
 
 

Concurrency: 
Processes, Threads, and Address Spaces 

Adapted by Tiziano Villa from lectures notes by  

Prof. John Kubiatowicz (UC Berkeley) 
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Review: History of OS 

• Why Study? 
– To understand how user needs and hardware constraints 
influenced (and will influence) operating systems 

• Several Distinct Phases: 
– Hardware Expensive, Humans Cheap  

» Eniac, … Multics 
– Hardware Cheaper, Humans Expensive  

» PCs, Workstations, Rise of GUIs 
– Hardware Really Cheap, Humans Really Expensive  

» Ubiquitous devices, Widespread networking 

• Rapid Change in Hardware Leads to changing OS 
– Batch  Multiprogramming  Timeshare  Graphical UI 
 Ubiquitous Devices  Cyberspace/Metaverse/?? 

– Gradual Migration of Features into Smaller Machines 
• Situation today is much like the late 60s 

– Small OS: 100K lines/Large: 10M lines (5M browser!) 
– 100-1000 people-years 
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Review: Migration of OS Concepts and Features 
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Review: UNIX System Structure 

User Mode 

Kernel Mode 

Hardware 

Applications 

Standard Libs 
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Concurrency 

• “Thread” of execution 
– Independent Fetch/Decode/Execute loop 

– Operating in some Address space 

• Uniprogramming: one thread at a time 
– MS/DOS, early Macintosh, Batch processing 

– Easier for operating system builder 

– Get rid concurrency by defining it away 

– Does this make sense for personal computers? 

• Multiprogramming: more than one thread at a time 
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, 
Mac OS X 

– Often called “multitasking”, but multitasking has 
other meanings (talk about this later) 

• ManyCore  Multiprogramming, right? 
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The Basic Problem of Concurrency 

• The basic problem of concurrency involves resources: 
– Hardware: single CPU, single DRAM, single I/O devices 

– Multiprogramming API: users think they have exclusive 
access to shared resources 

• OS Has to coordinate all activity 
– Multiple users, I/O interrupts, … 

– How can it keep all these things straight? 

• Basic Idea: Use Virtual Machine abstraction 
– Decompose hard problem into simpler ones 

– Abstract the notion of an executing program 

– Then, worry about multiplexing these abstract machines 

• Dijkstra did this for the “THE system” 
– Few thousand lines vs 1 million lines in OS 360 (1K bugs) 
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Fetch 
Exec 

R0 
… 

R31 
F0 
… 

F30 
PC 

… 
Data1 
Data0 

Inst237 
Inst236 

… 
Inst5 
Inst4 
Inst3 
Inst2 
Inst1 
Inst0 

Addr 0 

Addr 232-1 

What happens during execution? 

• Execution sequence: 
– Fetch Instruction at PC   

– Decode 

– Execute (possibly using registers) 

– Write results to registers/mem 

– PC = Next Instruction(PC) 

– Repeat  

 

PC 
PC 
PC 
PC 
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How can we give the illusion of multiple processors? 

CPU3 CPU2 CPU1 

Shared Memory 

• Assume a single processor.  How do we provide the 
illusion of multiple processors? 
– Multiplex in time! 

• Each virtual “CPU” needs a structure to hold: 
– Program Counter (PC), Stack Pointer (SP) 
– Registers (Integer, Floating point, others…?) 

• How switch from one CPU to the next? 
– Save PC, SP, and registers in current state block 
– Load PC, SP, and registers from new state block 

• What triggers switch? 
– Timer, voluntary yield, I/O, other things 
 

CPU1 CPU2 CPU3 CPU1 CPU2 

Time  
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Properties of this simple multiprogramming technique 

• All virtual CPUs share same non-CPU resources 
– I/O devices the same 

– Memory the same 

• Consequence of sharing: 
– Each thread can access the data of every other 
thread (good for sharing, bad for protection) 

– Threads can share instructions 
(good for sharing, bad for protection) 

– Can threads overwrite OS functions?  

