
Part II

Probabilistic Modelling

Chapter 8

Probabilistic models of shape

The purpose of this second part of the book is to put Active Contours into a prob-
abilistic setting. As chapter 2 claimed, the probabilistic framework is essential for
dealing with classes of shapes and motions. It is valuable even with deformable tem-
plates, in static problems, to describe classes of shapes. Then probabilistic modelling
is extended to dynamic problems, to mesh with the powerful Kalman filtering formal-
ism, in which cumulative temporal uncertainty about shape is counterbalanced by the
inflow of measurements from an image sequence.

This chapter concentrates on the application of probabilistic models to static prob-
lems. The ideas discussed so far about fitting curves by regularisation are to be
re-interpreted probabilistically. The deterministic approach of chapter 6 aimed to
generate a unique estimate X̂ of curve shape from data rf (s), moderated via regu-
larisation towards a template X. Now, in a more general probabilistic setting, X̂ is
merely one property, typically the mean or mode, of an entire probability distribu-
tion. The solution to the fitting problem is therefore no longer just a single value,
but a whole family of possible curves. In that case, the variance of the distribution
is a measure of how accurate the fitted curve is and can be used to generate a range
of plausible fitted curves. One application for this is to sweep out the search region
for image-processing operations. Another application, developed in later chapters on
tracking, is to achieve a fusion of shape information accumulated over time and the
latest visual measurements.

The distribution for curve shape X obtained from probabilistic fitting is expressed
as a posterior density p(X|rf). This is the conditional probability density for the curve

160 Chapter 8

shape X given the observed data rf (s). According to Bayes’ formula for densities (see
appendix A.3) the posterior density can be obtained as a product of a prior density
p0(X) and an observation density p(rf |X):

p(X|rf) ∝ p(rf |X)p0(X). (8.1)

Note that although p(rf |X) is a probability density over rf , in this formula rf is
considered fixed and it is the variation of p(rf |X) with X — the “likelihood” of X —
that is of interest. The prior density is the probabilistic mechanism for regularisation.
For example, the norm-squared regulariser α‖X − X‖2 used in chapter 6 becomes a
Gaussian density function p(X) whose mean is the curve X. The other term ‖r−rf‖2

in the regularisation problem, conveying the influence of the data, also becomes a
Gaussian density whose value is high when the hypothesised curve r fits the data
closely. Then Bayes’ rule simply combines the competing influences of the prior and
the observations into a single density, also Gaussian.

Note that Bayesian principles of image interpretation reach far beyond Gaussian
modelling. However, the Gaussian is the simplest case and has attractive properties
that facilitate efficient computation. Consideration of more general distributions is
left until much later in the book, in chapter 12.

8.1 Probability distributions over curves

The Gaussian prior probability density for curves in shape-space S consistent with
the general quadratic regulariser (X − X)TS(X − X) is:

p0(X) ∝ exp−1
2
(X − X)TS(X − X), (8.2)

where the matrix S is the “information” matrix introduced in chapter 6. Note that
probability density decreases as the curve X deviates further from the mean X of
the distribution, as expected. Probabilistically, S has a particular interpretation:
its inverse P0 = S

−1, if it exists, is a covariance matrix (appendix A.3), a multi-
dimensional measure of the variability of curve shape across a distribution. It can be
used to compute the positional variability of a given point r(s) on a curve as a 2 × 2
covariance matrix

Pr(s) = U(s)WP0W
TU(s)T , (8.3)

Probabilistic models of shape 161

in a two-dimensional Gaussian distribution N (r(s), Pr(s)). In general, this distribu-
tion can be depicted as an ellipse whose axes are eigenvectors of Pr(s) and whose
semi-axes, representing positional variances, are the eigenvalues. The spatial variance
Pr(s) is represented by an uncertainty ellipse giving a mean-square displacement

ρ2
0(s) = tr(Pr(s)) (8.4)

where tr(·) denotes the trace of a matrix. The mean-square displacement along the
entire curve can then be computed easily (the proof follows below) as

ρ2
0 = tr(P0H). (8.5)

An isotropic prior, uniform in s, with mean-square displacement along the curve
ρ2

0 is projected onto shape-space S as

p0(X) ∝ exp−NX

2ρ2
0

‖X − X‖2.

This can be seen by considering its information matrix in shape-space, which is

S =
NX

ρ2
0

H . (8.6)

From (8.5) it is apparent that the mean-square displacement along the curve is

tr
(
ρ2

0

NX
H−1H

)
=

ρ2
0

NX
tr(INX

) = ρ2
0,

as required.
Spline space is an interesting special case in which the covariance at a given point

r(s) is Pr(s) ∝ I2, a multiple of the identity matrix, so that positional error at each
point is isotropically distributed (see below for the derivation). The average displace-
ment of r(s) from its mean r(s), is ρ0(s) and in fact ρ0(s) ≈ ρ0 for all s. This suggests
circular confidence regions for r(s) (figure 8.1). (The average pointwise displacement
ρ0(s) varies a little with s, relative to ρ0 — by around ±10% , for instance, on a
regular, closed, quadratic B-spline.)

In chapter 6, there was some discussion of the way in which image-processing
operations are applied along curve normals. In the interests of efficiency, processing
is limited to a segment of each normal within a search region. The probabilistic

162 Chapter 8

0 0.5 1length scale

r (s)
_

Figure 8.1: Probability distribution for curves. An example of a Gaussian probability
distribution in spline space with mean shape r(s) and uniform, isotropic covariance P0. The
distribution of the position of a given point r(s) is Gaussian, with circular confidence intervals
of radius 1.73ρ0(s) (95% confidence). The normal displacement has a Gaussian distribution
with standard deviation ρn(s) and ρn(s) = ρ0(s)/

√
2 in the special case of this example.

The search segments shown (arrowed) are intervals of length ±2ρn(s) for approximately 95%
statistical confidence. (Average displacement ρ0 = 0.14 here.)

framework provides a rationale, using the prior distribution, for fixing the search
segment along the normal n(s) at r(s). The normal component of displacement of the
curve is Gaussian with mean 0 and standard deviation ρn(s) where

ρ2
n(s) = n(s)TPr(s)n(s).

or, directly in terms of shape-space covariance P0,

ρ2
n(s) = h(s)TP0h(s) (8.7)

where h(s) was defined in (6.15) on page 124 in chapter 6. In the special case of
the norm-squared prior (S ∝ H) in spline space, the isotropy of Pr(s) means that
ρn(s) = ρ0(s)/

√
2.

Probabilistic models of shape 163

A reasonable search segment is r(s) ± 2ρn(s)n(s), corresponding to a confidence
interval (for the one-dimensional Gaussian distribution) at a level of approximately
95%. Such search segments are illustrated in figure 8.1. This idea is elaborated later
for validation gates, taking account not only of the prior but also the observation
density.

Derivation of average radius and isotropy results

The formula (8.5) for the root-mean-square displacement for the covariance ellipse is derived
first. Pointwise, the mean-square displacement is ρ2

0(s) whose average value along the curve,
from (8.4), is

1
L

∫ L

0

tr (Pr(s)) ds

=
(8.3)

1
L

∫ L

0

tr
(
U(s)WP0W

TU(s)T
)
ds

= tr

(
P0W

T

[
1
L

∫ L

0

U(s)TU(s) ds

]
W

)

=
(3.23)

tr
(
P0W

TUW)
=

(4.7)
tr (P0H) ,

as required.
The special case of the norm-squared prior (8.6) in spline space S = SQ was considered in

which W = INQ
and the pointwise covariance is

Pr(s) = U(s)P0U(s)T .

Since P0 ∝ U−1,
Pr(s) ∝ (B(s)TB−1B(s))I2

— a multiple of the identity matrix as claimed.

Random sampling

A graphic illustration of a statistical family of curves can be made by sampling ran-
domly from its distribution. Random curve sampling is a practical technique in its
own right, partly as a debugging aid to check whether a particular probabilistic prior
model of shape is appropriate to a given application. More importantly it forms the

164 Chapter 8

basis of some powerful algorithms for recognising patterns, used when the posterior
density for shape given data is too complex to be represented exactly and is repre-
sented instead by a set of samples.

Given an NX -dimensional Gaussian distribution N (X, P) in shape-space with
mean X and covariance matrix P , a random variate X from the distribution can
be generated by taking a vector w of NX independent “standard” normal variables
each distributed as N (0, 1) and transforming w linearly:

X = Bw + X (8.8)

where
B =

√
P , (8.9)

a matrix square root with the property that BBT = P (Note that this does not
uniquely specify B, but any admissible B serves equally well, and generates the de-
sired distribution; see also appendix A.1). This technique is used to illustrate prior
distributions of curves in spline space SQ (figure 8.2) and in various shape-spaces
(figure 8.3). As before, the distributions are given by norm-squared densities over
shape-space.

0 0.5 1length scale

Figure 8.2: Sampling from curve families. Samples are drawn at random (left) from
a uniform, isotropic, Gaussian distribution in the spline space SQ such that ‖r(s) − r(s)‖
has a root-mean-square value of 0.2 length units. (Mean shape r is shown dashed). Parallel
curves depicting confidence intervals for normal displacement (spatially averaged), at 95%
significance, contain the random curves as expected (right).

Probabilistic models of shape 165

0 0.5 1length scale

Figure 8.3: Random sampling in shape-space The families of bottle-outlines shown
have mean shape (top) and a uniform, isotropic, Gaussian distribution in shape-space with
root-mean-square displacement of 0.3 length units. Euclidean similarities (left); affine space
(right).

166 Chapter 8

8.2 Posterior distribution

The aim of the chapter is to express curve fitting in terms of the posterior distri-
bution for shape X given observed data rf . Realistically, rf must be obtained by
processing image data, and that is addressed in the next section. For now, the pos-
terior is illustrated with artificial data, using the random sampling method. As at
the start of chapter 6, the artificial image feature is modelled as a spline curve with
control-vector Qf . What was characterised there, in (6.3) on page 117, as fitting by
regularisation, becomes the construction by Bayes’ formula (8.1) of the posterior dis-
tribution p(X|Qf), given a Gaussian prior p0(X) and an observation density p(Qf |X).
The measurement term ‖Q−Qf‖2 in the regularisation problem is interpreted as an
observation density

p(Qf |X) ∝ exp−NX

2ρ2
f

‖Q − Qf‖2 (8.10)

where a variance constant ρ2
f/NX has been included here to represent explicitly the

uncertainty of measurements. The distance constant ρf can be interpreted as the av-
erage displacement, at a given point on the fitted curve, due solely to observation error
and without any influence from the prior. Finally, multiplying prior and observation
densities, in accordance with Bayes’ formula, the posterior distribution proves to be
a Gaussian

X|Qf ∼ N (X̂, P). (8.11)

Its mean X̂ is precisely the solution (6.7) to the earlier regularisation problem, adjusted
now to allow for the observation variance constant:

X̂ = S−1

(
SX +

NX

ρ2
f

HXf

)
(8.12)

where
S = S +

NX

ρ2
f

H. (8.13)

The estimate X̂ is also known as a “Maximum A Posteriori” (MAP) estimate because
it is the value of X at which the posterior probability density p(X|Qf) achieves its
peak value. The covariance of the posterior distribution is P = S−1, and S, the total
information matrix for the posterior, is just the sum of information in the prior and
observation distributions. (The derivation of the posterior distribution is essentially
a replay of the derivation on page 118 of the solution to the regularisation problem.)

