Foglio di esercizi su applicazioni lineari e matrici, cambiamenti di base

Sansonetto Nicola*

Esercizio 1 (Punti 8). Le matrici quadrate reali R $n \times n$ tali che det(R) = 1 (determinante unitario) e che $R^{-1} = R^T$ (l'inversa coincide con la trasposta) si chiamano matrici ortogonali speciali $n \times n$. Dimostrare che l'insieme delle matrici ortogonali speciali $n \times n$ forma un gruppo rispetto alla moltiplicazione righe per colonne.

Sol. Le matrici reali $n \times n$ con determinante uguale a 1 e tali che $RR^T = \operatorname{Id}_n$ sono dette matrici ortogonali speciali. In primo luogo mostriamo che il prodotto di due matrici ortogonali speciali è ancora una matrice ortogonale speciale, infatti siano R e S due matrici ortogonali speciali, allora $(RS)(RS)^T = RSS^TR^T = \operatorname{Id}_n$, inoltre $\det(RS) = \det(R) \det(S) = \operatorname{Id}_n$. La matrice identità è ovviamente una matrice ortogonale speciale, infatti essa coincide con la sua trasposta e con la sua inversa e ha determinante uno. La proprietà associativa è immediata e discende dalla proprietà associativa del prodotto righe per colonne. Per il determinante sia ha, date R, S, T matrici ortogonali speciali, $\det(RS) = \det(RS) \det(T) = \det(RS) \det(T) = \det(R) \det(S) \det(T) = 1$. Sia ora R una matrice ortogonale speciale, mostriamo che anche la sua inversa R^{-1} è una matrice ortogonale speciale, $R^{-1}R^T = (RR^T)^{-T} = \operatorname{Id}_n$, inoltre $\det(R^{-1}) = (\det(R))^{-1} = \operatorname{Id}_n$.

Esercizio 2 (Punti 8). Sia $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita da $f(x,y,z) = [x+y,x+y,z]^T$.

- 1. Scrivere la matrice associata a f rispetto alla base canonica.
- 2. Determinare Ker(f) e Im(f).
- 3. Mostrare che l'insieme $\mathcal{B} = \{b_1 := [1, 1, -1]^T, b_2 := [1, 1, 0]^T, b_3 := [1, -1, 0]^T\}$ è una base di \mathbb{R}^3 .
- 4. Scrivere la matrice associata a f rispetto alla base canonica nel dominio e alla base \mathcal{B} nel codominio.

Sol. 1. La matrice associata a f rispetto alla base canonica è

$$T_{\mathcal{E}\leftarrow\mathcal{E}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 2. Il nucleo di f è dato dall'insieme delle soluzioni del sistema omogeneo $T_{\mathcal{E}\leftarrow\mathcal{E}}\underline{x}=\underline{0}$, ossia $\ker f=<[-1,1,0]^T>$. Per il teorema nullità+rango sia ha che l'immagine ha dimensione 2 ed è semplice osservare che $\operatorname{Im} f=<[1,1,0]^T,\ [0,0,1]^T>$.
- 3. Per mostrare che \mathcal{B} definisce una base di \mathbb{R}^3 basta mostrare che la matrice $M_{\mathcal{B}}$ che ha per colonne i vettori b_1 , b_2 , b_3 ha rango 3. Infatti usando l'eliminazione di Gauss (o calcolando il determinante) si ricava che

$$\operatorname{rank} M_{\mathcal{B}} = \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \end{bmatrix} = 3$$

4. La matrice associata a f rispetto alla base canonica \mathcal{E} nel dominio e alla base \mathcal{B} nel codominio è $T_{\mathcal{B}\leftarrow\mathcal{E}}=M_{\mathcal{B}\leftarrow\mathcal{E}}T_{\mathcal{E}\leftarrow\mathcal{E}}$, in cui $M_{\mathcal{B}\leftarrow\mathcal{E}}$ è la matrice del cambiamento di base dalla base canonica alla base \mathcal{B} , che è l'inversa della matrice $M_{\mathcal{E}\leftarrow\mathcal{B}}$ che ha per colonne i vettori della base \mathcal{B} :

$$M_{\mathcal{E} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \end{bmatrix}$$

