

Concurrency:
Processes, Threads, and Address Spaces

Adapted by Tiziano Villa from lectures notes by

Prof. John Kubiatowicz (UC Berkeley)

2 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Review: History of OS

• Why Study?
– To understand how user needs and hardware constraints
influenced (and will influence) operating systems

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking

• Rapid Change in Hardware Leads to changing OS
– Batch Multiprogramming Timeshare Graphical UI
 Ubiquitous Devices Cyberspace/Metaverse/??

– Gradual Migration of Features into Smaller Machines
• Situation today is much like the late 60s

– Small OS: 100K lines/Large: 10M lines (5M browser!)
– 100-1000 people-years

3 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

4 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Review: Migration of OS Concepts and Features

5 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Review: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

6 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Concurrency

• “Thread” of execution
– Independent Fetch/Decode/Execute loop

– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, Batch processing

– Easier for operating system builder

– Get rid concurrency by defining it away

– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP,
Mac OS X

– Often called “multitasking”, but multitasking has
other meanings (talk about this later)

• ManyCore Multiprogramming, right?

7 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources:
– Hardware: single CPU, single DRAM, single I/O devices

– Multiprogramming API: users think they have exclusive
access to shared resources

• OS Has to coordinate all activity
– Multiple users, I/O interrupts, …

– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones

– Abstract the notion of an executing program

– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

8 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

What happens during execution?

• Execution sequence:
– Fetch Instruction at PC

– Decode

– Execute (possibly using registers)

– Write results to registers/mem

– PC = Next Instruction(PC)

– Repeat

PC
PC
PC
PC

9 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

How can we give the illusion of multiple processors?

CPU3 CPU2 CPU1

Shared Memory

• Assume a single processor. How do we provide the
illusion of multiple processors?
– Multiplex in time!

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

10 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same

– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other
thread (good for sharing, bad for protection)

– Threads can share instructions
(good for sharing, bad for protection)

– Can threads overwrite OS functions?

• This (unprotected) model common in:
– Embedded applications

– Windows 3.1/Machintosh (switch only with yield)

– Windows 95—ME? (switch with both yield and timer)

11 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Modern Technique: SMT/Hyperthreading

• Hardware technique
– Exploit natural properties
of superscalar processors
to provide illusion of
multiple processors

– Higher utilization of
processor resources

• Can schedule each thread
as if were separate CPU
– However, not linear
speedup!

– If have multiprocessor,
should schedule each
processor first

• Original technique called “Simultaneous Multithreading”
– See http://www.cs.washington.edu/research/smt/
– Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

12 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

How to protect threads from one another?

• Need three important things:
1. Protection of memory

» Every task does not have access to all memory

2. Protection of I/O devices
» Every task does not have access to every device

3. Protection of Access to Processor:
Preemptive switching from task to task
» Use of timer

» Must not be possible to disable timer from
usercode

13 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Progra
m
 A

d
d
re

ss S
pa

ce

Recall: Program’s Address Space

• Address space the set of
accessible addresses + state
associated with them:
– For a 32-bit processor there are
232 = 4 billion addresses

• What happens when you read or
write to an address?
– Perhaps Nothing

– Perhaps acts like regular memory

– Perhaps ignores writes

– Perhaps causes I/O operation
» (Memory-mapped I/O)

– Perhaps causes exception (fault)

14 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS data Translation Map 1 Translation Map 2

Physical Address Space

Traditional UNIX Process

• Process: Operating system abstraction to
represent what is needed to run a single program
– Often called a “HeavyWeight Process”
– Formally: a single, sequential stream of execution
in its own address space

• Two parts:
– Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers

– Protected Resources:
» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a
heavyweight process

Process
Control
Block

How do we multiplex processes?