• This (unprotected) model common in: 
– Embedded applications 

– Windows 3.1/Machintosh (switch only with yield) 

– Windows 95—ME? (switch with both yield and timer) 
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Modern Technique: SMT/Hyperthreading 

• Hardware technique  
– Exploit natural properties 
of superscalar processors 
to provide illusion of  
multiple processors 

– Higher utilization of  
processor resources 

• Can schedule each thread 
as if were separate CPU 
– However, not linear 
speedup! 

– If have multiprocessor, 
should schedule each 
processor first 

• Original technique called “Simultaneous Multithreading” 
– See http://www.cs.washington.edu/research/smt/ 
– Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5 
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How to protect threads from one another? 

• Need three important things: 
1. Protection of memory 

» Every task does not have access to all memory 

2. Protection of I/O devices 
» Every task does not have access to every device 

3. Protection of Access to Processor: 
Preemptive switching from task to task 
» Use of timer 

» Must not be possible to disable timer from 
usercode 
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Recall: Program’s Address Space 

• Address space  the set of 
accessible addresses + state 
associated with them: 
– For a 32-bit processor there are 
232 = 4 billion addresses 

• What happens when you read or 
write to an address? 
– Perhaps Nothing 

– Perhaps acts like regular memory 

– Perhaps ignores writes 

– Perhaps causes I/O operation 
» (Memory-mapped I/O) 

– Perhaps causes exception (fault) 
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Providing Illusion of Separate Address Space: 
Load new Translation Map on Switch 

Prog 1 
Virtual 
Address 
Space 1 

Prog 2 
Virtual 
Address 
Space 2 

Code 

Data 

Heap 

Stack 

Code 

Data 

Heap 

Stack 

Data 2 

Stack 1 

Heap 1 

OS heap &  
Stacks 

Code 1 

Stack 2 

Data 1 

Heap 2 

Code 2 

OS code 

OS data Translation Map 1 Translation Map 2 

Physical Address Space 



Traditional UNIX Process 

• Process: Operating system abstraction to 
represent what is needed to run a single program 
– Often called a “HeavyWeight Process” 
– Formally: a single, sequential stream of execution 
in its own address space 

• Two parts: 
– Sequential Program Execution Stream 

» Code executed as a single, sequential stream of 
execution 

» Includes State of CPU registers 

– Protected Resources: 
» Main Memory State (contents of Address Space) 
» I/O state (i.e. file descriptors) 

• Important: There is no concurrency in a 
heavyweight process 
 
 



Process 
Control 
Block 

How do we multiplex processes? 

• The current state of process held in a 
process control block (PCB): 
– This is a “snapshot” of the execution and 
protection environment 

– Only one PCB active at a time 

• Give out CPU time to different 
processes (Scheduling): 
– Only one process “running” at a time 
– Give more time to important processes 

• Give pieces of resources to different 
processes (Protection): 
– Controlled access to non-CPU resources 
– Sample mechanisms:  

» Memory Mapping: Give each process their 
own address space 

» Kernel/User duality: Arbitrary 
multiplexing of I/O through system calls 
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CPU Switch From Process to Process 

• This is also called a “context switch” 
• Code executed in kernel above is overhead  

– Overhead sets minimum practical switching time 

– Less overhead with SMT/hyperthreading, but… 
contention for resources instead 
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Diagram of Process State 

• As a process executes, it changes state 
– new:  The process is being created 

– ready:  The process is waiting to run 

– running:  Instructions are being executed 

– waiting:  Process waiting for some event to occur 

– terminated:  The process has finished execution 
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Process Scheduling 

• PCBs move from queue to queue as they change state 
– Decisions about which order to remove from queues are 
Scheduling decisions 

– Many algorithms possible (few weeks from now) 
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What does it take to create a process? 