Probabilistic models of shape 167

The posterior distribution for the curve-fitting problem of figure 6.2 on page 119
can be illustrated by random sampling. Again, regularisation is made invariant to
transformations in a subspace Ss. As in chapter 6, this is represented probabilistically
by modifying the information matrix (8.6) for a uniform, isotropic, Gaussian prior
using a projection Ed outside the invariant subspace:

S =
NX

ρ2
0

EdTHEd. (8.14)

This has the effect of producing a prior distribution that is invariant to Euclidean
similarities so that

p0(X + Xs) = p0(X) for any Xs ∈ Ss.

The posterior distribution, illustrated by random sampling in figure 8.4, clearly shows
the likely range of variability of possible solutions, something that regularisation alone
could not convey. This is also reflected mathematically by the fact that there is an
extra constant in the system. As before there is a regularisation constant α which is
now a ratio of the coefficients of the information matrices for the observation and for
the prior:

α = ρ2
f/ρ

2
0

and which determines the mean X̂ of the posterior distribution. In addition there
is now also the spatial variance parameter ρ2

0 for the prior which also affects the
variability of fitted curves as modelled by the posterior distribution.

Finally, exploiting the additivity of information in (8.13), a mean spatial variance
ρ2 for the posterior can be computed from

1
ρ2 =

1
ρ2

0

+
1
ρ2

f

and is exact if there is no invariant subspace (Ss = 0), and otherwise is a lower bound
on mean variance. A confidence region based on ρ is shown in figure 8.4.

Note that the matrix S in (8.14) has become singular, so that the covariance matrix P0 does
not exist and the prior density p0 cannot formally be normalised. In fact p0 can still be
treated as a consistent Gaussian distribution. It consists of a valid Gaussian density restricted
to shape-space S � Ss excluding the invariant subspace Ss, together with a uniform density

168 Chapter 8

Figure 8.4: Sampling from the posterior Data (top) is given, together with a prior over
spline space with the Euclidean similarities as an invariant subspace (to allow free rotation and
translation). Curves sampled from the posterior distribution sweep out a distribution (left),
whose mean (dashed line) is simply the regularised estimate obtained in chapter 6 (figure 6.2 on
page 119), with α = 0.5. The sampled curves (right) lie comfortably inside a 95% confidence
interval.

Probabilistic models of shape 169

over Ss. It is the uniform density that cannot be normalised and gives rise to unbounded
covariance. We could treat it formally as a sequence of Gaussians of increasing variance,
understanding that any expression incorporating p0 will be evaluated in the limit, where one
exists. In fact this is achieved for our purposes simply by applying additivity of information
to S just in the same way as for a non-singular S. The result is a posterior Gaussian whose
covariance generally exists and which can be normalised.

8.3 Probabilistic modelling of image features

The example above of a posterior distribution is a contrived one, for tutorial purposes,
driven by ideal data in the form of a spline curve Qf . In chapter 6, methods were
developed for fitting to real data rf in the form of a curve sampled from an image. The
importance of using only the normal component of displacement was explained. Now
the probabilistic approach needs to be developed to encompass normal displacements
in real image data.

As in the previous section, the data-term in the regularisation problem can be
interpreted probabilistically, but now based on normal displacement to give an obser-
vation density:

p(rf |X) ∝ exp−NX

2ρ2
f

‖r − rf‖n
2 with r(s) = U(s)(WX + Q0). (8.15)

It can be shown (see below) that ρ2
f is the contribution to mean-square value of the

normal displacement (r − r) · n, in the fitted curve, due solely to measurement error.
Now the discrete form (6.13) from chapter 6 for ‖r − rf‖n

2 can be used, giving
approximately:

p(rf |X) ∝ exp− 1
2σ2

N∑
i=1

[(rf (si) − r(si)) · n(si)]
2 . (8.16)

where

σ = ρf

√
N

NX
. (8.17)

One interpretation of this observation density is in terms of the variability of
individual measurements. Suppose the marginal density of a single measurement

[rf (si) − r(si)] · n(si)

170 Chapter 8

were a Gaussian N (0, σ2) variable. Then the joint density (8.16) could be interpreted
as treating the data rf as a series of sampled image features

rf (si) ∼ N ((r(si), σ2) (8.18)

with mutually independent Gaussian distributions. To some extent such independence
is plausible but it depends rather on what is the chief source of the variability in image-
feature measurements. If the variability were thought to derive from noise, for example
electrical or optical noise at individual pixels, it is probably defensible to regard noise
sources at neighbouring pixels as independent; even then, noise due to lighting flicker
(especially fluorescent lighting) or power supply ripple would be highly correlated
across pixels. In practice, however, the variability in feature position due to such
noise is negligible. The dominant sources of variability reflect grosser discrepancies
than mere device noise from the camera.

• Imperfections in the shape-space model mean that the image outline rf will not
lie entirely in the shape-space S. The difference

e(s) = rf (s) − U(s)(WXf + Q0)

between the outline and its projection onto shape-space acts as spatially corre-
lated noise.

• Background texture and occasional obscuration by passing objects will cause
features to be picked up by image processing that do not belong to the modelled
object. Such errors may be gross and, again, spatially correlated.

The result is that statistical independence between neighbouring rf (si)|X is plausible
only if features are not sampled too densely, and this is a limitation of the observation
model (8.15). It is therefore important to note that the interpretation of (8.16) in terms
of statistically independent measurements rf (si) is by no means the only consistent
interpretation (see discussion at the end of this section).

Algorithm to construct the posterior

Construction of the posterior density p(X|rf) from image measurements rf (si), i =
1, . . . , N uses precisely the recursive fitting algorithm from chapter 6 (figure 6.7 on

Probabilistic models of shape 171

page 127), but now interpreted probabilistically. The algorithm computes an “aggre-
gated observation” Z and the associated statistical information for estimation of X is
S, also output by the algorithm. In fact

Z|X ∼ N (SX, S),

so that Z is an unbiased estimator for SX (rather than for X directly). Its covariance
is in fact S (sic), following from the fact that the statistical information in S−1Z is S.

The posterior distribution is a Gaussian

X|Z ∼ N (X̂, P) where P = (S + S)−1. (8.19)

An example of a posterior constructed in this way from an image is given in figure 8.5.

Figure 8.5: Constructing a posterior distribution from an image. The image data
(left) is shown overlaid with a broad search region determined by the chosen prior. When
combined with image observations, a relatively tight posterior distribution results, illustrated
here by randomly sampled curves and 95% confidence region (right).

172 Chapter 8

Independence of measurements

The functional form of the density p(rf |X) does not in fact uniquely determine the conditional
distribution for observations until a parameterisation is specified for rf (s), the image feature.
For example rf (s) could be modelled as a spline with parameters Qf of dimension Nf . Then
the conditional density can be used to compute probabilities via integrals of the form∫

p(rf |X) dQf .

To examine the question of independence of the rf (si), the conditional density must be trans-
formed from the Qf parameterisation to a new parameter set (rf (s1), . . . , rf (sN)). This could
be done (without loss of generality) by expressing the new parameters in terms of the first N
components in the vector Qf , and integrating over the remaining Nf −N components. This
is possible only if N < Nf . Otherwise there exists no density in the new variables, let alone an
independent one. This is intuitively reasonable. When the underlying parameterisation Qf of
the image curve has relatively few degrees of freedom (Nf is small), this represents an image
curve with strong spatial correlation, such as a spline with few control points. In that case,
successive measurements made on the curve cannot be mutually independent. To summarise,
the form of (8.16) does not force the deduction that individual image measurements rf (si) are
independent. This conclusion is important to the operation of the validation gate, discussed
below.

Mean-square normal displacement

It was claimed above that ρ2
f is the mean-square value of the normal displacement (r− rf) ·n.

This could be proved directly by integration, as was done earlier for ρ0 in the norm-squared
prior. A concise alternative is to appeal to the well-known property of Boltzmann distributions
in statistical mechanics for random systems whose energy U(X) is a quadratic function of
parameters X and is distributed as p(X) ∝ exp−U . The mean energy of such a system is
simply U = NX/2, where NX is the number of degrees of freedom of the parameter set.

8.4 Validation gate

The validation gate was introduced in chapter 6 (section 6.3) as a mechanism for
detecting outliers, features that are misplaced or missing when, for instance, part of
an object is obscured. The idea was to test the innovation νi to ensure that it was not
too large; the difficulty was to decide how large is too large. Now in the probabilistic
framework, there is a basis for making this test as a statistical hypothesis test on

Probabilistic models of shape 173

the innovation, whose Gaussian distribution is known. The innovation (6.14) can be
expanded as

νi = [r(si) − r(si)] · n(si) + [rf (si) − r(si)] · n(si),

in which the first term has a N (0, ρ2
n(s)), distribution, from (8.7). The second term

is a little more difficult to deal with. In the case that the measurements rf (si) are
considered independent, it is Gaussian N (0, σ2) from (8.18). At the other extreme,
in the limit of high spatial interdependence of measurements, its variance should tend
towards 0. This means that

νi ∼ N (0, ρ2(s)) where ρ2
n(s) ≤ ρ2(s) ≤ ρ2

n(s) + σ2. (8.20)

A conservative assumption of high spatial dependence would suggest

ρ(s) = ρn(s). (8.21)

The distribution of the innovation suggests a test that if |νi| > κρ(s) then the
measurement rf (s) is invalidated. Taking the default value κ = 2, at approximately
95% statistical significance the measurement is regarded as an outlier. In practice
this is implemented by using a search segment (figure 8.1) of length ρ(s) so that when
|νi| > 2ρ(s), no feature will be found. The recursive fitting algorithm of chapter 6 can
be modified to take account of outliers. The iterative step in the original algorithm
(figure 6.7 on page 127) is rewritten to ignore outliers, as in figure 8.6.

Note that the modified algorithm requires that S have full rank and that excludes
the use of an invariant subspace in the prior which always makes S singular. This
is a real and reasonable limitation. The idea of the invariant subspace is that it
allows certain shape variables to be unconstrained. In that case, the absolute position
of a given point r(s) on the curve is also unconstrained by the prior (even though
constraints may apply to the relative positions of pairs of points). Validity checks
are only effective when the constraints imposed by the prior on individual points are
reasonably tight. This requires the prior on the shape X as a whole to be reasonably
tight — none of the eigenvalues of S should be too close to 0. The effect of outlier
rejection on fitting is illustrated in figure 8.7.

8.5 Learning the prior

The importance of a prior distribution is that it draws interpretations of data towards
the more plausible shapes in a class of curves. The value of such stabilising behaviour

174 Chapter 8

Iterative fitting step

Iterate, for i = 1, . . . , N :

νi = (rf (si) − r(si)) · n(si);

h(si)T = n(si)TU(si)W ;

ρi =
√

h(si)TPh(si);

If (|νi| < κρi) then

Si = Si−1 +
1
σ2

i

h(si)h(si)T ;

Yi = Yi−1 +
1
σ2

i

h(si)νi;

Else

Si = Si−1; Yi = Yi−1;

Figure 8.6: Curve fitting with outliers. The recursive curve-fitting algorithm in figure 6.7
on page 127 can be modified to ignore outliers. Its iterative step is replaced by the one shown
here. The search-line length factor is taken to be κ = 2 by default. (Note that P = S

−1
needs

to have been computed at the start of the algorithm, and that S must therefore be of full rank.)

is only as good as the prior model itself, embodied by the coefficients in the information
matrix S. So far, we have proposed priors based on uniform, isotropic error (S ∝ H)
and a modification that allows for an invariant subspace. These are reasonable choices
if little is known precisely about the class of curves. If, however, a more specific
prior could be obtained from actual snapshots of a curve in a series of representative
configurations, stabilisation should be very much more effective, and this does indeed
prove to be the case.

