‘R’,a))

 For a tuple (b,c) in S, emit a key/value pair (b, (‘S’,c))

Reduce: If key b has value list [(‘R’,a),(‘S’,c)], emit a key/value pair

 (b, (a,b,c))

!  NOTES

–  In general, for n tuples in relation R and m tuples in relation S all with a
common B-value, then we end up with nm tuples in the result

–  If all tuples of both relations have the same B-value, then we’re
computing the cartesian product