• Must construct new PCB  
– Inexpensive 

• Must set up new page tables for address space 
– More expensive 

• Copy data from parent process? (Unix fork() ) 
– Semantics of Unix fork() are that the child 
process gets a complete copy of the parent 
memory and I/O state 

– Originally very expensive 

– Much less expensive with “copy on write” 

• Copy I/O state (file handles, etc) 
– Medium expense 
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Process =? Program 

• More to a process than just a program: 
– Program is just part of the process state 
– I run emacs on lectures.txt, you run it on 
homework.java – Same program, different processes 

• Less to a process than a program: 
– A program can invoke more than one process 
– cc starts up cpp, cc1, cc2, as, and ld 

main () 

{ 

   …; 

} 

A() { 

   … 

} 

main () 

{ 

   …; 

} 

A() { 

   … 

} 

Heap 
 
 
 

Stack 
 
A 

main 

Program Process 
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Multiple Processes Collaborate on a Task 

• High Creation/memory Overhead 
• (Relatively) High Context-Switch Overhead 
• Need Communication mechanism: 

– Separate Address Spaces Isolates Processes 
– Shared-Memory Mapping 

» Accomplished by mapping addresses to common DRAM 
» Read and Write through memory 

– Message Passing 
» send() and receive() messages 
» Works across network 

Proc 1 Proc 2 Proc 3 
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Shared Memory Communication 

Prog 1 
Virtual 
Address 
Space 1 

Prog 2 
Virtual 
Address 
Space 2 

Data 2 

Stack 1 

Heap 1 

Code 1 

Stack 2 

Data 1 

Heap 2 

Code 2 

Shared 

• Communication occurs by “simply” reading/writing 
to shared address page 
– Really low overhead communication 

– Introduces complex synchronization problems 

Code 

Data 

Heap 

Stack 

Shared 

Code 

Data 

Heap 

Stack 

Shared 
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Inter-process Communication (IPC) 

• Mechanism for processes to communicate and to 
synchronize their actions 

• Message system – processes communicate with 
each other without resorting to shared variables 

• IPC facility provides two operations: 
– send(message) – message size fixed or variable  

– receive(message) 

• If P and Q wish to communicate, they need to: 
– establish a communication link between them 

– exchange messages via send/receive 

• Implementation of communication link 
– physical (e.g., shared memory, hardware bus, 
systcall/trap) 

– logical (e.g., logical properties) 
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Modern “Lightweight” Process with Threads 

• Thread: a sequential execution stream within process 
(Sometimes called a “Lightweight process”) 
– Process still contains a single Address Space 

– No protection between threads 

• Multithreading: a single program made up of a 
number of different concurrent activities  
– Sometimes called multitasking, as in Ada… 

• Why separate the concept of a thread from that of 
a process? 
– Discuss the “thread” part of a process (concurrency) 

– Separate from the “address space” (Protection) 

– Heavyweight Process  Process with one thread 
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Single and Multithreaded Processes 

• Threads encapsulate concurrency: “Active” component 

• Address spaces encapsulate protection: “Passive” part 
– Keeps buggy program from trashing the system 

• Why have multiple threads per address space? 
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Examples of multithreaded programs 

• Embedded systems  
– Elevators, Planes, Medical systems, Wristwatches 

– Single Program, concurrent operations 

• Most modern OS kernels 
– Internally concurrent because have to deal with 
concurrent requests by multiple users 

– But no protection needed within kernel 

• Database Servers 
– Access to shared data by many concurrent users 

– Also background utility processing must be done 
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Examples of multithreaded programs (con’t) 

• Network Servers 
– Concurrent requests from network 

– Again, single program, multiple concurrent operations 

– File server, Web server, and airline reservation 
systems 

• Parallel Programming (More than one physical CPU) 
– Split program into multiple threads for parallelism 

– This is called Multiprocessing 

 

• Some multiprocessors are actually uniprogrammed: 
– Multiple threads in one address space but one program 
at a time 
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Thread State 

• State shared by all threads in process/addr space 
– Contents of memory (global variables, heap) 

– I/O state (file system, network connections, etc) 

• State “private” to each thread  

– Kept in TCB  Thread Control Block 

– CPU registers (including, program counter) 

– Execution stack – what is this? 