The first step towards learning is to acquire a training set, a set of curves {Xk, k =
1, . . . ,M}, where Xk are vectors in a shape-space S = L(W,Q0) which may either be
the spline space SQ or a subspace of SQ. The set is supposed to capture the outline

Probabilistic models of shape 175

Figure 8.7: Validation failure causes a bulge in the posterior confidence region.
Validation fails around the fingertips (left) resulting in a bulge in the 95% confidence region
(right) such that it still contains the true edge of the hand.

being modelled in many characteristic poses. For current purposes, the order in which
poses appear in the sequence is immaterial, though order will matter in later chapters
when object dynamics are being modelled. One could think of each Xk as a contour
drawn by hand on a given image but in practice the temporal tracking technology
developed later allows these outlines to be acquired automatically.

If the prior distribution is assumed to be Gaussian N (X, P), then “maximum
likelihood” estimators for the parameters of the distribution are given by the sample
mean

X =
1
M

M∑
k=1

Xk (8.22)

and sample covariance

P =
1
M

M∑
k=1

(Xk − X)(Xk − X)T . (8.23)

176 Chapter 8

Figure 8.8: Sampling from a prior for lip shape Lips are tracked during speech, as
in figure 1.10 on page 14, to capture a 60 second sequence comprising 3000 successive lip
shapes. The sequence is used to estimate a Gaussian prior distribution in shape-space for lip
shape; random sampling from the prior generates plausible lip configurations, as shown. (Data
courtesy of Robert Kaucic.)

For example, in figure 8.8 a Gaussian prior distribution has been learned from a long
sequence of lip motion during speech. The resulting prior is simulated by random
sampling and the sampled curves are plausible lip configurations.

The matrix P is aNX×NX matrix and should be invertible so that S = P
−1 can be

calculated as required for the recursive curve-fitting algorithm. However, from (8.23),

rank(P) ≤M − 1

so that P certainly cannot be inverted unless M > NX , and in practice one would
expect a data set several times that minimum size. Alternatively, if a sufficiently
large data set is not available and the estimated P is singular then one approach is
to restrict the shape-space sufficiently that the reduced covariance matrix is no longer
singular, and this is discussed next.

8.6 Principal Components Analysis (PCA)

Even if the estimated prior covariance matrix P is not technically singular, it is fre-
quently close to singularity even when the training sequence is long (M > NX). This
happens when the typical motions of the object under study are largely accounted for
by a few independent modes of motion. If P is found to have a large condition number,
larger say than 100, this suggests that, on the basis of the available data, the shape-
space S in which data was collected is unnecessarily large. Efficiency of the matching

Probabilistic models of shape 177

algorithms described earlier, and of later tracking algorithms, would be considerably
enhanced if it could be replaced by a smaller shape-space. The covariance matrix P
can be used to determine a smaller shape-space S ′ = L(W ′,Q′

0) ⊂ S, a subspace of S
with dimension N ′

X , that spans, at least approximately, all of the shapes in a training
sequence X1, . . . ,XM . This idea was first introduced by Cootes and Taylor, in the
special case of polygonal contour models, which they dubbed the “Point Distribution
Model” or PDM. The PCA method is explained starting with “classical PCA” which
is well-known and easily accessible in textbooks, via two refinements, to “L2-norm
PCA in shape-space,” the recommended method for dealing with curves. In the spe-
cial case that M ≤ NX and the covariance matrix P is actually singular, the simplest
way to build a reduced shape-space is to take appropriate linear combinations of the
frames in the training sequence — so-called key-frames, as described in chapter 4.

Classical PCA

The classical approach to PCA would allow the following version of the approximation
problem to be solved. Given a long (M > NX) training sequence, solve:

min
W ′,Q′

0,X′
1,...,X′

N′
X

(
M∑

k=1

|Qk − Q′
k|2
)

(8.24)

where
Q′

k = W ′X′
k + Q′

0 and Qk = WXk + Q0.

The distance measure | · | is the Euclidean norm, that is, |Q|2 ≡ QTQ. The well
known solution to this problem gives Q′

0 = Q, the mean of the training sequence, and
W ′ is a matrix whose columns are the first N ′

X of the orthonormal eigenvectors of the
covariance matrix

Σ =
1
M

M∑
k=1

(Qk − Q)(Qk − Q)T ,

ordering the eigenvectors in descending order of their (necessarily positive) eigenvalues.
The intuitive interpretation is that the eigenvalues represent variance in the training
set in the mutually orthogonal directions of the eigenvectors; the first N ′

X eigenvectors
form a basis for the subspace of dimension N ′

X that “explains” as much as possible
of the variance in the training set. Note that since the data Qk all live within a
shape-space of dimension NX there will be at most NX non-zero eigenvalues of Σ.

178 Chapter 8

L2-norm PCA

In previous chapters, it has been argued that the induced L2-norm is the natural norm
over spline space. In that case, the classical problem above is not entirely applicable.
Instead, the approximation problem should be posed as follows:

min
W ′,Q′

0,X′
1,...,X′

N′
X

(
M∑

k=1

‖Qk − Q′
k‖2

)
, (8.25)

in which the L2-norm ‖ · ‖ has been substituted where Euclidean norm | · | appeared
before. The solution to this problem, which can be derived from the solution to the
classical problem (see below), is that Q′

0 = Q as before and W ′ is a matrix whose
columns are the first N ′

X eigenvectors of the matrix ΣU .

L2-norm PCA over shape-space

Finally L2-norm PCA can be re-expressed in terms of training-set covariance P in
shape-space, without recourse to the (considerably larger) covariance matrix Σ in
spline space. This gives the recommended algorithm in figure 8.9. Results from the
application of the algorithm to the lip-motion sequence are shown in figure 8.10. PCA
analysis for full facial expression is illustrated in figure 8.11. In neither case are
individual PCA components recognisable as particular expressions; rather they are
mixtures of expressions. It is when they are taken as a set that they are meaningful,
as a basis for the repertoire of commonly occurring deformations.

Remember that Euclidean norm |X| in shape-space has no clear geometrical mean-
ing. As a result classical PCA applied to the shape-space training set X1, . . . ,XM

would certainly not be meaningful.

Residual PCA

A constructive description of shape-space, in which the shape-matrix is composed
from transformations of a template or from key-frames, is rather desirable because
each of the components of the shape-vector X has a clear interpretation. For exam-
ple, the shape-space (4.20) composed of key-frames under Euclidean similarity is a
constructive shape-space for which a given X represents an explicit combination of
rigid transformation and facial expression. In contrast, deriving a shape-matrix from
PCA loses the clear interpretation, but has the advantage that no prior insight into

Probabilistic models of shape 179

Problem: given training data X1, . . . ,XM over shape-space S, find a sub-
space S ′ = L(W ′,Q′

0) of dimension N ′
X to minimise

M∑
k=1

‖Qk − Q′
k‖2

where
Qk = WXk + Q0 and Q′

k = W ′X′
k + Q′

0.

Algorithm

1. Construct the training-set mean

X =
1
M

M∑
k=1

Xk.

2. Construct the training-set covariance

P =
1
M

M∑
k=1

(Xk − X)(Xk − X)T .

3. Find eigenvectors v1, . . . ,vNX
of PH, in descending order of eigenvalue.

4. Construct W ′′ =
(
v1, . . . ,vN ′

X

)
.

5. The parameters Q′
0 and W ′ of the shape-subspace are then:

Q′
0 = WX + Q0

W ′ = WW ′′.

Figure 8.9: Algorithm for L2 PCA in shape-space.

likely transformations or deformations is required. It is possible, to some extent, to
enjoy the best of both worlds. Residual PCA operates on a constructive shape-space
that does not totally cover a certain data set, and fills in missing components by
PCA. Then the constructive subspace retains its interpretation and only the residual

180 Chapter 8

Figure 8.10: The lip-motion sequence of figure 8.8 on page 176 is used here in PCA. The
first four eigenvectors, illustrated here, capture over 95% of the variance in the data set.
(Eigenvectors are displayed here as displacements either side of the mean, with magnitude
equal to their standard deviation over the sequence.) (Figures by courtesy of Robert Kaucic.)

components, covered by PCA, cannot be directly interpreted.
Given training data X1, . . . ,XM , collected from a shape-space S, and a construc-

tive subspace Sc = L(W c,Qc
0), it is desired to augment Sc, increasing its dimension

by N ′
X , to cover the training-data set more completely. Residual PCA achieves this

by computing, after steps 1,2 of the algorithm of figure 8.9, the mean and variance of
the residue of the training set:

Xr = (I − Ec)X (8.26)
P

r = (I − Ec)P (I − Ec)T (8.27)

where Ec = W (W c)+ is the matrix for projection onto the subspace Sc. Step 3 of the
algorithm computes the first N ′

X eigenvectors v1, . . . ,vN ′
X

now of P r, rather than P
as in the original algorithm. Steps 4 and 5 proceed as before, computing the template
Q′

0 and shape-matrix W ′ which now form a shape-space for the residual variation in

Probabilistic models of shape 181

Figure 8.11: Facial expression as in figure 1.2 on page 6 is analysed by PCA. The first two
eigenvectors are illustrated here. (Figures by courtesy of Benedicte Bascle.)

the training set that was not covered by Sc. The augmented shape-space is then

Sa = L(W a,Qa
0)

where
Qa

0 = EcQc
0 +W ′Xr

and the shape-matrix
W a = (W c|W r) ,

a concatenation of columns from the shape-matrices for the constructive and residual
spaces.

As an illustration, the Residual PCA algorithm is applied to the lip-motion se-
quence used earlier. Instead of applying PCA directly to the motion sequence as in
figure 8.13, a constructive shape-space Sc, a two-dimensional space of rigid transla-
tions, is used. Translation accounts for about 58% of the motion of the training set
(horizontal 24%, vertical 34%) and since head motion is likely to be somewhat inde-
pendent of speech, it is natural to try to discount it. The covariance P r of the residue
of the sequence with translation removed can be used in its own right to construct a
prior, as in figure 8.13. Then the first two components from residual PCA, illustrated

182 Chapter 8

Figure 8.12: Sampling from a prior for lip shape, excluding translation Random
sampling illustrates how a learned prior generates plausible lip configurations, as in figure 8.8,
but now with the rigid translation due to head motion excluded, leaving just the lip motions
associated with speech.

in the figure, can be expected to bear the bulk of the visual information that is related
to speech.

Figure 8.13: The lip-motion sequence is analysed by residual PCA. All rigid trans-
lation is first excluded from the motion sequence by projection. Translation and the further 2
eigenvectors shown here account for over 95% of the variance in the data set.

Probabilistic models of shape 183

Derivation of PCA algorithms

First L2-norm PCA is derived from classical PCA. Noting that ‖Q‖ = |U1/2Q|, the prob-
lem (8.25) can be recast as a minimisation, in the form of the classical problem (8.24), of

M∑
k=1

|U1/2Qk − U1/2Q′
k|2

with
U1/2Q′

k = U1/2W ′X′
k + U1/2Q′

0,

Its solution is therefore that
U1/2Q′

0 = U1/2Q

and that U1/2W ′ is made up of columns which are eigenvectors of the sample variance

Var(U1/2Qk) = U1/2ΣU1/2.

