Solidi di platoni ci

S, V: vertici
E: spigoli
F: facce

Euler: $V - E + F = 2$

m lati

N nono lati di ogni faccia

$mV = 2E = NF$

$V = \frac{NF}{m}$
$E = \frac{N}{2}F$

$2mF\left[1 + \frac{N}{m} - \frac{N}{2}\right] = 2$

$F \left(2m + 2N - mN\right) = 4m$

$2N - mN + 2m > 0 \quad N \geq 3$

$2m \geq mN - 2N = (m - 2)N > (m - 2)3$

$2m \geq 3m - 6$

$\Rightarrow m \leq 6$

A8-1
\(m = 1 \) non commutativo

\(m = 2 \)

\(m = 3 \quad F (6 - N) = 12 \)

\[
\begin{cases}
N = 3 & F = 4 \\
N = 4 & F = 6 \\
N = 5 & F = 12
\end{cases}
\]

\(m = 4 \quad F (8 - 2N) = 16 \)

\[
\begin{cases}
N = 3 & 2F = 16 & F = 8
\end{cases}
\]

\(m = 5 \quad F (10 - 3N) = 20 \)

\[
\begin{cases}
N = 3 & F = 20
\end{cases}
\]
Solidi platonici: costruzione

- Teatro
- Cubo
- Ottaedro
- Decaedro
- Icosaedro

A8-3
Sia \(k \) una 2-pseudo varietà con
\[m_0 \overset{\text{varià}}{\sim} m_1 \overset{\text{1-implessi}}{\sim} m_2 \overset{\text{2-implessi}}{\sim} 0 \text{-simplessi.} \]

Si ha:

(i) \[3m_2 = 2m_1 \]
\[m_2 = \frac{2}{3}m_1 \]

(ii) \[m_2 = 3(m_0 - \chi(k)) \]

(iii) \[m_0 \geq \frac{1}{2} \left(7 + \sqrt{49 - 24\chi(k)} \right) \]

Dim.

(i) \overset{\text{a una}}{\includegraphics[width=0.1\textwidth]{triangle.png}}

(ii) segue da Euler-Poincaré:

\[m_0 - m_1 + m_2 = \chi(k) \]
\[m_0 - m_1 + \frac{2}{3}m_1 = \chi(k) \]
\[m_0 - \frac{1}{3}m_1 = \chi(k) \]
\[3[m_0 - \chi(k)] = m_1 \]

(iii) \[m_0 \geq 4 \overset{\text{a triangolo}}{\includegraphics[width=0.1\textwidth]{triangle.png}} \]

\[m_2 \leq \frac{1}{2}m_0(m_0 - 1) \]

\[6m_2 = 4m_1 \]
\[2m_1 = 6m_1 - 6m_2 \]
\[m_0(m_0 - 1) \geq 6m_1 - 6m_2 \]

\(\Box \)
\[m_0(m_0-1) - 6m_0 \geq 6n_1 - 6n_2 - 6n_0 \]
\[m_0^2 - 7m_0 \geq -6\chi(K) \]
\[4m_0^2 - 28m_0 \geq -24\chi(K) \]
\[4n_0^2 - 28n_0 + 49 \geq 49 - 24\chi(K) \]

Nota: \((2m_0 - 7)^2 \geq 49 - 24\chi(K) \) \(\forall m_0 \geq 4 \)

Se \(m_0 \leq 4 \) e \(\chi - 1 \geq 49 - 24\chi(K) \)

\[0 \geq 48 - 24\chi(K) \implies \boxed{\chi(K) \leq 2} \]

Prova quando:

\[(m_0 \geq 4) \]
\[2m_0 - 7 \geq \sqrt{49 - 24\chi(K)} \]

\[m_0 \geq \frac{7 + \sqrt{49 - 24\chi(K)}}{2} \]

\(\text{E} \times \quad 2.5 \text{fina} \)

\[x = 2 \]

\[m_0 \geq \frac{7 + 1}{2} = 4 \]

\[m_1 \geq 3 \left(4 - 2\right) = 6 \]

\[m_2 \geq \frac{2}{3 \cdot 6} = 4 \]

A8. - 5 -
Es. A il toro \(\chi = 0 \)

\[
M_0 \geq \frac{1}{2} (7 + 7) = 7
\]

qui \(n_0 = 9 \)

\[
\begin{align*}
M_1 & \geq 3n_0 - 21 \\
\text{il primo proiettivo (} \chi = 1 \text{)} & \quad n_0 \geq \frac{1}{2} (7 + \sqrt{49 - 24}) \\
& \geq \frac{1}{2} (7 + 5) = 6 \\
M_1 & \geq 3 \cdot (6 - 1) = 15 \\
M_2 & \geq \frac{2}{3} \cdot 15 = 10
\end{align*}
\]
Mayer-Vietoris per la
comologia a supporto compatto