 

• Execution Stack 
– Parameters, Temporary variables 

– return PCs are kept while called procedures are 
executing 
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Execution Stack Example 

• Stack holds temporary results 

• Permits recursive execution 

• Crucial to modern languages 

 

A(int tmp) { 

  if (tmp<2) 

    B(); 

  printf(tmp); 

} 

B() { 

  C(); 

} 

C() { 

  A(2); 

} 

A(1); 

A: tmp=2 

   ret=C+1 Stack 
Pointer 

Stack Growth 

A: tmp=1 

   ret=exit 

B: ret=A+2 

C: ret=b+1 
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Classification 

• Real operating systems have either 
– One or many address spaces 
– One or many threads per address space 

• Did Windows 95/98/ME have real memory protection? 
– No: Users could overwrite process tables/System DLLs 

Mach, OS/2, Linux 

Windows 9x??? 

Win NT to XP, 
Solaris, HP-UX, OS X 

Embedded systems 
(Geoworks, VxWorks, 

JavaOS,etc) 

JavaOS, Pilot(PC) 

Traditional UNIX 
MS/DOS, early 

Macintosh 

Many 

One 

# threads 

Per AS: 

Many One 

#
 o

f 
a
d
d
r 

sp
a
ce

s:
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Java APPS 

OS 

Hardware 

Java OS 
Structure 

Example: Implementation Java OS 

• Many threads, one Address Space 

• Why another OS? 
– Recommended Minimum memory sizes: 

» UNIX + X Windows: 32MB 

» Windows 98:  16-32MB 

» Windows NT: 32-64MB 

» Windows 2000/XP: 64-128MB 

– What if we want a cheap network  
point-of-sale computer? 

» Say need 1000 terminals 

» Want < 8MB 

• What language to write this OS in? 
– C/C++/ASM? Not terribly high-level. 
Hard to debug. 

– Java/Lisp? Not quite sufficient – need 
direct access to HW/memory management 
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Recall: Modern Process with Multiple Threads 

• Process: Operating system abstraction to represent 
what is needed to run a single, multithreaded 
program 

• Two parts: 
– Multiple Threads 

» Each thread is a single, sequential stream of execution 

– Protected Resources: 
» Main Memory State (contents of Address Space) 
» I/O state (i.e. file descriptors) 

• Why separate the concept of a thread from that of 
a process? 
– Discuss the “thread” part of a process (concurrency) 
– Separate from the “address space” (Protection) 
– Heavyweight Process  Process with one thread 
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0 zero constant 0 

1 at reserved for assembler 

2 v0 expression evaluation & 

3 v1 function results 

4 a0 arguments 

5 a1 

6 a2 

7 a3  

8 t0 temporary: caller saves 

. . .  (callee can clobber) 

15 t7 

16 s0 callee saves 

. . . (callee must save) 

23 s7 

24 t8  temporary (cont’d) 

25 t9 

26 k0 reserved for OS kernel 

27 k1 

28 gp Pointer to global area 

29 sp Stack pointer 

30 fp frame pointer 

31 ra Return Address (HW) 

MIPS: Software conventions for Registers 

• Before calling procedure: 
– Save caller-saves regs 
– Save v0, v1 
– Save ra 

• After return, assume 
– Callee-saves reg OK 
– gp,sp,fp OK (restored!) 
– Other things trashed 
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Memory Footprint of Two-Thread Example 

• If we stopped this program and examined it with a 
debugger, we would see 
– Two sets of CPU registers 

– Two sets of Stacks 

• Questions:  
– How do we position stacks relative to  
each other? 

– What maximum size should we choose 
for the stacks? 

– What happens if threads violate this? 

– How might you catch violations? 

 

Code 

Global Data 

Heap 

Stack 1 

Stack 2 

A
d
d
re

ss S
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ce
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Per Thread State 

• Each Thread has a Thread Control Block (TCB) 
– Execution State: CPU registers, program counter, 
pointer to stack 

– Scheduling info: State (more later), priority, CPU time 

– Accounting Info 

– Various Pointers (for implementing scheduling queues) 

– Pointer to enclosing process? (PCB)? 