This means that Q′
0 = Q. Furthermore, a column U1/2w of U1/2W ′ satisfies

U1/2ΣU1/2
(
U1/2w

)
= λ

(
U1/2w

)
which simplifies to

ΣUw = λw,

each column ofW ′ is an eigenvector of ΣU , as claimed. Note that equivalently w is a generalised
eigenvector of the real, symmetric matrices UΣU and U (i.e. solutions of UΣUv = λUv) and
hence the eigenvalues are still positive, so that their descending order remains well-defined.

The shape-space version of the algorithm (figure 8.9) is obtained from the L2-norm algo-
rithm above by substituting

Qk = WXk + Q0 and Q′
k = W ′X′

k + Q′
0

so that
Q →WX + Q0,

as in the algorithm, and
ΣU →WPWTU

whose eigenvectors give W ′. Writing W ′ = WW ′′, W ′′ must therefore be composed of eigen-
vectors of PWTUW , but WTUW = H and this gives the required form for W ′.

184 Chapter 8

Bibliographic notes

The chapter is based on probabilistic analysis — for a review of basic probability,
there is an excellent introductory book (Papoulis, 1990).

The use of a statistically estimated P in a Gaussian prior is equivalent to replacing
the norm ‖ ·‖ in the regulariser of chapter 6 with a “Mahalanobis metric” (Rao, 1973)
that emphasises improbable distortions, so that they are penalised more than probable
ones.

Confidence regions for shapes were delimited by parallel curves. These are a well-
known geometrical construct; one pitfall is that a smooth base curve can have offset
curves that are not smooth but contain cusps (Bruce and Giblin, 1984). They are also
known in CAD as “offset” curves (Faux and Pratt, 1979).

Principal Components Analysis (PCA) is a standard statistical technique (Rao,
1973). The idea of constructing a Gaussian curve model of reduced dimension, using
PCA, was first developed for the case of polygonal outlines and termed the “Point
Distribution Model” or PDM (Cootes et al., 1993), and subsequently extended to
splines (Baumberg and Hogg, 1994). A related idea based on image intensities rather
than curves is the eigen-image (Turk and Pentland, 1991) which can be used directly
in tracking e.g. (Bregler and Omohundro, 1994; Black and Jepson, 1996). PCA is
sometimes applied jointly to outline shape and image intensity distributions (Lanitis
et al., 1995; Beymer and Poggio, 1995; Vetter and Poggio, 1996), to impressive effect.
In standard PCA, it is common to pre-process the data by applying a diagonal scaling
transformation (Ripley, 1996). This proved to be too restrictive for building curve
models, for which general linear transformations were needed. In particular the idea
of performing PCA in the L2 norm, using the metric matrix H was developed in
(Baumberg and Hogg, 1995a), and this is equivalent to scaling the data by H1/2.
Generalised eigenvalues (Golub and van Loan, 1989) are used to combine scaling and
PCA efficiently.

Shape priors discussed here have had a Gaussian form in shape-space. In the case
of a norm-squared density over spline space (S ∝ U), the prior is actually a Gaussian
Markov Random Field (MRF), of second-order in the case of quadratic splines. MRFs
have been used widely for modelling prior distributions for curves (Grenander et al.,
1991; Ripley and Sutherland, 1990; Storvik, 1994).

Chapter 9

Dynamical models

The remainder of the book aims to establish effective procedures for tracking curves in
sequences of images. As with single images, the importance of powerful prior models of
shape holds good, but now prior models can be extended to capitalise on the coherence
of typical motions through a sequence. Crudely this could mean a repeated application
of the regularised curve-fitting of chapter 6, in which the fitted curve in the k − 1th
frame of a sequence is used as an initial estimate of curve position and shape for
the kth frame. In the probabilistic context of chapter 8 this would involve applying,
to each frame, a Gaussian prior distribution with fixed covariance but whose mean
was simply the estimated shape from the previous frame. This immediately suggests
a more subtle approach. Rather than fixing the form of the prior via one constant
covariance for all frames, it seems more natural to take the posterior from frame k−1
as the prior for frame k. In that way, it would not be merely an estimated shape that
would pass from time-step to time-step but an entire probability distribution.

This idea is still too crude as it stands, for two reasons. First, it lacks a mechanism
for extrapolation of motion between successive time-steps, and this is reasonable only
for tracked objects which are moving slowly (figure 9.1). Secondly, as the posterior at
one time-step is handed on to be the prior at the next, statistical information from
measurements steadily accumulates. Accumulation proceeds without bound so that
the statistical information S(tk) in the posterior continues to increase in successive
frames and the corresponding covariance P (tk) decreases towards zero. This is coun-
terintuitive — if the prior at time tk has a vanishing covariance, its regularising effect
will become too strong and image measurements will have an ever decreasing influence
on estimated shape.

186 Chapter 9

Figure 9.1: The need to exploit coherence of motion. Example of hand tracking,
showing that using the fitted curve at time tk−1 as the initial frame at time tk is of limited use
— it tracks slow motions (top) but not faster ones (bottom).

An adequate statistical framework for motion tracking must therefore provide not
only a prior for the first frame, similar to the prior in the static contour fitting problem
but, far more importantly, a prior for possible motions, in the broad sense of rigid
motion plus deformation of shape. This dynamical prior distribution should apply
between all pairs k − 1, k of successive frames. It must have a deterministic part,
giving the expected displacement between successive frames, and this addresses the
first objection above about extrapolation of motion. Less obviously perhaps, it also
needs a stochastic component, an injection of randomness, causing a steady “leakage”
of information to counteract the otherwise unlimited accumulation of information that
led to the second objection above.

In the previous chapter, the probabilistic framework for the fitting of curves to
static images was expounded in three parts. First, the encoding of prior knowledge
of curve shape had the form of a Gaussian prior probability distribution in shape-
space. Secondly, the posterior probability distribution of curve shape given image
data was computed by the recursive algorithm. Thirdly, rather than conjuring up a
prior distribution which is merely plausible, a specific prior was actually learned from
a training-data set. Now it is time to extend these three ideas, in this and the next

Dynamical models 187

two chapters respectively, to deal with curves in moving images. First, this chapter
deals with prior models for curve shape and motion.

9.1 Some simple dynamical prior distributions

Consider the problem of building an appropriate dynamical model for the position of
a hand-mouse engaged in an interactive graphics task. This is the problem that was
illustrated in figure 1.16 on page 20 in which a hand whose motion is monitored visually
controls a simulated object rendered in three dimensions. A typical trace in the xy
plane of a finger drawing letters is shown in figure 9.2. If the entire trajectory were

0 100 200−100−200

100

0

−100

Figure 9.2: The moving finger writes. The finger trajectory (left) which has a duration
of about 10 seconds executes a broad sweep over the plane. If the trajectory is treated as
a training set, the learned Gaussian prior is broad, as the covariance ellipse (right) shows.
Clearly though, successive positions (individual dots represent samples captured every 20ms)
are much more tightly constrained.

treated as a training set, the methods of the previous chapter could be applied to learn
a Gaussian prior distribution for finger position. The learned prior is broad, spanning a
sizable portion of the image area, and places little constraint on the measured position
at any given instant. Nonetheless, it is quite clear from the figure that successive
positions are tightly constrained. Although the prior covariance ellipse spans about

188 Chapter 9

300 × 50 pixels, successive sampled positions are seldom more than 5 pixels apart!
For sequences of images, then, a global prior p0(X) is not enough. What is needed

is a conditional distribution p(X(tk)|X(tk−1)) giving the distributions of possibilities
for the kth shape X(tk) given the k−1th shape X(tk−1). This amounts to a “first-order
Markov chain” model in shape-space in which, although in principle X(tk) may be cor-
related with all of X(t1) . . .X(tk−1), only correlation with the immediate predecessor
is explicitly acknowledged — the “Markov” assumption is made that

p(X(tk)|X(t1) . . .X(tk−1)) = p(X(tk)|X(tk−1)).

This is an assumption that greatly simplifies the probabilistic model. (It will be argued
later that it is actually an oversimplification and that a second-order Markov model,
taking two predecessors into account, is needed.)

Continuing the Gaussian theme of earlier chapters, a simple, isotropic, first-order
Gaussian Markov process in shape-space is

p(X(tk)|X(tk−1)) ∝ exp− 1
2b2

‖X(tk) − X(tk−1)‖2. (9.1)

For example, in a shape-space S of translations in the plane, this process represents
simply a two-dimensional, random walk of the centroid of a rigid shape, in which the
average (root-mean-square) step length is b

√
2 and is isotropic — steps are equally

likely to occur in all directions (figure 9.3 (top)). This particular form of random
walk is known as “Brownian motion” and is well-known as a physical model of the
thermodynamics of microscopic particles. Such a distribution looks too random to
be generally useful for modelling the motion of real, massive objects. A predomi-
nantly deterministic motion with an added random component is more plausible (fig-
ure 9.3 (left)). A modest elaboration of the model above achieves this by including a
constant offset D:

p(X(tk)|X(tk−1)) ∝ exp− 1
2b2

‖X(tk) − X(tk−1) − D‖2. (9.2)

In the case of planar translation, D is a vector representing the mean displacement in
each time-step. The endpoints of random walks consisting of N steps, starting from a
fixed origin, are distributed isotropically as a Gaussian in the plane (figure 9.3 (right)).
Its distribution is the sum of N Gaussians, which is the single Gaussian whose covari-
ance ellipse (a circle), and any confidence interval derived from it, grows steadily, in

Dynamical models 189

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

Figure 9.3: Brownian motion in the plane. Plots show successive positions of the centroid
of some rigid shape undergoing Brownian motion. (Top) an isotropic random walk (100 steps,
b = 1). A random walk (left) with a superimposed drift velocity (100 steps, b = 0.1, drift
(0.15,0.15) per time-step). Several samples (right) of random walk with drift; the endpoints of
the random walks (marked with squares) have an isotropic Gaussian distribution in the plane
(95% confidence ellipse shown dotted).

190 Chapter 9

fact in proportion to
√
N . This is precisely the steady leakage of information which

was claimed earlier to be an essential component of a dynamical model.
Let us accept for the time being the random walk with drift as a plausible model

of the translational motion of an object (though later in the chapter it will be argued
that its trajectories are insufficiently smooth as a model of the motion of real physical
bodies). Now consider instead deformations of the object, governed by the compo-
nents of, say, a 4-dimensional subspace Sd containing all the affine components except
translation. The random walk with drift is certainly not an appropriate model for de-
formation because, as we saw in the examples above, its variance grows unboundedly
over time. In the case of the bottle example of the previous chapter this would imply
a bottle distorting progressively, without limit. Somehow the small deformations that
occur in a continuous fashion from frame to frame need to be forced to stay with an
overall envelope. What is needed is a Markov process that looks like a random walk on
a short time-scale but sweeps out some bounded distribution, presumably a Gaussian
one, over long times. It turns out that a minor modification of discrete Brownian
motion (9.1):

p(X(tk)|X(tk−1)) ∝ exp− 1
2b2

‖(X(tk) − X) − a(X(tk−1) − X)‖2 (9.3)

with 0 ≤ a ≤ 1 gives a constrained Brownian process that has exactly the desired
properties (figure 9.4). Initially it appears to behave like the unconstrained process
but as the long-time limit is approached it becomes more and more evident that it
lies within a limiting Gaussian envelope. Exactly what that distribution is and how
it depends on a and b is clarified later.