^{*}e-mail: nicola.sansonetto@gmail.com

e quindi

$$M_{\mathcal{B}\leftarrow\mathcal{E}} = M_{\mathcal{E}\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} 0 & 0 & 1\\ \frac{1}{2} & \frac{1}{2} & 1\\ \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix}$$

Quindi la matrice associata a f rispetto alla base canonica nel dominio e a alla base \mathcal{B} nel codominio è

$$T_{\mathcal{B}\leftarrow\mathcal{E}} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Esercizio 3 (Punti 8). Si consideri, al variare di $\alpha \in \mathbb{R}$, l'applicazione lineare $f_{\alpha} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definita da $f_{\alpha}(x,y,z) = [-x + (2-\alpha)y + z, \ x-y+z, \ x-y+(4-\alpha)z]^T$.

- 1. Scrivere la matrice associata a f_{α} rispetto alla base canonica su dominio e codominio.
- 2. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è iniettiva.
- 3. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è suriettiva.
- 4. Determinare per quali $\alpha \in \mathbb{R}$ il vettore $[1, 1, 1]^T \in \text{Im}(f_{\alpha})$.
- 5. Determinare $ker(f_1)$.
- 6. Costruire, se possibile, un'applicazione lineare $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tale che $\operatorname{Im}(g) = \operatorname{Im}(f_0)$.
- 7. Costruire, se possibile, un'applicazione lineare $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tale che $\ker(h) = \ker(f_1)$.
- **Sol.** 1. La matrice associata a f_{α} rispetto alla base canonica su dominio è codominio è

$$T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha] = \begin{bmatrix} -1 & 2-\alpha & 1\\ 1 & -1 & 1\\ 1 & -1 & 4-\alpha \end{bmatrix}$$

- 2. e 3. Rispondiamo assieme alle domande 2. e 3. usando il teorema nullità+rango. Infatti f_{α} è iniettiva se e solo se è suriettiva, essendo f_{α} un'applicazione lineare di \mathbb{R}^3 in sè. Ci basta sapere, quindi, per quali valori di $\alpha \in \mathbb{R}$ il rango della matrice $T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha]$ è 3. Per far ciò conviene determinare per quali valori di α il determinante di $T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha]$ sia non nullo. Ora det $T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha]=3$ se e solo se $\det(T_{\mathcal{E}\leftarrow\mathcal{E}})[\alpha]=-\alpha^2+4\alpha-3=0$ cioè per $\alpha=1$ oppure $\alpha=3$. Quindi f_{α} è iniettiva e suriettiva per $\alpha\neq 1$ e $\alpha\neq 3$.
 - 4. Osserviamo che $[1,1,1]^T \in \operatorname{Im}(f_{\alpha})$ per $\alpha \neq 1$ e $\alpha \neq 3$. È semplice ora osservare che per $\alpha = 1$ $[1,1,1]^T \notin \operatorname{Im}(f_1)$, poiché il sistema $T_{\mathcal{E} \leftarrow \mathcal{E}}[1]\underline{x} = [1,1,1]^T$ non ammette soluzione. Invece $[1,1,1]^T \in \operatorname{Im}(f_3)$.
 - 5. Il nucleo di f_1 è dato dall'insieme delle soluzioni del sistema lineare omogeneo $T_{\mathcal{E}\leftarrow\mathcal{E}}[1]\underline{x}=\underline{0}$, cioè $\ker f_1=<[1,1,0]^T>$.
 - 6. Ricordiamo che per $\alpha=0$ f_{α} è suriettiva e quindi $\dim \operatorname{Im} f_0=3$, per il teorema nullità + rango non può quindi esistere un'applicazione lineare $g:\mathbb{R}^2\longrightarrow\mathbb{R}$ tale che $\operatorname{Im}(g)=\operatorname{Im}(f_0)$.
 - 7. Abbiamo visto che $\ker(f_1) = <[1,1,0]^T>$, cerchiamo quindi un'applicazione lineare $h:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ tale che $\ker(h) = <[1,1,0]^T>$. Per il teorema nullità + rango una siffatta applicazione lineare certamente esiste. Una tale h è ad esempio h(x,y)=(x-y,x-y,x-y).