• The current state of process held in a
process control block (PCB):
– This is a “snapshot” of the execution and
protection environment

– Only one PCB active at a time

• Give out CPU time to different
processes (Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

17 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time

– Less overhead with SMT/hyperthreading, but…
contention for resources instead

18 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Diagram of Process State

• As a process executes, it changes state
– new: The process is being created

– ready: The process is waiting to run

– running: Instructions are being executed

– waiting: Process waiting for some event to occur

– terminated: The process has finished execution

19 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

20 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

What does it take to create a process?

• Must construct new PCB
– Inexpensive

• Must set up new page tables for address space
– More expensive

• Copy data from parent process? (Unix fork())
– Semantics of Unix fork() are that the child
process gets a complete copy of the parent
memory and I/O state

– Originally very expensive

– Much less expensive with “copy on write”

• Copy I/O state (file handles, etc)
– Medium expense

21 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Process =? Program

• More to a process than just a program:
– Program is just part of the process state
– I run emacs on lectures.txt, you run it on
homework.java – Same program, different processes

• Less to a process than a program:
– A program can invoke more than one process
– cc starts up cpp, cc1, cc2, as, and ld

main ()

{

 …;

}

A() {

 …

}

main ()

{

 …;

}

A() {

 …

}

Heap

Stack

A

main

Program Process

22 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Multiple Processes Collaborate on a Task

• High Creation/memory Overhead
• (Relatively) High Context-Switch Overhead
• Need Communication mechanism:

– Separate Address Spaces Isolates Processes
– Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3

23 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2

Stack 1

Heap 1

Code 1

Stack 2

Data 1

Heap 2

Code 2

Shared

• Communication occurs by “simply” reading/writing
to shared address page
– Really low overhead communication

– Introduces complex synchronization problems

Code

Data

Heap

Stack

Shared

Code

Data

Heap

Stack

Shared

24 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Inter-process Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable

– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them

– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus,
systcall/trap)

– logical (e.g., logical properties)

25 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Modern “Lightweight” Process with Threads

• Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space

– No protection between threads

• Multithreading: a single program made up of a
number of different concurrent activities
– Sometimes called multitasking, as in Ada…

• Why separate the concept of a thread from that of
a process?
– Discuss the “thread” part of a process (concurrency)

– Separate from the “address space” (Protection)

– Heavyweight Process Process with one thread

26 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component

• Address spaces encapsulate protection: “Passive” part
– Keeps buggy program from trashing the system

• Why have multiple threads per address space?

27 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Examples of multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches

– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users

– Also background utility processing must be done

28 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Examples of multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network

– Again, single program, multiple concurrent operations

– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism

– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program
at a time

29 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Thread State

• State shared by all threads in process/addr space
– Contents of memory (global variables, heap)

– I/O state (file system, network connections, etc)

• State “private” to each thread

– Kept in TCB Thread Control Block

– CPU registers (including, program counter)

– Execution stack – what is this?

• Execution Stack
– Parameters, Temporary variables

– return PCs are kept while called procedures are
executing

30 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Execution Stack Example

• Stack holds temporary results

• Permits recursive execution

• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=2

 ret=C+1 Stack
Pointer

Stack Growth

A: tmp=1

 ret=exit

B: ret=A+2

C: ret=b+1

31 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux

Windows 9x???

Win NT to XP,
Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)

JavaOS, Pilot(PC)

Traditional UNIX
MS/DOS, early

Macintosh

Many

One

threads

Per AS:

Many One

#
 o

f
a
d
d
r

sp
a
ce

s:

32 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Java APPS

OS

Hardware

Java OS
Structure

Example: Implementation Java OS

• Many threads, one Address Space

• Why another OS?
– Recommended Minimum memory sizes:

» UNIX + X Windows: 32MB

» Windows 98: 16-32MB

» Windows NT: 32-64MB

» Windows 2000/XP: 64-128MB

– What if we want a cheap network
point-of-sale computer?

» Say need 1000 terminals

» Want < 8MB

• What language to write this OS in?
– C/C++/ASM? Not terribly high-level.
Hard to debug.