Now, such a distribution, visualised so far only in terms of points in the plane, can
be illustrated over a realistic shape-space. Take the bottle example of the last chapter,
over an affine space S, partitioned into 2-dimensional translational and 4-dimensional
deformation subspaces Ss and Sd respectively. A plausible dynamical model for a
translating bottle whose shape undergoes small distortions about a mean shape X
due to projective effects on the changing viewpoint might have two components. One
is a constrained Brownian process in the deformation space Sd. The other is an
unconstrained Brownian process in the translational space Ss. As figure 9.3 (left)
showed, adding drift to Brownian motion models directional motion, but unfortunately
only in a preassigned, fixed direction. If the direction of motion is not known a priori
then the only model we have so far for translation (see later for better models) is
pure Brownian motion. The combined model is expressed in terms of the following

Dynamical models 191

−5 0 5 10−10

−5

0

5

10

−5 0 5 10−10

−5

0

5

10

−5 0 5 10−10

−5

0

5

10

Figure 9.4: Constrained Brownian motion with b = 1 and a = 0.9. On a small scale, the
process appears like unconstrained Brownian motion with b = 1 so that (top) the first 12 steps
are similar to the first 12 steps of figure 9.3 (top) but after 100 steps (left) things look quite
different — the process is constrained by an overall Gaussian envelope whose 95% confidence
ellipse is marked. After 2000 steps (right) the steady-state Gaussian envelope is quite evident
(positions only shown, for clarity).

192 Chapter 9

first-order Markov conditional density:

p(X(tk)|X(tk−1)) ∝ exp−1
2

∥∥∥∥ 1
bs
Es (X(tk) − X(tk−1)) (9.4)

+
1
bd
Ed
(
(X(tk) − X) − ad(X(tk−1) − X)

)∥∥∥∥
2

.

(Subspace projection matrices Es and Ed were defined two chapters back, in (6.5) on
page 117.) A sample path from a simulation of such a dynamical model is illustrated in
figure 9.5. It is perhaps not altogether clear from the Markov density (9.4) exactly how
simulation can be done: in fact, expressing the density instead as an “Auto-regressive”
process amounts to an explicit prescription for simulation and this is explained next.

Figure 9.5: First-order stochastic motion. The figure shows a sample path from a
distribution (9.4) which translates as an unconstrained Brownian process (bs = 30 pixels) and
deforms as a constrained Brownian process (ad = 0.5, bd = 15 pixels). The sequence shown
displays every 10th frame.

Dynamical models 193

9.2 First-order Auto-regressive processes

We have seen some specific examples of useful Markov processes and generally they
can be expressed in the form

p(X(tk)|X(tk−1)) ∝ exp−1
2
‖B−1(X(tk) −AX(tk−1) − D)‖2. (9.5)

Just as Gaussian priors X ∼ N (X, P) in the previous chapter could be expressed as
X = X + Bw which was amenable to simulation, so also the Markov process can be
expressed in a generative form:

X(tk) = AX(tk−1) + D +Bwk, (9.6)

specifying a “sample path” for the process, in which each wk is a vector of NX inde-
pendent random N (0, 1) variables and wk, wk′ are independent for k �= k′. A form
which is not quite as general but will prove convenient is

X(tk) − X = A(X(tk−1) − X) +Bwk (9.7)

and this is the standard form for a first-order “Auto-regressive” (AR) process. The
constants in the two forms are related by

(I −A)X = D.

The AR standard form has the advantage that the parameter X has a clear inter-
pretation: it is the steady-state limit of the mean value of X(tk−1). As k → ∞,
and provided the process is stable (a condition for stability is ‖A‖2 < 1 — see ap-
pendix B.1), the distribution X(tk−1) approaches a steady state N (X, P∞) for some
limiting covariance P∞. The steady-state distribution is exactly the overall envelope
distribution for constrained Brownian motion.

In fact the AR form of the process can be used to derive the distribution X(tk) ∼
N (X̂(tk), P (tk)) at all times tk. Since, by definition, X̂(tk) = E [X(tk)] and P (tk) =
V[X(tk)], taking the expectation and variance of (9.7) gives, respectively, the “mean-
state” equation and

X̂(tk) − X = A(X̂(tk−1) − X) (9.8)

or, in the alternative form,

X̂(tk) = AX̂(tk−1) + D, (9.9)

194 Chapter 9

and the “covariance” or Riccati equation

P (tk) = AP (tk−1)AT +BBT . (9.10)

It is clear by inspection that X(tk) = X(tk−1) = X satisfies (9.8) so that the mean
of the steady-state distribution must be X. The steady-state covariance P∞ ≡
limk→∞ P (tk) must be a fixed point of (9.10):

P∞ = AP∞AT +BBT (9.11)

and although this equation can be solved exactly (by diagonalising A) the most
straightforward method, if not the most efficient, is simply to iterate (9.10) to conver-
gence.

Examples of AR processes

A variety of Markov processes can be succinctly expressed in the AR formalism.

1. Unconstrained Brownian motion

Setting A = I, the AR process (9.7) simplifies to

X(tk) = X(tk−1) +Bwk

which is independent of X. The fact that X, the steady-state mean, should not
need to be specified is reasonable given the process has no steady state. In fact
the mean value is constant throughout: X̂(tk) = X(t0), and, from (9.10), the
covariance evolves as

P (tk) = P (tk−1) +BBT

so that, given an exact initial value for X(t0), P (tk) = kBBT which is un-
bounded, with no limiting value as k → ∞. The covariance ellipse has a mean-
square radius of tr(P) and therefore grows in proportion to

√
k. There remains

the choice of B which is effectively a scaling transformation for the process. For
example, in the plane, B = I2 produces a statistically isotropic random walk,
whereas

B =
(

2 0
0 1

)
is a random walk which has been stretched out by a factor of 2 in the horizontal
direction. In any shape-space, a norm-squared Brownian process (9.1) has the

Dynamical models 195

special form B = b0H−1/2 so that P (tk) = k b20 H−1, and X(tk) is distributed as
a norm-squared Gaussian in which average curve displacement is proportional
to

√
k.

2. Unconstrained Brownian motion with drift

In fact the addition of drift is outside the scope of the standard form (9.7) but
can be expressed in the alternative form (9.6) with A = I and D being the drift
per unit time-step. Still there is no steady state but, from (9.9) and (9.10), the
distribution X(tk) ∼ N (X̂(tk), P (tk)) is given by

X̂(tk) = kD + X̂(t0) and P (tk) = kBBT ,

so that the covariance ellipse grows in proportion to
√
k as before but also drifts

at a constant rate.

3. Constrained Brownian motion

The constrained Brownian motion model of (9.3), with its norm-squared Gaus-
sian density, can be expressed in the standard form of the AR process with
coefficients A = aI, B = bH−1/2. If a2 = 1 − ε with 0 < ε � 1 then, on a
small time-scale, the process is almost indistinguishable from the case ε = 0 of
unconstrained Brownian motion, but in the longer term the distinction which
was clear graphically in figure 9.4 is apparent also from the covariance equation.
Since ‖A‖2 = a < 1, the covariance reaches a steady state, at a fixed point (9.11)

P∞ =
1
ε
BBT =

b2

ε
H−1

and the limiting Gaussian envelope for the process is then N (X, P∞). The results
of the previous chapter imply that the curve has an average displacement from
the template of ρ = b

√
NX/ε in the steady state.

In the simple example of figure 9.4, in which a = 0.9, b = 1 and the space
is translational, we get ρ =

√
2/(1 − 0.92) = 3.24 units. The 95% confidence

circle has a radius approximately 1.73 times as great, approximately 5.6 units,
as illustrated in the figure.

4. Motion in affine space

A Markov process suitable for an affine shape-space was set out above (9.4)
and simulated in figure 9.5. It can be expressed as an AR process in standard

196 Chapter 9

form (9.7) with X as the mean shape for the object and the other coefficients
can be shown to be

A = Es + adEd,

simply applying a different multiplier in each subspace, and similarly

B =
(
bsEs + bdEd

)
H− 1

2 ,

partitioned across the two subspaces.

This model does not reach a steady state because the Brownian motion in the
translational subspace causes unbounded variance P (tk). However, the defor-
mation component EdX(tk) is a constrained Brownian process which reaches a
steady state as above.

9.3 Limitations of first-order dynamical models

First-order AR processes seem to meet some of the requirements for dynamical mod-
elling. They are stochastic and can model entire families of motions. They deal with
changes of position and shape and so can impose strong incremental constraints when
global constraints are weak. They allow a global distribution to be chosen in addition
to and independently of the local process. They appear to be the simplest available
models that achieve these properties. Certainly, a first-order model is better than
no dynamical model at all, as far as effective tracking is concerned. They do have
limitations however.

First, unconstrained Brownian motion with drift, although it seems to model noisy
directional motion at a constant average velocity, has an average direction that is
fixed over time and must be known in advance. However, a good model for the
motion of the writing finger would be a prior distribution that favours smooth motion
of approximately constant velocity, but in an arbitrary direction, and allowing that
velocity to change slowly in magnitude and direction. Another example is tracked
vehicle motion (figure 9.6) in which slow, gradual changes of velocity are typical.
More rapid changes in a given component of velocity are likely to occur during vehicle
manoeuvres. Again, a model is called for that allows for substantial changes in velocity
components over time, albeit mostly slow changes, and this is beyond the scope of the
first-order model.

Dynamical models 197

translation (pixels)

seconds
0 1 2

0

100

Figure 9.6: Tracking moving vehicles. One translational component of tracked image
motion for cars on a highway (figure 1.3 on page 7) is plotted here. Velocity is approximately
constant over short time-scales. Here image velocity decreases gradually as the vehicle recedes.

A second requirement is to be able to model oscillations that occur in many dy-
namical systems of interest. For example the tracked motion of the beating heart
in the introductory chapter of the book is, not surprisingly, strongly oscillatory, as
figure 9.7 shows. Any first-order AR process X(tk) is a regularly sampled version of
an underlying continuous-time process X(t), sampled at regular intervals tk = kτ (see
appendix B.1). The underlying continuous process has a characteristic time-course or
“impulse response” that follows an exponential decay of the form exp−βt, without
any oscillatory component. Such a process would appear, therefore, to be unable to
model oscillatory signals adequately.

Clearer evidence of the inadequacy of first-order models comes from examining
the “spectral” characteristics of motion. In an AR process, the decaying or resonant
response is driven by Gaussian random noise. Thus a first-order AR process, despite
its decaying impulse response, does not actually decrease in magnitude because it is
continuously excited by noise. The result is a complex superposition of exponentials
which is succinctly characterised by its “power spectrum,” the distribution of signal
power as a function of frequency. For a first-order system, the power density is greatest
at low frequency, falling off steadily as frequency increases.

Consider the example of lip motion during speech. It does not approach perfect
periodicity as did the motion of the heart. Its motion does appear to have distinct

198 Chapter 9

2 4 60
seconds

Figure 9.7: Tracked motion of a beating heart. The first principal component of the
motion of a beating heart, tracked in an ultrasound image sequence (figure 1.12 on page 16)
is, of course, highly periodic. (Data courtesy of Gary Jacob and Alison Noble.)

periodic elements (figure 9.8) but over a spread of frequencies. A spectral analysis

−20

20

40

60

80

seconds

10 20 30 40 50

pixels

0

Figure 9.8: Lip motion during speech is oscillatory This plots the opening/shutting
motion of frontally viewed lips during a 60 second sequence of continuous speech. The density
of peaks and troughs suggests oscillation at frequencies around 0.5–1Hz.

of the signal (figure 9.9) shows the “power spectrum” of the speech signal — its
distribution of power as a function of frequency. This is done by computing the

Dynamical models 199

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

Figure 9.9: Spectral analysis of lip motion suggests second-order dynamics Signal
power in the lip-motion signal of figure 9.8 peaks (left) at frequency of about 0.8Hz, reflecting
the average spacing of peaks and troughs. A first-order AR process can be chosen with a
spectrum (right) that models the background power level effectively but does not capture the
peak.