– Etc (add stuff as you find a need) 

• OS Keeps track of TCBs in protected memory 
– In Array, or Linked List, or … 
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Lifecycle of a Thread (or Process) 

• As a thread executes, it changes state: 
– new:  The thread is being created 
– ready:  The thread is waiting to run 
– running:  Instructions are being executed 
– waiting:  Thread waiting for some event to occur 
– terminated:  The thread has finished execution 

• “Active” threads are represented by their TCBs 
– TCBs organized into queues based on their state 
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Ready Queue And Various I/O Device Queues 

• Thread not running  TCB is in some scheduler queue 
– Separate queue for each device/signal/condition  
– Each queue can have a different scheduler policy 
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Dispatch Loop 

• Conceptually, the dispatching loop of the operating system 
looks as follows: 
 

  Loop { 

     RunThread();  

     ChooseNextThread(); 

     SaveStateOfCPU(curTCB); 

     LoadStateOfCPU(newTCB); 

  } 

 

• This is an infinite loop 

– One could argue that this is all that the OS does 

• Should we ever exit this loop??? 

– When would that be? 
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Running a thread 

Consider first portion:   RunThread() 

 

• How do I run a thread? 
– Load its state (registers, PC, stack pointer) into CPU 

– Load environment (virtual memory space, etc) 

– Jump to the PC 

 

• How does the dispatcher get control back? 
– Internal events: thread returns control voluntarily 

– External events: thread gets preempted 
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Stack for Yielding Thread 

• How do we run a new thread? 
  run_new_thread() { 

     newThread = PickNewThread(); 

     switch(curThread, newThread); 

     ThreadHouseKeeping(); /* next Lecture */ 

  } 

• How does dispatcher switch to a new thread? 
– Save anything next thread may trash: PC, regs, stack 
– Maintain isolation for each thread 

yield 

ComputePI S
ta

ck
 grow

th
 

run_new_thread 

kernel_yield 
Trap to OS 

switch 
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What do the stacks look like? 

• Consider the following 
code blocks: 

      proc A() {  

     B(); 

  

  } 

  proc B() { 

     while(TRUE) { 

        yield(); 

     } 

  } 

• Suppose we have 2 
threads: 
– Threads S and T 

Thread S 

S
ta

ck
 g

ro
w
th

 A 

B(while) 

yield 

run_new_thread 

switch 

Thread T 

A 

B(while) 

yield 

run_new_thread 

switch 
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Saving/Restoring state (often called “Context Switch) 

 Switch(tCur,tNew) { 

    /* Unload old thread */ 

    TCB[tCur].regs.r7 = CPU.r7; 

   … 

    TCB[tCur].regs.r0 = CPU.r0; 

     TCB[tCur].regs.sp = CPU.sp; 

    TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/ 

 

    /* Load and execute new thread */ 

    CPU.r7 = TCB[tNew].regs.r7; 

   … 

    CPU.r0 = TCB[tNew].regs.r0; 

    CPU.sp = TCB[tNew].regs.sp; 

    CPU.retpc = TCB[tNew].regs.retpc; 

    return; /* Return to CPU.retpc */ 

 } 



Switch Details 

• How many registers need to be saved/restored? 
– MIPS 4k:  32 Int(32b), 32 Float(32b) 

– Pentium:  14 Int(32b), 8 Float(80b), 8 SSE(128b),… 

– Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows =  
  136 (32b)+32 Float (32b) 

– Itanium:  128 Int (64b), 128 Float (82b), 19 Other(64b) 

• retpc is where the return should jump to. 

– In reality, this is implemented as a jump 

• There is a real implementation of switch in Nachos. 
– See switch.s  

» Normally, switch is implemented as assembly! 

– Of course, it’s magical! 