Esercizio 4 (Punti 6). ullet Si consideri al variare di $\alpha \in \mathbb{R}$ la famiglia di applicazioni lineari $T_\alpha : \mathbb{R}^3 \longrightarrow M_{2 \times 2}(\mathbb{R})$ definite da $T_\alpha(x,y,z) = \begin{bmatrix} x + \alpha y & 0 \\ z & x - \alpha y \end{bmatrix}$.

2

- 1. Scrivere la matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
- 2. Determinare, al variare di $\alpha \in \mathbb{R}$, $Ker(T_{\alpha})$ e $Im(T_{\alpha})$.

- 3. Data la matrice $B=\begin{bmatrix}1&0\\1&0\end{bmatrix}$, determinare la preimmagine di B relativa a $T_{\alpha}.$
- 4. Posto $\alpha=1$ e definita la matrice $B_{\mu}=\begin{bmatrix} 1 & \mu \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B_{μ} rispetto a T_1 , al variare di $\mu\in\mathbb{R}$.
- **Sol.** 1. La matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione è

$$T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha] = \begin{bmatrix} 1 & \alpha & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -\alpha & 0 \end{bmatrix}$$

in cui si è identificato $M_2(\mathbb{R})$ con \mathbb{R}^4 .

2. $\ker T_{\alpha}$ è dato dall'insieme delle soluzioni del sistema lineare omogeneo $T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha]\underline{x}=\underline{0}$. Si ricava che se $\alpha\neq0$ allora T_{α} è iniettiva, cioè $\ker T_{\alpha}=\underline{0}$. Se invece $\alpha=0$ $\ker T_0$ è lo spazio generato da $[0,1,0]^T$.

Per l'immagine di T_{α} dobbiamo dire per quali α il generico elemento di $M_2(\mathbb{R})$ sta in $\mathrm{Im} T_{\alpha}$. Si hanno due casi, se $\alpha \neq 0$ allora il generico vettore di $\mathrm{Im} T_{\alpha}$ è

$$\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$$

con $a,b,c\in\mathbb{R}$, cioè dim $\mathrm{Im}T_{\alpha}=3$. Se $\alpha=0$, invece il generico vettore di $\mathrm{Im}T_0$ è

$$\begin{bmatrix} a & 0 \\ b & a \end{bmatrix}$$

 $con a, b \in \mathbb{R}$, $cioè dim Im T_0 = 2$.

- 3. Dobbiamo determinare le soluzioni, al variare di α , del sistema lineare $T_{\mathcal{E}\leftarrow\mathcal{E}}[alpha]\underline{x}=[1,0,1,0]^T$. Se $\alpha=0$ $B\notin \mathrm{Im}T_0$ (ovvio da sopra). Se $\alpha\neq0$ allora $T_\alpha^\leftarrow(B)=[\frac{1}{2},\frac{1}{2\alpha},1]^T$.
- 4. Ovviamente se $\mu \neq 0$ B_{μ} non è immagine di alcun elemento di \mathbb{R}^3 . Se invece $\mu = 0$ ritorniamo ad uno deo casi precedenti, infatti $B_0 = B$ e $B \in \operatorname{Im} T_{\alpha}$ per $\alpha \neq 0$, in particolare quindi per $\alpha = 1$ e $T_1^{\leftarrow}(B_0) = [\frac{1}{2}, \frac{1}{2}, 1]^T$.

N.B.

Il simbolo • denota esercizi giudicati difficile.