Discrete Fourier Transform (DFT) of the signal and plotting the square of its complex
amplitude. The resulting power spectrum shows a background power distribution
across all frequencies, decreasing in magnitude as frequency increases. Superimposed
on this is a clear “resonant” peak at a frequency which appears to correspond well
with the spacing of peaks and troughs in the original signal. Now it is known that for
a first-order AR process in 1 dimension

x(tk) = ax(tk−1) + bwk

the corresponding power spectrum has the form (see appendix B.1):

Sxx(f) ∝ 1
1 + γf2

(9.12)

where γ is a constant that depends on the parameters a and b of the AR process.
This spectrum always has maximum power at zero frequency f = 0 and hence cannot
have a resonant peak at some frequency f > 0. Choosing a value of γ by hand to fit
the lip-motion spectrum, it is possible to explain the background power distribution
(figure 9.9) but the peak cannot be modelled. When the model is used to generate
a sample (figure 9.10), the simulated signal is a poor replica of the original data.

200 Chapter 9

seconds

10 20 30 40 50

pixels

0

−100

100

Figure 9.10: Simulated first-order lip motion Parameters for a first-order AR process
are chosen to correspond to the fitted power spectrum in figure 9.9 (left). A sample path for
the process is illustrated here and should be compared with the original signal in figure 9.8.
The simulated signal comprises far more rapid transitions than the original data it is supposed
to model.

Transitions in the simulated signal are too rapid, and this is consistent with the
excessive signal power at high frequencies in the first-order model. The simulated
signal does not appear to contain an underlying oscillation and this is consistent with
the absence of a resonant peak in the first-order fitted spectrum.

9.4 Second-order dynamical models

Randomly excited harmonic motion

The simplest auto-regressive processes that meet the additional requirements, both
for oscillatory and translational motion, are “second-order” processes (see below).
They are typically resonant with a characteristic time-course in the form of a damped
oscillation exp−βt cos 2πft. The power spectrum of a second-order AR process (see
appendix B.2) is:

Sxx(f) ∝ 1
π2(f2

0 − f2)2 + β2
0f

2
(9.13)

where β0 is a “damping” constant with the dimensions of inverse time. It is clear that
this spectral density reaches a maximum at approximately f = f0 (provided β0 � f0),
and is therefore capable of representing resonant or frequency-tuned behaviour. The

Dynamical models 201

width of the resonant peak, determined jointly by parameters f0 and β0, is ∆f0 ≈
f2
0 /β0. Choosing f0 and β0 by hand to match the centre and width of the resonant

peak in the lip-motion data of figure 9.8 gives a much improved fit, as figure 9.11 shows.
Now the peak in the spectral power distribution is represented, at least approximately,

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

Figure 9.11: Second-order power spectrum model A second-order model can represent
the spectral peak in the lip-motion data of figure 9.8.

although the background power density may have been approximated better by the
first-order model, especially at high frequency — power density in the second-order
model tails off rather too fast. As a final piece of empirical evidence in favour of
second-order models, the parameters f0 and β0 can be used to specify an AR process
representing a second-order Markov chain (see next section) which can be sampled by
driving it with randomly generated noise wk, as was done earlier with first-order AR
processes. The result (figure 9.12) appears quite plausibly to be a signal of a similar
type to the original, real lip-motion data.

Physical realisability

A further point of principle that favours second-order models over first-order ones comes
from considering a temporal process x(t) with power spectrum Sxx(f) as a component of the
physical motion X(t) of a body with mass. In that case, the corresponding velocity v(t) = ẋ(t)
has a power spectrum proportional to f2Sxx(f) and the mean kinetic energy associated with
that motion is proportional to

E [v(t)2] ∝
∫ ∞

−∞
f2Sxx(f) df

202 Chapter 9

seconds

10 20 30 40 50

pixels

0

−100

100

Figure 9.12: Simulated second-order lip motion Parameters for a second-order AR
process are chosen to correspond to the fitted power spectrum in figure 9.11. A sample path
for the process is illustrated here and should be compared with the original signal in figure 9.8
— the distribution of spacings between peaks appears to be similar.

and this integral must give a finite result for the model to be realisable as a physical process.
For the first-order power spectrum Sxx(f) in (9.12) the integral diverges, ruling out first-
order models as unrealisable (other than with ideal, massless bodies). For the second-order
spectrum (9.13) however, the integral converges and this is true of higher order AR models
also.

It was noted above that although the resonant peak in the lip-motion spectrum was cap-
tured by a second-order model, the tail of the spectrum was actually modelled better by the
first-order model. This might suggest that a weighted sum of the first- and second-order
processes would fit better than either first- or second-order alone. This may be so but the
mixed model would share the unrealisability of the pure first-order model; this is because the
first-order spectrum dominates at large f , causing divergence of the kinetic energy integral.
Mixtures of second- and higher-order models would satisfy realisability constraints. (In the
language of “poles” and “zeros”, popularly used to describe spectra, a pure nth order AR
model has n poles and no zeros — an “all-pole” spectrum. The mixed first- and second-order
model has 2 poles and 1 zero and is unrealisable. Generally physical realisability, in the me-
chanical sense, demands at least two more poles than zeros.) Furthermore, learning dynamics
(see chapter 11) is rather more difficult for the mixed model than for the pure second-order
model.

If physical realisability demands second-order or higher, conventional dynamical modelling
suggests that second-order may be sufficient. For a system with just one degree of freedom,
the situation is relatively straightforward. If it is assumed that potential energy and frictional
power dissipation are each quadratic functions 1

2kx
2 and 1

2νẋ
2 respectively then the equation

Dynamical models 203

of motion is not only second-order but also linear:

mẍ = −νẋ− kx+ f

where f is an externally applied force. Note that the quadratic assumptions cover the cases
of potential energy due to elasticity (Hooke’s law) or gravity and dissipation due to viscous
forces at relatively low speeds. If f comes from some class of possible temporal force functions
the result will be a class of motions x(t). The simplest random model for f is as a “white
noise” signal f(t) = bw(t), where w(t) is a Wiener process, the continuous counterpart to the
uncorrelated discrete noise signal wk in AR processes. In that case, the spectrum of x(t) is
second-order and all-pole.

Multidimensionally, in shape-space, motion X(t) is a little more difficult to describe. A
general formalism (“Lagrangian dynamics” — see bibliographic notes) is available to convert
a physical description of mass distribution, potential energy and dissipation into equations of
motion. As before, the equations are of second-order, and linear if potential energy and power
dissipation are quadratic:

Ẍ = F0X + F1Ẋ +G0w, (9.14)

where w(t) is a vector of NX independent Wiener processes and F0, F1 and G0 are NX ×NX

matrices. Physical realisability means that F0 and F1 must be negative definite, with real
eigenvalues and eigenvectors, but are not generally symmetric. These conditions guarantee
stability of X(t), as might be expected for a physical process.

Lastly, note that X(t), being a shape-space variable, refers to the image of a physical
object, rather than to the object itself. However, it was argued in chapter 4 that projection
from world to image is (approximately) a linear mapping. That ensures that the general form
of a linear model in world coordinates is preserved in the image plane, and also in shape-space
given that its parameter X is defined to be linear.

Signal phase

So far, the argument about model order has concentrated on the power spectrum of a signal.
This represents the amplitude of the signal spectrum but neglects its phase. Phase is also im-
portant but is less amenable to graphical arguments about goodness of fit. In fact, attempting
to fit also the phase distribution of the lip-motion signal inevitably causes the power spectrum
fit to deteriorate somewhat. This is evident later, in chapter 11, where an automatic fitting
algorithm is developed. It fits models directly to signals, rather than to their power spectra,
and therefore is bound to take both amplitude and phase into account.

204 Chapter 9

9.5 Second-order AR processes in shape-space

A second-order AR process in shape-space is a natural extension of the first-order
process (9.7). It has the form

X(tk) − X = A2(X(tk−2) − X) +A1(X(tk−1) − X) +B0wk (9.15)

in which A2, A1 and B0 are all NX × NX matrices. In a second-order process, the
shape-vector at a given time depends on two previous time-steps, rather than just
one as in the first-order process. It can be expressed more compactly by defining a
“state-vector”

X (tk) =

 X(tk−1)

X(tk)

 (9.16)

and then writing
X (tk) −X = A(X (tk−1) −X) +Bwk (9.17)

where

A =

 0 I

A2 A1

 , X =

 X

X

 and B =

 0

B0

 . (9.18)

It is straightforward to show that (9.17) is precisely equivalent to (9.15). Replacing
the shape-vector X by a state-vector X of double size allows the notation for a first-
order process to continue to be used, albeit with some restrictions (9.18) on the form
of the coefficient matrices A and B.

The second-order state X has mean and covariance

X̂ (tk) = E [X (tk)] and P(tk) = V[X (tk)] (9.19)

where P(tk) is a 2NX × 2NX matrix that is naturally decomposed into submatrices:

P(tk) =

 P ′′(tk) P ′(tk)T

P ′(tk) P (tk)

 (9.20)

in which

P ′′(tk) = E [(X(tk−1) − X̂(tk−1))(X(tk−1) − X̂(tk−1))T] (9.21)
P ′(tk) = E [(X(tk) − X̂(tk))(X(tk−1) − X̂(tk−1))T]
P (tk) = E [(X(tk) − X̂(tk))(X(tk) − X̂(tk))T].

Dynamical models 205

The most interesting of these is P (tk) which represents covariance in shape-space at
time tk. The other submatrices need to be “carried” by P simply in order to al-
low second-order propagation of P (tk). (Note that, as a consequence of second-order
propagation, P ′′(tk) = P (tk−1).) Propagation is governed by mean-state and covari-
ance equations for the second-order model, by analogy with the first-order case (9.8)
and (9.10):

X̂ (tk) −X = A(X̂ (tk−1) −X) (9.22)

and
P(tk) = AP(tk−1)AT +BBT . (9.23)

A steady-state P∞ can be computed as before, by iterating (9.23) to convergence. Its
lower-right submatrix P∞ then represents the covariance of the Gaussian envelope in
shape-space for the second-order Brownian process.

The AR process (9.16) is defined over discrete time, but can in fact be regarded
as a regular sampling of an underlying continuous-time process. In the next section
this discrete–continuous correspondence maps damped harmonic motion, described in
continuous time, into discrete time. It serves as a “synthetic” predictive dynamical
model, used in tracking in the next chapter. The correspondence is also useful in the
reverse direction, to decompose and interpret an AR process in physical terms. This
will be important in chapter 11 where models are learned from training sequences
and learned coefficients A and B are interpreted as collections of damped harmonic
oscillators, each associated with a vibrational mode — effectively a one-dimensional
shape-subspace. Relevant details of the discrete–continuous correspondence are set
out, for completeness, in appendix B.2.