Funzioni covariante di tipo
funzioni contravveniente

\mathcal{F}^\ast:

$f: M \rightarrow N$

$f \in \mathcal{C}^0(M,N)$

$f^\ast : \mathcal{F}^\ast(N) \rightarrow \mathcal{F}^\ast(M)$

pulled back

io chiedo, ma per la applicazione
propria!! ($f^{-1}(\text{compatto})$

$= \text{compatto}$)

Funzioni covariante
rispetto all'inclusione
insiemi aperti

$j : U \subset V$

$j^\ast : \mathcal{F}^\ast(U) \subset \mathcal{F}^\ast(V)$

($j^\ast = 0$ su bordo a zero...)
\[U \cap V = U \sqcup V \rightarrow M \]

\[\nabla_c (U \cap V) \rightarrow \nabla_c (U) \sqcup \nabla_c (V) \rightarrow \nabla_c (M) \]

\[\omega \rightarrow (-j \times \omega, j \omega) \]

Sì ha la *successione* sotto *cava* di Mayer - Vietoris (a support compatt).

\[
\begin{align*}
0 & \rightarrow \nabla_c (U \cap V) \rightarrow \nabla_c (U) \sqcup \nabla_c (V) \rightarrow \nabla_c (M) \rightarrow \\
\end{align*}
\]

Dai: È simplicissima ...

Sì, noh! Che in questo caso è \(P \cap W \) una forma in \(U \)

comprende nella prec. successione \(\text{in una forma in } V \)!

Si ottiene ("by abstract nonsense")

la successione scelta lunga in coomologia:

\[A^8 \rightarrow \]
\[H_c^{q+1}(U \cup V) \to H_c^q(U) \oplus H_c^q(V) \to H_c^q(M) \]

\[d \]

\[H_c^q(U \cap V) \to H_c^q(U) \oplus H_c^q(V) \to H_c^q(M) \]

\[d \]

\[H_c^q(U) \oplus H_c^q(V) \to H_c^q(M) \]

\[\partial \]

\[\text{Ex: calcolineo } \quad H_c^*(S') \quad (= H^*(S') ?) \]

<table>
<thead>
<tr>
<th></th>
<th>(U \cap V)</th>
<th>(U \cup V)</th>
<th>(S^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>IR \oplus IR \quad \begin{pmatrix} a \end{pmatrix} \oplus \begin{pmatrix} b \end{pmatrix} \quad \text{b - a}</td>
<td>IR \oplus IR \quad ?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\[\delta : \quad \\
\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \quad \begin{pmatrix} (\neg \cup \cap) w_1 \\\ (\neg \cup \cap) w_2 \end{pmatrix} \]

\[\text{dim } \delta = \text{dim ker } \delta = 1 \]

\[H_c^0(S') = \text{ker } \delta = 1 \]

\[H_c^1(S') = \text{cokern } \delta = 1 \]
Osservazione importante

dalla regola di Leibniz per il prodotto

si ha

\[H^*(M) \text{ è un algebra} \quad (\text{concomutativa e associativa}) \]

(l'op. di prodotto è indotta da 1)

\[(w_1 + da_1) \wedge (w_2 + da_2) =\]

\[\begin{align*}
dw_1 &= 0 \\
 &= w_1 \wedge w_2 + da_1 \wedge w_2 + w_1 \wedge da_2 + da_1 \wedge da_2
\end{align*}\]

\[d(w_1 \wedge w_2) = 0\]

\[= dF\]

perché?

(*) v. anche Preludio

Nota: è bello possedere che \(H^*(M) = H^*(N) \)

come sp. vettoriali

ma non come algebre! \((\Rightarrow \quad \text{M e N, aniane})\)

vedremo...

A8-10
Dualità di Poincaré

Se M è orientabile, exits

\[H^q(M) \times H_{C^q}(M) \to \mathbb{R} \]

\[
\int : H^q(M) \otimes H_{C^q}(M) \to \mathbb{R}
\]

considerando a seppellito complesso

in dolce da

\[
\int w \cdot z
\]

(è tram

\[\int_M \partial \theta + \text{viria} \]

\[\int_M \partial \theta + \text{Stokes} \]

\[M \text{ è orientabile} \]

Teorema: Se M è orientabile e ha

un form ricoprente

\[
(\forall v, w \in \mathbb{R}) \quad \langle v, w \rangle = 0 \quad \forall \quad w
\]

\[v = 0 \]

\[\langle v, w \rangle = 0 \quad \forall \quad w \]

\[w = 0 \]

\[\Rightarrow \quad v = w^* \]