– Java/Lisp? Not quite sufficient – need
direct access to HW/memory management

33 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Recall: Modern Process with Multiple Threads

• Process: Operating system abstraction to represent
what is needed to run a single, multithreaded
program

• Two parts:
– Multiple Threads

» Each thread is a single, sequential stream of execution

– Protected Resources:
» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Why separate the concept of a thread from that of
a process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (Protection)
– Heavyweight Process Process with one thread

34 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (callee must save)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

MIPS: Software conventions for Registers

• Before calling procedure:
– Save caller-saves regs
– Save v0, v1
– Save ra

• After return, assume
– Callee-saves reg OK
– gp,sp,fp OK (restored!)
– Other things trashed

35 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Memory Footprint of Two-Thread Example

• If we stopped this program and examined it with a
debugger, we would see
– Two sets of CPU registers

– Two sets of Stacks

• Questions:
– How do we position stacks relative to
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?

– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
d
d
re

ss S
pa

ce

36 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Per Thread State

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter,
pointer to stack

– Scheduling info: State (more later), priority, CPU time

– Accounting Info

– Various Pointers (for implementing scheduling queues)

– Pointer to enclosing process? (PCB)?

– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in protected memory
– In Array, or Linked List, or …

37 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

38 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Ready Queue And Various I/O Device Queues

• Thread not running TCB is in some scheduler queue
– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
TCB9

Link

Registers

Other
State
TCB6

Link

Registers

Other
State
TCB16

Link

Registers

Other
State
TCB8

Link

Registers

Other
State
TCB2

Link

Registers

Other
State
TCB3

Link

Registers

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

39 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Dispatch Loop

• Conceptually, the dispatching loop of the operating system
looks as follows:

 Loop {

 RunThread();

 ChooseNextThread();

 SaveStateOfCPU(curTCB);

 LoadStateOfCPU(newTCB);

 }

• This is an infinite loop

– One could argue that this is all that the OS does

• Should we ever exit this loop???

– When would that be?

40 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU

– Load environment (virtual memory space, etc)

– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily

– External events: thread gets preempted

41 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Stack for Yielding Thread

• How do we run a new thread?
 run_new_thread() {

 newThread = PickNewThread();

 switch(curThread, newThread);

 ThreadHouseKeeping(); /* next Lecture */

 }

• How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI S
ta

ck
 grow

th

run_new_thread

kernel_yield
Trap to OS

switch

42 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

What do the stacks look like?

• Consider the following
code blocks:

 proc A() {

 B();

 }

 proc B() {

 while(TRUE) {

 yield();

 }

 }

• Suppose we have 2
threads:
– Threads S and T

Thread S

S
ta

ck
 g

ro
w
th

 A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

43 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Saving/Restoring state (often called “Context Switch)

 Switch(tCur,tNew) {

 /* Unload old thread */

 TCB[tCur].regs.r7 = CPU.r7;

 …

 TCB[tCur].regs.r0 = CPU.r0;

 TCB[tCur].regs.sp = CPU.sp;

 TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

 /* Load and execute new thread */

 CPU.r7 = TCB[tNew].regs.r7;

 …

 CPU.r0 = TCB[tNew].regs.r0;

 CPU.sp = TCB[tNew].regs.sp;

 CPU.retpc = TCB[tNew].regs.retpc;

 return; /* Return to CPU.retpc */

 }

Switch Details

• How many registers need to be saved/restored?
– MIPS 4k: 32 Int(32b), 32 Float(32b)

– Pentium: 14 Int(32b), 8 Float(80b), 8 SSE(128b),…

– Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows =
 136 (32b)+32 Float (32b)

– Itanium: 128 Int (64b), 128 Float (82b), 19 Other(64b)

• retpc is where the return should jump to.

– In reality, this is implemented as a jump

• There is a real implementation of switch in Nachos.
– See switch.s

» Normally, switch is implemented as assembly!

– Of course, it’s magical!

– But you should be able to follow it!