9.6 Setting dynamical parameters

The best dynamical models for tracking, in the sense of being most appropriately
tuned to expected motions, are obtained by learning and this is discussed fully in
chapter 11. Until such learned models are available, we have to be content to use
default models, synthesised by hand to match general, intuitive expectations about
the motions to be observed. These expectations are addressed partly by the static
constraints embodied in the choice of shape-space, and this has been dealt with in
earlier chapters. Dynamical characteristics must also be specified in order to define
fully an operational tracker (see the next chapter) which could be regarded as an
end-product in its own right. Alternatively, the tracker may be applied just once, to

206 Chapter 9

capture a training sequence which is then used to learn a more refined shape-space
via PCA (chapter 8) and more refined dynamics (chapter 11).

This section offers a systematic approach to synthesising dynamical models. The
synthetic models are based on harmonic oscillators driven by spatially homogeneous
noise. Shape-space is decomposed into natural subspaces and a stochastic harmonic
oscillator is set up in each subspace.

Stochastic, harmonic motion in one dimension

First, to describe the harmonic oscillator which is the building block for synthesised
models, an oscillation with damping rate β and frequency of oscillation f is expressed
discretely by

A =

 0 1

a2 a1

 and B =

 0

b0

 (9.24)

where
a2 = − exp(−2βτ) and a1 = 2 exp(−βτ) cos(2πfτ). (9.25)

(The derivation of these relations is given below.) A practically important special
case, is critical damping in which f = 0, particularly suitable for motions which are
not expected to be oscillatory; that leaves just 1/β to be specified, as a characteristic
time-scale for the motion. Note that f = 0 implies the constraint on discrete param-
eters that −a2

1 = 4a2. Provided β > 0, the process is stable and has a steady-state
distribution with finite spatial variance. To obtain a desired steady-state variance ρ2,
choose

b0 = ρ

√
1 − a2

2 − a2
1 − 2

a2a2
1

1 − a2
. (9.26)

(This formula comes directly from the steady-state solution of the covariance equa-
tion (9.23).) A more intuitive relationship is obtained by taking the “continuous time”
limit that βτ � 1, (an assumption that holds in most cases of practical interest):

b0 = ρ
[
2(βτ)1/2 sin(2πfτ)

]
. (9.27)

Constant-velocity model

A further sub-case of harmonic motion, useful particularly for translational motion,
is the constant-velocity model in which β = f = 0, so that a2 = −1 and a1 = 2. As

Dynamical models 207

expected, for constant-velocity parameters the formulae (9.25) and (9.26) give b0 = 0
or, equivalently, for any b0 > 0 the variance ρ2 is unbounded. Given that there is
no steady state, ρ cannot be used to characterise the stochastic component of the
model. Instead, a rate of growth parameter γ0 is specified. It can be shown that,
asymptotically, the root-mean-square search-region diameter grows semicubically:

ρ(t) = γ0t
3/2 where b0 = γ0τ

3/2. (9.28)

Harmonic motion in shape-space

A straightforward way to construct a dynamic model for a shape-space SX is to extend
the one-dimensional harmonic motion just described, to the entire space. This is done
by choosing

A2 = a2INX
, A1 = a1INX

and B0 =
b0√
NX

H− 1
2

where a2, a1 and b0 are chosen as above. The resulting A-matrix then represents
“degenerate” modes, NX independent motions, with common frequency and damping
constants, that span the shape-space. The driving Brownian noise has the usual norm-
squared density, giving spatial uniformity and isotropy but subject to the constraints
of the shape-space. The steady-state covariance P∞ can be shown from (9.23) to be

P∞ =
ρ2

NX
H−1, (9.29)

where ρ and b0 are related as in (9.26). This represents a Gaussian envelope with
mean X and root-mean-square displacement ρ along the curve.

Partitioned harmonic motion across shape-subspaces

Finally, it is usually desirable to partition shape-space into several subspaces and
apply different harmonic models to each. Earlier, affine space was partitioned into
translation and deformation components using projection matrices Es and Ed, and
a first-order model (9.4) on page 192, defined across the partitioned space. This
was chosen to allow relatively free translation but tightly constrained deformation of
shape. A partitioned second-order model can similarly be specified by defining A and

208 Chapter 9

B matrices as follows:

A2 = as
0E

s + ad
0E

d, A1 = as
1E

s + ad
1E

d (9.30)

B0 =
(

bs0√
Ns

Es +
bd0√
Nd

Ed

)
H− 1

2 ,

where Ns and Nd are the dimensions of the shape-subspaces. Parameters ad
0, a

d
1 and

bd0 are set for appropriate frequency fd, damping rate βd and average displacement
ρd for deformation, using (9.26) above, and similarly for translation. Any desired
number of partitions of shape-space can be chosen, and partitioned dynamics defined
additively as above. Variances of the Gaussian envelopes are additive so that, in the
two-component case above,

ρ2 =
√

(ρs)2 + (ρd)2 (9.31)

is the root-mean-square displacement in model as a whole.

Examples

Examples of dynamical models set up by hand are given here. The first is for vehicles
on a motorway, as in the traffic-monitoring application described in chapter 1. Sample
trajectories are displayed in figure 9.13. Translational dynamics are constant-velocity,
with characteristic semicubical growth of the region of positional uncertainty, reaching
35 pixels (RMS) after one second. Affine deformation is set to vary slowly, over a 10-
second time-scale, to allow the shrinkage of the template under perspective scaling,
as vehicles recede into the distance. Ideally this shrinkage should be coupled with the
translational motion in the dynamical model itself, rather than simply in the initial
conditions, and limited to scaling rather than allowing all affine deformations. That
is rather more elaborate than can reasonably be programmed by hand. What can
be done is to use the model above as a predictor in a tracker that is just capable of
gathering a training set. The training set can then be used in the learning algorithm
to be described in chapter 11 to build automatically a model that incorporates the
appropriate couplings.

A second example of a hand-programmed dynamical model is designed to represent
the motion of a dancing girl, as in figure 9.14. This time the model is explicitly
oscillatory, with independent dynamics for horizontal and vertical motion. As with
the example of traffic above, a dynamical model such as this is sufficient for use as
a predictor in a tracker that can capture a training set, which is then used to learn

Dynamical models 209

Figure 9.13: Dynamical model for traffic. Three simulated trajectories for an ARP set
up to represent the traffic pattern, each initialised with a velocity in shape-space correspond-
ing to translation along the road, coupled with shrinkage consistent with perspective scaling.
Translational parameters are β = f = 0 (constant-velocity) with γ0 = 35pixel.s−3/2, allowing
the paths to veer over longer times. Affine deformations are critically damped (f = 0) with a
long time-constant (1/β = 10 s), and largely deterministic (ρ = 2 pixels), allowing the outline
to shrink steadily. Contours are plotted here at intervals of 200ms.

automatically an auto-regressive process model that is more specifically tuned to the
observed motions.

Derivation of simple harmonic oscillator coefficients a2, a1, in terms of f , β as in (9.25):
given that a2, a1 are to be chosen to correspond to the damped exponential exp−βt exp±2πft,
over a time-step τ , the eigenvalues of A in (9.24) must be exp−βτ exp±2πfτ , whose product

210 Chapter 9

Figure 9.14: Dynamical model for a dancer. Three simulated trajectories, each of
0.84 s duration, are shown of an ARP model in a shape-space of translations. Horizontal
oscillation is slow (β = 0.2 s−1, f = 0.2Hz) and broadly distributed (ρ = 300 pixels), repre-
senting the motion of the dancer to and fro, across the room. Vertical oscillation is faster
(β = 0.5 s−1, f = 1Hz) and more tightly distributed (ρ = 100 pixels), representing the bobbing
motion of the head.

and sum, respectively the determinant and trace of A, give

a2 = −detA = − exp(−2βτ) and a1 = trA = 2 exp(−βτ) cos(2πfτ),

as required.

Bibliographic notes

Dynamical models exploit “coherence of motion” — a term coined by Yuille and
Grzywacz (Yuille and Grzywacz, 1988) to refer to the spatial continuity of motion
across an image, and used here to refer both to spatial but especially also temporal
continuity. Dynamical models were based on the Markov process. This is a develop-
ment of the Markov Chain (see for instance (Rabiner and Bing-Hwang, 1993)) in a
continuous-valued form, and is a core tool in control theory (Astrom and Wittenmark,
1984). Markov processes can be expressed either in continuous or discrete time and

Dynamical models 211

the relation between the two is explained in (Gelb, 1974). Continuous-time stochastic
processes form the basis of the arguments about physical realisability of models in
the chapter, and a detailed treatment of continuous-time stochastic processes is given
in (Astrom, 1970). Furthermore continuous-time analysis establishes the semicubical
growth of the search region under constant-velocity dynamics (Blake et al., 1993).

Markov processes can also be viewed in spectral terms as the output of certain
linear systems driven by noise (Papoulis, 1991), and often displaying resonances in its
spectral power distribution. The use of resonant modes in visual motion modelling
was first developed by Pentland and Horowitz (1991) and applied to spline contour
models by Baumberg and Hogg (1994). In both cases the dynamical models are
purely deterministic, essentially the deterministic component of the stochastic models
described in the chapter. Such deterministic dynamical models describe distributed,
massive systems (Landau and Lifshitz, 1972), and can be derived using “Lagrangian
analysis.” Second order differential equations, expressed in terms of positions, veloc-
ities and accelerations, are obtained from the functions of position and velocity that
specify the potential energy and power dissipation of a system. A useful introduction
is given in (Terzopoulos and Szeliski, 1992).

Chapter 10

Dynamic contour tracking

In the previous chapter, dynamical models were characterised by a second-order state
density p(X (t)), evolving temporally, and representing the prior distribution for the
state X at each time t. In this chapter, both the prior dynamical model and visual
measurements are to be taken into account. The result is a fusion of information,
both prior and observational, as was set out in chapter 8 for single images, but done
now for image sequences, to track motion.

The natural mechanism for temporal fusion, when distributions are Gaussian, is
the Kalman filter. It computes the evolution of the Gaussian density for the state of
the tracked object, as figure 10.1 illustrates. A simple practical example consists of
a planar affine shape-space, based on a hand-shaped template, with constant-velocity
dynamics, which is capable of tracking motion of an outstretched hand (figure 10.2).
All results in this chapter show tracking tasks that can be performed in real time on
a desktop workstation.

10.1 Temporal fusion by Kalman filter

Observation history

The Kalman filter maintains a Gaussian distribution of the state

X (tk) ∼ N (X̂ (tk),P(tk))

given both the prior dynamical model for X (tk) and the measurement history Z(tk):

Z(tk) = (Z(t1), . . . ,Z(tk)) (10.1)

214 Chapter 10

p(x)

x

p(x)

x

p(x)

x

p(x)

x

deterministic drift

stochastic diffusion

reactive effect of measurement

z

Figure 10.1: Kalman filter as density propagation. In the case of Gaussian prior,
process and observation densities, and assuming linear dynamics, the state density propagates
as a Gaussian represented completely by its evolving (multi-variate) mean and variance.

where Z(tk) is the version at time t = tk of the aggregated observation Z that is
produced by the recursive image-curve fitting algorithm of chapter 6 (figure 6.7 on
page 127). As in that static algorithm, so also now in the dynamic case, the statistical
information associated with Z(tk) for estimating X is S(tk) (S in the fitting algorithm)
and Z(tk) is an unbiased estimate of S(tk)X(tk) (rather than of X(tk) itself).