Ovvero:

\[H^q(M) \cong \left[H_{C^q}(M) \right]^* \]

(Se ha anche $v^* = w$)

Ha validità

per generali, vedi oltre

\[A8-11 \]
Verifica che

\[\int \left(w + \alpha \right) \wedge \left(\tau + \beta \right) = \int \alpha \wedge \tau + \int w \wedge \beta \]

\[+ \int \alpha \wedge \beta \]

\[= \int_M \omega \wedge \tau \pm \int_M d(\alpha \wedge \tau) \pm \int_M \alpha \wedge d\tau \]

\[= \int_M \alpha \wedge \tau = 0 \]

\[\pm \int_M d(\omega \wedge \beta) \pm \int_M d\omega \wedge \beta \]

\[= \int_M \omega \wedge \tau \]
(Commento: Bisogna dimostrare che \(d \omega = 0 \), e viceversa.

Se vuoi spiegare, marquando le apparenze:

\[\int_M \omega \wedge \omega = 0 \quad \Rightarrow \quad \omega = \omega \]

Si riesce a dimostrare facilmente che

\[\text{(*)} \quad \Rightarrow \quad d \omega = 0 \quad \text{(se vale (*)\,)} \]

(questa \, !)

Ottenevamo un'ultra dimostrazione di ciò che tramite la teoria di Rouché, (una \text{complessita suona borgo})

che richiede l'introd. di una \text{metrice riemanniana}.

In questo ora

\[\text{Mayer - Vietoris } + \text{ Lemma dici cinque} \]
Dim. Le due successioni di Mayer-Vietoris possono essere accompagnate e formano un diagramma commutativo "a forma di siga".

... → \(H^q(U \cup V) \) → \(H^q(U) \oplus H^q(V) \) → \(H^q(U \cap V) \) → ...

\[\begin{array}{c}
\downarrow \quad \downarrow \quad \downarrow \\
S_{U \cap V} \quad S_U + S_V \quad S_{U \cap V}
\end{array} \]

\[LR \quad LR \quad LR \]

Ovvero...

\[\int_{U \cap V} \omega \wedge d^* \tau = \pm \int_{U \cap V} d^* \omega \wedge \tau \]

\[M \leftarrow \]

I primi due "quadrafi" risultano commutativi (ovvio).

Veriamo l'Ollino.
\[
\begin{align*}
\left[d^*w \right] & = \left\{ \begin{array}{ll}
-d(p_0 \cdot w) & \text{su } \Omega \\
d(p_0 \cdot w) & \text{su } \Omega^c \\
\end{array} \right.
\end{align*}
\]

\[
(\in H^{q+1}(\Omega \cup \Omega^c))
\]

\[
\left[dx_z \right] \rightarrow (d(p_0 \cdot z), d(p_0 \cdot z))
\]

\[
\begin{align*}
dp_0 \cdot z & = dp_0 \cdot z \quad (perché?)
\end{align*}
\]

\[
\int_{\Omega \cup \Omega^c} \omega \wedge dx_z = \int_{\Omega \cup \Omega^c} \omega \wedge dp_0 \cdot z
\]

\[
= (-1)^{\deg \omega} \int_{\Omega \cup \Omega^c} dp_0 \cdot \omega \wedge z
\]

D'altro canto:

\[
\int_{\Omega \cup \Omega^c} d^*w \wedge z = -\int_{\Omega \cup \Omega^c} dp_0 \cdot w \wedge z
\]

se la doppia delle forme scritte vale per \(\Omega, \Omega^c\), \(\Omega \cup \Omega^c\), vale per \(\Omega \cup \Omega^c\) (lemma dei contorni);

\[\]"valore centrale" per \(\mathbb{R}^n\) (lemma dei contorni);

\[\]"induzione" vale per \(\mathbb{M}\) con un bordo ric. (lemma)

A-8-15
Si ha che
\[H^q \to H^q \oplus H^q \to H^q \to \]
\[(H_{C}^{n-q})^* \to (H_{C}^{n-q})^{*} \oplus (H_{C}^{n-q})^{*} \to (H_{C}^{n-q})^{*} \]
\[\text{commutativo a meno di } \phi_i \]

\[\begin{array}{ccc}
\bigcirc \to \bigcirc & \to & H^q(UUV) \\
\downarrow \mathsf{iso} & & \downarrow \mathsf{iso} \\
\bigcirc \to \bigcirc & \to & H_{C}^{n-q}(UUV) \\
\downarrow \mathsf{iso} & & \downarrow \mathsf{iso} \\
\bigcirc \to \bigcirc & \to & \bigcirc \\
\end{array} \]

" lemma dei 5 "

1-8-16
Si può fare a meno dell'iipotesi che

non ci opprimano (in: Gruia, Poltarin, Vachter, De Marco). Si ha

\[
H^q(M) \cong \left[H^{n-q}_c(M) \right]^* \tag{69}
\]

L'enunciato è asimmetrico!