45 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Switch Details (continued)

• What if you make a mistake in implementing switch?
– Suppose you forget to save/restore register 4
– Get intermittent failures depending on when context switch
occurred and whether new thread uses register 4

– System will give wrong result without warning

• Can you devise an exhaustive test to test switch code?
– No! Too many combinations and inter-leavings

• Cautionary tail:
– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented!

» Only works As long as kernel size < 1MB

– What happened?
» Time passed, People forgot
» Later, they added features to kernel (no one removes

features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

46 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

What happens when thread blocks on I/O?

• What happens when a thread requests a block of
data from the file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

S
ta

ck
 grow

th

47 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

External Events

• What happens if thread never does any I/O,
never waits, and never yields control?
– Could the ComputePI program grab all resources
and never release the processor?

» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

• Answer: Utilize External Events
– Interrupts: signals from hardware or software
that stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every
some many milliseconds

• If we make sure that external events occur
frequently enough, can ensure dispatcher runs

48 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
 TimerInterrupt() {

 DoPeriodicHouseKeeping();

 run_new_thread();

 }

• I/O interrupt: same as timer interrupt except that
DoHousekeeping() replaced by ServiceIO().

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch
S
ta

ck
 grow

th

49 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Choosing a Thread to Run

• How does Dispatcher decide what to run?
– Zero ready threads – dispatcher loops

» Alternative is to create an “idle thread”

» Can put machine into low-power mode

– Exactly one ready thread – easy

– More than one ready thread: use scheduling priorities

• Possible priorities:
– LIFO (last in, first out):

» put ready threads on front of list, remove from front

– Pick one at random

– FIFO (first in, first out):
» Put ready threads on back of list, pull them from front

» This is fair and is what Nachos does

– Priority queue:
» keep ready list sorted by TCB priority field

50 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

I
nte

rrupt M
a
sk

Control Software
Interrupt NMI

CPU

Priority
 E

ncod
e
r

T
im

e
r

Int Disable

51 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Example: Network Interrupt

• Disable/Enable All Ints Internal CPU disable bit
– RTI reenables interrupts, returns to user mode

• Raise/lower priority: change interrupt mask
• Software interrupts can be provided entirely in

software at priority switching boundaries

add $r1,$r2,$r3

subi $r4,$r1,#4

slli $r4,$r4,#2

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

Transfer Network
Packet from hardware
to Kernel Buffers

Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

e
rr

up
t

H
a
nd

le
r”

lw $r2,0($r4)

lw $r3,4($r4)

add $r2,$r2,$r3

sw 8($r4),$r2

E
x
te

rn
a
l
I
nt

e
rr

up
t

Pipeline Flush

52 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Review: Preemptive Multithreading

• Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
 TimerInterrupt() {

 DoPeriodicHouseKeeping();

 run_new_thread();

 }

• This is often called preemptive multithreading, since
threads are preempted for better scheduling
– Solves problem of user who doesn’t insert yield();

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch
S
ta

ck
 grow

th

53 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Review: Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

54 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue
– We called this CreateThread() earlier

• Arguments to ThreadFork()

– Pointer to application routine (fcnPtr)

– Pointer to array of arguments (fcnArgPtr)

– Size of stack to allocate

• Implementation
– Sanity Check arguments

– Enter Kernel-mode and Sanity Check arguments again

– Allocate new Stack and TCB

– Initialize TCB and place on ready list (Runnable).

55 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

How do we initialize TCB and Stack?
• Initialize Register fields of TCB

– Stack pointer made to point at stack

– PC return address OS (asm) routine ThreadRoot()

– Two arg registers (a0 and a1) initialized to fcnPtr and
fcnArgPtr, respectively

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)

– Think of stack frame as just before body of
ThreadRoot() really gets started

ThreadRoot stub

Initial Stack

S
ta

ck
 grow

th

56 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

– This really starts the new thread

S
ta

ck
 g

ro
w
th

 A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

57 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

What does ThreadRoot() look like?