– But you should be able to follow it! 
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Switch Details (continued) 

• What if you make a mistake in implementing switch? 
– Suppose you forget to save/restore register 4 
– Get intermittent failures depending on when context switch 
occurred and whether new thread uses register 4 

– System will give wrong result without warning 

• Can you devise an exhaustive test to test switch code? 
– No! Too many combinations and inter-leavings 

• Cautionary tail: 
– For speed, Topaz kernel saved one instruction in switch() 
– Carefully documented! 

» Only works As long as kernel size < 1MB 

– What happened?   
» Time passed, People forgot 
» Later, they added features to kernel (no one removes 

features!) 
» Very weird behavior started happening 

– Moral of story: Design for simplicity 
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What happens when thread blocks on I/O? 

• What happens when a thread requests a block of 
data from the file system? 
– User code invokes a system call 
– Read operation is initiated 
– Run new thread/switch 

• Thread communication similar 
– Wait for Signal/Join 
– Networking 
 

CopyFile 

read 

run_new_thread 

kernel_read 
Trap to OS 

switch 

S
ta

ck
 grow

th
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External Events 

• What happens if thread never does any I/O, 
never waits, and never yields control? 
– Could the ComputePI program grab all resources 
and never release the processor? 

» What if it didn’t print to console? 

– Must find way that dispatcher can regain control! 

• Answer: Utilize External Events 
– Interrupts: signals from hardware or software 
that stop the running code and jump to kernel 

– Timer: like an alarm clock that goes off every 
some many milliseconds 

• If we make sure that external events occur 
frequently enough, can ensure dispatcher runs 
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Use of Timer Interrupt to Return Control 

• Solution to our dispatcher problem 
– Use the timer interrupt to force scheduling decisions 

 

 

 

 

 

• Timer Interrupt routine: 
 TimerInterrupt() { 

    DoPeriodicHouseKeeping(); 

    run_new_thread(); 

 } 

• I/O interrupt: same as timer interrupt except that 
DoHousekeeping() replaced by ServiceIO(). 

Some Routine 

run_new_thread 

TimerInterrupt 
Interrupt 

switch 
S
ta

ck
 grow

th
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Choosing a Thread to Run 

• How does Dispatcher decide what to run? 
– Zero ready threads – dispatcher loops 

» Alternative is to create an “idle thread” 

» Can put machine into low-power mode 

– Exactly one ready thread – easy 

– More than one ready thread: use scheduling priorities 

• Possible priorities: 
– LIFO (last in, first out):  

» put ready threads on front of list, remove from front 

– Pick one at random 

– FIFO (first in, first out): 
» Put ready threads on back of list, pull them from front 

» This is fair and is what Nachos does 

– Priority queue: 
» keep ready list sorted by TCB priority field 
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Interrupt Controller 

• Interrupts invoked with interrupt lines from devices 
• Interrupt controller chooses interrupt request to honor 

– Mask enables/disables interrupts 
– Priority encoder picks highest enabled interrupt  
– Software Interrupt Set/Cleared by Software 
– Interrupt identity specified with ID line 

• CPU can disable all interrupts with internal flag 
• Non-maskable interrupt line (NMI) can’t be disabled 

Network 

IntID 

Interrupt 
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Control Software 
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Example: Network Interrupt 

• Disable/Enable All Ints  Internal CPU disable bit 
– RTI reenables interrupts, returns to user mode 

• Raise/lower priority: change interrupt mask  
• Software interrupts can be provided entirely in 

software at priority switching boundaries 
 

 
add  $r1,$r2,$r3 

subi  $r4,$r1,#4 

slli  $r4,$r4,#2 
 

Raise priority 
Reenable All Ints 
Save registers 
Dispatch to Handler 
 
Transfer Network 
Packet from hardware 
to Kernel Buffers 

 
Restore registers 
Clear current Int 
Disable All Ints 
Restore priority 
RTI 

“I
nt

e
rr

up
t 

H
a
nd
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lw $r2,0($r4) 

lw $r3,4($r4) 

add $r2,$r2,$r3 

sw 8($r4),$r2 
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Pipeline Flush 
 



