e ricavare.

In altre parole:

4. \(G = SU(n) \) \(\mathfrak{g} = \{ X \in M_n(\mathbb{C}), \ X + X^* = 0, \ \text{det} X = 1 \} \)

matrice unimodulare
a traccia nulla

5. \(G = O(n) \) \(\mathfrak{g} = \{ X \in M_n(\mathbb{R}), \ X^T + X = 0 \} \)

essendo, in opúciso, il ragionamento è analogo al precedente

5'. \(G = SO(n) \) \(\mathfrak{g} = \{ X \in M_n(\mathbb{R}), \ X^T + X = 0, \ \text{det} X = 1 \} \)

ragionamento analogo, per cui

la legge \(SO(n) \subset SU(n) \), agente su \(\mathbb{C}^n \).

ma se \(X^T = -X \), comunque corrisponde \(\text{tr} X = 0 \),

ricche \(SO(n) = O(n) \)

tra non sorprendente \(O(n) \) \(\times \) la componente connessa di \(O(n) \) contenente l'identità, e perciò l'insieme di
hie, per def. dovono coincidere.