Infatti, se \(M = \bigcup_{i=1}^n M_i \) (unione disgiunta) c. o. d.

\[
H^q(M) = \prod_i H^q(M_i) \quad \text{(prodotto disjunto)}
\]

\[
H^q_c(M) = \bigoplus_i H^q_c(M_i) \quad \text{somma disjunta}
\]

\[
\begin{bmatrix}
\text{Ora} & \left(\bigoplus_i V_i \right)^* = \prod_i V_i^* \\
\text{ma} & \left(\prod_i V_i \right)^* \neq \bigoplus_i V_i^*! \\
\end{bmatrix}
\]

Contrariamente si ammette \(V \cong V^{**} \), il che e' [also in q. d., infinito!] !) 1

Kel nostro caso vale \& se Poncori vale

per \(M_i \).

\[\text{Af-17}\]
1. \(M \) orientabile, connessa, \(\dim M = n \)
 \(\partial M \neq \emptyset \)
 \[\Rightarrow \begin{aligned}
 H^n_c(M) &= \mathbb{R} \\
 (\Rightarrow & \text{ se } M \text{ è compatta, } H^n(M) = \mathbb{R})
 \end{aligned} \]

 Infatti, \(H^0(M) = \mathbb{R} = H^n_c(M)^* \)

2. \(M \) come sopra, non compatta
 \[\Rightarrow \begin{aligned}
 H^n_c(M) &= 0
 \end{aligned} \]

Dim. \(H^n(M) \cong H^n_c(M) = \cdots = 0 \)

\(\text{poiché?} \)
Il "lemma dei cinque"

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow \ldots \]

\[A' \rightarrow B' \rightarrow C' \rightarrow D' \rightarrow E' \rightarrow \ldots \]

Siano \(A, A' \ldots \) gruppi abeliani e, \(f, f' \) omomorfismi.
Il diagramma è commutativo e a ripete solo.
\(a, \beta, \delta, \varepsilon \) isomorfismo.

La Mora \(y \) è un isomorfismo.

\[
\begin{array}{c}
\text{Dica} \quad 1 \quad y \quad \text{è iniettivo} \\
\text{Sia} \quad y(c) = 0 \quad (c \in C) \\
\text{Allora} \quad y f_3(c) = f_3'(y(c)) = 0 \\
\text{Allora} \quad f_3(c) = 0 \\
\text{Allora} \quad c \in \text{im} f_2 \quad \text{e} \quad b \in B \quad \text{con} \\
\quad c = f_2(b) \\
\text{Allora} \quad y f_2(b) = 0 \quad \text{è} \quad f_2' \beta(b) = 0 \\
\end{array}
\]
\((\beta(b) \in \ker f_2')\) \quad \text{and} \quad \ker f_2 = \text{Im} f_2' \\
\Rightarrow \quad \exists a' \in \alpha' \quad \text{t.c.} \\
\quad f_3'(a') = \beta(b) \\
\quad \text{and} \quad a' = \alpha(a) \quad \text{then unique} \quad a \\
\Rightarrow \quad f_3'(\alpha(a)) = \beta(b) \\
\Rightarrow \quad \beta(f_3(a)) = \beta(b) \\
\Rightarrow \quad b = f_3(a) \\
\Rightarrow \quad c = f_2(b) = f_2(f_3(a)) = 0 \\
\square

\(\mathbb{2}\)
\begin{align*}
\tilde{g} \neq \text{unique} \\
\alpha' \in \alpha' \\
\quad f_3'(c') \in \ker f_4' \quad \text{t.c.} \quad f_4'(f_3'(c')) = 0 \\
\Rightarrow \quad e^{-1} \left[f_4'(f_3'(c')) \right] = 0 \\
\Rightarrow \quad f_4 \left[e^{-1} f_3'(c') \right] = 0 \\
\end{align*}
\[S^{-1} f_3(c') = f_3(c) \quad \text{per qualche } c' \in c \]

\[f_3(c') = 8 f_3(c) = f_3^{'1} 8(c) \]

Pertanto è che:

\[f_3^{'1}(c' - 8(c)) = 0 \]

Siamo ora in grado di:

\[c' - 8(c) = f_2^{'1}(b') \quad \text{per qualche } b' \]

\[8 f_2(\beta^{-1}b') \]

\[= \quad c' = 8(c) + f_2(\beta^{-1}(b'')) \quad \text{è } c \]

\[= \quad c' = 8(c) \quad \text{è } c' \]

A-8-21