52 A.A. 2019-20 Elementi di Sistemi Operativi - Processi 

Review: Preemptive Multithreading 

• Use the timer interrupt to force scheduling decisions 
 

 

 

 

 

• Timer Interrupt routine: 
 TimerInterrupt() { 

    DoPeriodicHouseKeeping(); 

    run_new_thread(); 

 } 

• This is often called preemptive multithreading, since 
threads are preempted for better scheduling 
– Solves problem of user who doesn’t insert yield(); 

Some Routine 

run_new_thread 

TimerInterrupt 
Interrupt 

switch 
S
ta

ck
 grow

th
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Review: Lifecycle of a Thread (or Process) 

• As a thread executes, it changes state: 
– new:  The thread is being created 
– ready:  The thread is waiting to run 
– running:  Instructions are being executed 
– waiting:  Thread waiting for some event to occur 
– terminated:  The thread has finished execution 

• “Active” threads are represented by their TCBs 
– TCBs organized into queues based on their state 
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ThreadFork(): Create a New Thread 

• ThreadFork() is a user-level procedure that 
creates a new thread and places it on ready queue 
– We called this CreateThread() earlier 

• Arguments to ThreadFork() 

– Pointer to application routine (fcnPtr) 

– Pointer to array of arguments (fcnArgPtr) 

– Size of stack to allocate 

• Implementation 
– Sanity Check arguments 

– Enter Kernel-mode and Sanity Check arguments again 

– Allocate new Stack and TCB 

– Initialize TCB and place on ready list (Runnable). 
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How do we initialize TCB and Stack? 
• Initialize Register fields of TCB 

– Stack pointer made to point at stack 

– PC return address  OS (asm) routine ThreadRoot() 

– Two arg registers (a0 and a1) initialized to fcnPtr and 
fcnArgPtr, respectively 

• Initialize stack data? 
– No. Important part of stack frame is in registers (ra) 

– Think of stack frame as just before body of 
ThreadRoot() really gets started 

ThreadRoot stub 

Initial Stack 
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How does Thread get started? 

• Eventually, run_new_thread() will select this TCB 
and return into beginning of ThreadRoot() 

– This really starts the new thread 

S
ta

ck
 g
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th

 A 

B(while) 

yield 

run_new_thread 

switch 

ThreadRoot 

Other Thread 

ThreadRoot stub 

New Thread 
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What does ThreadRoot() look like? 

• ThreadRoot() is the root for the thread routine: 
    ThreadRoot() { 
      DoStartupHousekeeping(); 

      UserModeSwitch(); /* enter user mode */ 

      Call fcnPtr(fcnArgPtr); 

      ThreadFinish(); 

   } 

• Startup Housekeeping  
– Includes things like recording  
start time of thread 

– Other Statistics 

• Stack will grow and shrink 
with execution of thread 

• Final return from thread returns into ThreadRoot()  
which calls ThreadFinish() 
– ThreadFinish() will start at user-level 
 

ThreadRoot 

Running Stack 

S
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 grow
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Thread Code 
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What does ThreadFinish() do? 

• Needs to re-enter kernel mode (system call) 
• “Wake up” (place on ready queue) threads waiting 

for this thread 
– Threads (like the parent) may be on a wait queue 
waiting for this thread to finish 

• Can’t deallocate thread yet 
– We are still running on its stack! 
– Instead, record thread as “waitingToBeDestroyed” 

• Call run_new_thread() to run another thread: 
  run_new_thread() { 

     newThread = PickNewThread(); 

     switch(curThread, newThread); 

     ThreadHouseKeeping();  

  } 
– ThreadHouseKeeping() notices waitingToBeDestroyed 
and deallocates the finished thread’s TCB and stack 
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Additional Detail 

• Thread Fork is not the same thing as UNIX fork 
– UNIX fork creates a new process so it has to 
create a new address space 

– For now, don’t worry about how to create and 
switch between address spaces 

• Thread fork is very much like an asynchronous 
procedure call 
– Runs procedure in separate thread 