• ThreadRoot() is the root for the thread routine:
 ThreadRoot() {
 DoStartupHousekeeping();

 UserModeSwitch(); /* enter user mode */

 Call fcnPtr(fcnArgPtr);

 ThreadFinish();

 }

• Startup Housekeeping
– Includes things like recording
start time of thread

– Other Statistics

• Stack will grow and shrink
with execution of thread

• Final return from thread returns into ThreadRoot()
which calls ThreadFinish()
– ThreadFinish() will start at user-level

ThreadRoot

Running Stack

S
ta

ck
 grow

th

Thread Code

58 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

What does ThreadFinish() do?

• Needs to re-enter kernel mode (system call)
• “Wake up” (place on ready queue) threads waiting

for this thread
– Threads (like the parent) may be on a wait queue
waiting for this thread to finish

• Can’t deallocate thread yet
– We are still running on its stack!
– Instead, record thread as “waitingToBeDestroyed”

• Call run_new_thread() to run another thread:
 run_new_thread() {

 newThread = PickNewThread();

 switch(curThread, newThread);

 ThreadHouseKeeping();

 }
– ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread’s TCB and stack

59 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Additional Detail

• Thread Fork is not the same thing as UNIX fork
– UNIX fork creates a new process so it has to
create a new address space

– For now, don’t worry about how to create and
switch between address spaces

• Thread fork is very much like an asynchronous
procedure call
– Runs procedure in separate thread

– Calling thread doesn’t wait for finish

• What if thread wants to exit early?
– ThreadFinish() and exit() are essentially the
same procedure entered at user level

60 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Parent-Child relationship

• Every thread (and/or Process) has a parentage
– A “parent” is a thread that creates another thread

– A child of a parent was created by that parent

Typical process tree
for Solaris system

61 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

ThreadJoin() system call

• One thread can wait for another to finish with the
ThreadJoin(tid) call
– Calling thread will be taken off run queue and placed on
waiting queue for thread tid

• Where is a logical place to store this wait queue?
– On queue inside the TCB

• Similar to wait() system call in UNIX
– Lets parents wait for child processes

Other
State
TCB9

Link

Registers

Other
State
TCB6

Link

Registers

Other
State
TCB16

Link

Registers

Head

Tail

Termination
Wait queue

TCBtid

62 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Use of Join for Traditional Procedure Call

• A traditional procedure call is logically equivalent to
doing a ThreadFork followed by ThreadJoin

• Consider the following normal procedure call of B()
by A():

 A() { B(); }

 B() { Do interesting, complex stuff }

• The procedure A() is equivalent to A’():

 A’() {

 tid = ThreadFork(B,null);

 ThreadJoin(tid);

 }

• Why not do this for every procedure?
– Context Switch Overhead

– Memory Overhead for Stacks

63 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Kernel versus User-Mode threads

• We have been talking about Kernel threads
– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Even lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

64 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Threading models mentioned by book

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

65 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Summary

• Processes have two parts
– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Book talks about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

66 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Summary

• The state of a thread is contained in the TCB
– Registers, PC, stack pointer

– States: New, Ready, Running, Waiting, or Terminated

• Multithreading provides simple illusion of multiple CPUs
– Switch registers and stack to dispatch new thread

– Provide mechanism to ensure dispatcher regains control

• Switch routine
– Can be very expensive if many registers

– Must be very carefully constructed!

• Many scheduling options
– Decision of which thread to run complex enough for
complete lecture

67 A.A. 2019-20 Elementi di Sistemi Operativi - Processi

Summary

• Interrupts: hardware mechanism for returning control
to operating system
– Used for important/high-priority events
– Can force dispatcher to schedule a different thread
(premptive multithreading)

• New Threads Created with ThreadFork()
– Create initial TCB and stack to point at ThreadRoot()
– ThreadRoot() calls thread code, then ThreadFinish()
– ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

• Threads can wait for other threads using
ThreadJoin()

• Threads may be at user-level or kernel level
• Cooperating threads have many potential advantages

– But: introduces non-reproducibility and non-determinism
– Need to have Atomic operations