– Calling thread doesn’t wait for finish 

• What if thread wants to exit early? 
– ThreadFinish() and exit() are essentially the 
same procedure entered at user level 
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Parent-Child relationship 

• Every thread (and/or Process) has a parentage 
– A “parent” is a thread that creates another thread 

– A child of a parent was created by that parent 

Typical process tree 
for Solaris system 



61 A.A. 2019-20 Elementi di Sistemi Operativi - Processi 

ThreadJoin() system call 

• One thread can wait for another to finish with the 
ThreadJoin(tid) call 
– Calling thread will be taken off run queue and placed on 
waiting queue for thread tid 

• Where is a logical place to store this wait queue? 
– On queue inside the TCB 

 
 
 
 
 
 
 

• Similar to wait() system call in UNIX 
– Lets parents wait for child processes 
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Use of Join for Traditional Procedure Call 

• A traditional procedure call is logically equivalent to 
doing a ThreadFork followed by ThreadJoin 

• Consider the following normal procedure call of B() 
by A(): 

  A() { B(); } 

  B() { Do interesting, complex stuff } 

• The procedure A() is equivalent to A’(): 

  A’() { 

     tid = ThreadFork(B,null); 

     ThreadJoin(tid); 

  } 

• Why not do this for every procedure? 
– Context Switch Overhead 

– Memory Overhead for Stacks 



63 A.A. 2019-20 Elementi di Sistemi Operativi - Processi 

Kernel versus User-Mode threads 

• We have been talking about Kernel threads 
– Native threads supported directly by the kernel 
– Every thread can run or block independently 
– One process may have several threads waiting on different 

things 
• Downside of kernel threads: a bit expensive 

– Need to make a crossing into kernel mode to schedule 
• Even lighter weight option: User Threads 

– User program provides scheduler and thread package 
– May have several user threads per kernel thread 
– User threads may be scheduled non-premptively relative to 

each other (only switch on yield()) 
– Cheap 

• Downside of user threads: 
– When one thread blocks on I/O, all threads block 
– Kernel cannot adjust scheduling among all threads 
– Option: Scheduler Activations 

» Have kernel inform user level when thread blocks… 
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Threading models mentioned by book 

Simple One-to-One 
Threading Model 

Many-to-One Many-to-Many 
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Summary 

• Processes have two parts 
– Threads (Concurrency) 
– Address Spaces (Protection) 

• Concurrency accomplished by multiplexing CPU Time: 
– Unloading current thread (PC, registers) 
– Loading new thread (PC, registers) 
– Such context switching may be voluntary (yield(), 
I/O operations) or involuntary (timer, other interrupts) 

• Protection accomplished restricting access: 
– Memory mapping isolates processes from each other 
– Dual-mode for isolating I/O, other resources 

• Book talks about processes  
– When this concerns concurrency, really talking about 
thread portion of a process 

– When this concerns protection, talking about address 
space portion of a process 
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Summary 

• The state of a thread is contained in the TCB 
– Registers, PC, stack pointer 

– States: New, Ready, Running, Waiting, or Terminated 

• Multithreading provides simple illusion of multiple CPUs 
– Switch registers and stack to dispatch new thread 

– Provide mechanism to ensure dispatcher regains control 

• Switch routine 
– Can be very expensive if many registers 

– Must be very carefully constructed! 

• Many scheduling options 
– Decision of which thread to run complex enough for 
complete lecture 
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Summary 

• Interrupts: hardware mechanism for returning control 
to operating system 
– Used for important/high-priority events 
– Can force dispatcher to schedule a different thread 
(premptive multithreading) 

• New Threads Created with ThreadFork() 
– Create initial TCB and stack to point at ThreadRoot() 
– ThreadRoot() calls thread code, then ThreadFinish() 
– ThreadFinish() wakes up waiting threads then 
prepares TCB/stack for distruction 

• Threads can wait for other threads using 
ThreadJoin() 

• Threads may be at user-level or kernel level  
• Cooperating threads have many potential advantages 

– But: introduces non-reproducibility and non-determinism 
– Need to have Atomic operations 