In the previous chapter, X̂ (tk) and P(tk) were defined (in (9.19) on page 204) to
be the prior mean and covariance of the state. Now X̂ and P are redefined as the
posterior mean and variance

X̂ (tk) = E [X (tk)|Z(tk)] and P(tk) = V[X (tk)|Z(tk)], (10.2)

conditioned on the measurement history Z(tk). The principle behind the evolution of
X̂ (tk), together with P(tk), is straightforward. The estimate at time tk−1 is propagated

Dynamic contour tracking 215

Figure 10.2: Hand tracking in planar affine shape-space. A planar affine shape-space
with constant-velocity dynamics is sufficient to track movements of an outstretched hand at
modest speed.

to time tk in the two standard steps of the Kalman filter: prediction, and assimilation
of observations. This engages all of the probabilistic machinery developed so far
in the book: prediction is based on the dynamical models of the previous chapter;
assimilation of observations is based on information weighting as in chapters 6 and 8.

216 Chapter 10

Prediction

A single time-step of the dynamical model ((9.22) on page 205) is applied to X̂ (tk−1)
to obtain a predicted state X̃ (tk):

X̃ (tk) −X = A(X̂ (tk−1) −X) (10.3)
P̃(tk) = AP(tk−1)AT +BBT .

Assimilation by information weighting

In its most direct form, assimilation computes an information weighted mean between
the prediction and the latest measurement:

P(tk) =
(
P̃−1(tk) +HTS(tk)H

)−1
(10.4)

and
X̂ (tk) = X̃ (tk) + P(tk)HTZ(tk)

where the matrix
H =

(
0 I

)
(10.5)

maps X (tk) → X(tk) from state-space into shape-space.
It is clear that in the first of these equations, information is summed and that in

the second, information weighting is applied. However, this assimilation procedure
is somewhat inefficient because of the need to invert large (2NX × 2NX) matrices.
Fortunately the Kalman filtering canon offers a more efficient alternative in which
only a single NX ×NX matrix inversion is required at each time-step.

Assimilation by Kalman gain

An exactly equivalent algorithm for assimilation, free of inversions of the full state
covariance P, is based on a “Kalman gain” matrix K, as follows:

K(tk) = P̃(tk)HT
(
S(tk)HP̃(tk)HT + I

)−1
(10.6)

X̂ (tk) = X̃ (tk) + K(tk)Z(tk)
P(tk) = (I −K(tk)S(tk)H) P̃(tk).

Dynamic contour tracking 217

Note that the only matrix inversion occurs in the expression for the Kalman gain
and involves an NX × NX matrix, as promised. A particular form has been used
here for the Kalman gain such that if the aggregated measurement Z(tk) is deficient
so that S(tk) has less than full rank, the assimilation step is still well-defined and
free of singularities. In fact, even if measurement fails altogether so that S(tk) = 0
and Z(tk) = 0, the assimilation step simply becomes X̂ (tk) = X̃ (tk), accepting the
prediction without modification.

Block decomposition

Finally, the algorithm above can be expressed most efficiently, using submatrix de-
composition of the state-space covariance P into submatrices P , P ′ and P ′′, as earlier
in (9.20) on page 204. In addition, the Kalman gain is decomposed into two NX ×NX

submatrices:

K =

 K ′

K

 . (10.7)

This allows the special form of the dynamical matrix A and the symmetry of P to
be exploited. The full algorithm is given in figure 10.3. It consists of one predict–
observe–assimilate cycle for each time-step. The predicted shape X̃(tk) is used as the
basis for obtaining the aggregated measurement vector Z(tk). It replaces, in steps 2
and 4 of the fitting algorithm of figure 6.7 on page 127, the shape-vector X which
defined the estimated curve r(s) from which image features νi are measured. Finally,
the estimated curve shape X(tk) is computed, as required. Other variables P (tk),
P ′(tk), P ′′(tk) and X̂′(tk), computed in the assimilation step, are carried forward for
use in prediction at the following time-step.

Initial conditions

The algorithm of figure 10.3 sets out the formation of the estimate at time tk from
the one at time tk−1. All that remains to complete the algorithm is to specify initial
conditions at time t0. There are various natural ways to do this corresponding to
various possible assumptions about the initial state of the object to be tracked. In
general, values of X̂(t0) and P(t0) are set to reflect the prior distribution for object
state. The state distribution specifies the distributions of configurations at times
t0, t−1, that is X(t0) and X′(t0) (recall X′(t0) ≡ X(t−1)). Alternatively, it can be

218 Chapter 10

Algorithm for propagation over one time-step

Predict
P̃ ′′(tk) = P (tk−1)

P̃ ′(tk) = A2P
′T (tk−1) +A1P (tk−1)

P̃ (tk) = A2P
′′(tk−1)AT

2 +A1P
′(tk−1)AT

2

+A2P
′T (tk−1)AT

1 +A1P (tk−1)AT
1 +B0B

T
0

X̃′(tk) = X̂(tk−1)
X̃(tk) = A2X̂′(tk−1) +A1X̂(tk−1) + (I −A2 −A1)X.

Measure

Apply the algorithm of figure 6.7 on page 127, to the image at time
tk using X̃(tk) as estimated contour from which normals are cast. Use
P̃ (tk) as the value of P to compute validation-gate width (figure 8.6 on
page 174). Obtain the aggregated observation vector Z and information
matrix S, denoted here as Z(tk) and S(tk).

Assimilate

K ′(tk) = P̃ ′(tk)
[
S(tk)P̃ (tk) + I

]−1

K(tk) = P̃ (tk)
[
S(tk)P̃ (tk) + I

]−1

P ′′(tk) = P̃ ′′(tk) −K ′(tk)S(tk)P̃ ′(tk)
P ′(tk) = P̃ ′(tk) −K(tk)S(tk)P̃ ′(tk)
P (tk) = P̃ (tk) −K(tk)S(tk)P̃ (tk)

X̂′(tk) = X̃′(tk) +K ′(tk)Z(tk)
X̂(tk) = X̃(tk) +K(tk)Z(tk)

Figure 10.3: Second-order Kalman filter for image sequences.

Dynamic contour tracking 219

thought of as specifying a prior distribution for initial position X(t0) and velocity
V(t0) = Ẋ(t0).

Known, static, initial position. This is an appropriate assumption for interactive
applications such as the hand-mouse of figure 1.16 on page 20 in which the hand
might typically be inserted into a marked outline with shape X0, and held still
while tracking is switched on. In that case, suitable initial conditions are given
by the closed-loop steady state of the filter. This can be obtained most sim-
ply by running the tracking algorithm with constant “artificial” measurements
S(tk) = S, Z(tk) = SX0 in which S takes the value for a full set of successful
image measurements in the curve-fitting algorithm. Under these circumstances,
values of P (t∞), P ′(t∞), P ′′(t∞), and of X̂(t∞),X′(t∞) should settle to a steady
state. This serves as a suitable initial condition once tracking is switched on by
suspending the artificial measurements and allowing real image measurements
to flow in.

Unknown initial position. If initial position is unknown, then the only available
prior information is what is embodied in the dynamical model itself. Then
the assumption is that, at switch-on, the object may be anywhere within the
Gaussian envelope implied by the model. It amounts to setting initial conditions
to the open-loop steady state, determined by running the dynamical model in the
absence of measurement. This is obtained by running the tracker on artificial
measurements, this time with S(tk) = 0, Z(tk) = 0, until tracking is switched
on as before. Note that the method can be used only if the AR process has a
steady state and that excludes “constant velocity” models (see previous chapter,
page 206).

Known initial velocity. In many applications a prior estimate of the initial velocity
of the object is available, at least over a subspace of the shape-space. For
example, observing plants on the ground from a moving tractor (figure 1.6 on
page 10) or objects moving on a conveyor belt. In that case the estimated
velocity is incorporated in a velocity offset vector V0 in shape-space and the
initial state becomes:

X̂(t0) = X0, X̂′(t0) = X0 − V0τ.

with P initialised to the closed-loop steady-state value as before.

220 Chapter 10

Alternative Kalman Filter

An alternative version of the Kalman filter is possible with an assimilation step that is equiv-
alent to (10.6) but with a modified presentation. It is based on the alternative curve-fitting
algorithm of chapter 6 (figure 6.10 on page 133), rather than the original recursive algorithm.
The detailed implementation of the algorithm is omitted here. The comparison between the
two algorithms, here in the dynamic case, is similar to that for the static case: for small NX

the original algorithm is more efficient, but as NX increases the alternative algorithm becomes
relatively more efficient.

Computational cost

The computational cost of the tracking algorithm is in fact O(N3
X) so that increasing the

dimension NX of shape-space carries a heavy cost penalty. The cost is comprised of two
components. Prediction and assimilation (figure 10.3) incur a cost of O(N3

X) in the multi-
plication and inversion of the various NX × NX matrices. The generation of the aggregated
measurements Z(tk) also costs (argued in chapter 6) approximately O(N3

X).

10.2 Tracking performance

At last, all three components of a fully dynamic, active contour tracker are in place:
visual measurement, the dynamic model and temporal filtering. The validation-gate
mechanism of chapter 8, used in the recursive fitting algorithm (figure 8.6 on page 174)
to acquire the aggregated observations, is crucial here. It relates the width of the
search region to the position covariance P , now a time-varying quantity P̃ (tk). Com-
bining the three components in the algorithm of figure 10.3, and using a validation
gate, produces a tracker that is robust in a number of respects.

Initialisation

One sense in which tracking is robust is that it is capable, in the initialisation phase,
of “locking on” to an object: uncertainty in object position and shape is tolerated
initially but rapidly resolved as the continuity of tracked motion is recognised. This
is reflected in the collapsing search region in figure 10.4.

Dynamic contour tracking 221

Figure 10.4: Locking on from the open-loop steady state. The search region begins
at its largest, reflecting initial uncertainty of location. It rapidly collapses as observations
decrease the uncertainty.

Adaptive search

If image observations fail along the contour, the search region expands over the affected
segments until observations succeed again, as figure 10.5 shows. The extreme case is
when observations fail along the entire length of the contour, in which case the search
region regresses towards its open-loop steady state. Note the characteristically rapid
recovery of tracking, in the figure, between t = 0.16 s and t = 0.20 s. This is explained
by the increased positional variance at t = 0.16 s (P̃ (tk) in figure 10.3), leading to
a correspondingly increased Kalman gain (K(tk)). Once back in the steady state,
covariance decreases and Kalman gain also decreases so that the relative influence of
the predictive dynamical model becomes stronger again. To summarise, there is an
inverse relationship between spatial scale and temporal scale. In the special case of
constant-velocity dynamics, it is an inverse square law; the time-scale for smoothing
varies as the inverse square of the spatial extent of the search region. This inverse
relationship can be observed even within one contour, as figure 10.6 shows.

222 Chapter 10

t = 0.0 s t = 0.08 s

t = 0.16 s t = 0.20 s

Figure 10.5: Recovery of lock. As the hand begins to move, observations (white dots) suc-
ceed initially along all normals. As the accelerating hand leaves the dynamic contour lagging
behind, measurements are lost and the search region automatically expands, reflecting increas-
ing uncertainty. The expanded region now contains the edges of the hand and observations
recover.

Dynamic contour tracking 223

t = 0.0 s t = 0.04 s

t = 0.08 s t = 2.0 s

Figure 10.6: Temporal scale varies inversely with spatial scale The search region
(bounded by grey lines, arrowed in the first frame) is initialised with varying width. Where the
search region is wide, temporal scale is short, and the contour deflects more rapidly, as shown.
(Figure by courtesy of R. Curwen.)

224 Chapter 10

Resistance to clutter and obscuration

Background clutter can disrupt tracking by distracting the observation process. The
validation gate is helpful here, especially when the search region is narrow, because it
excludes as much of the clutter as possible, as in figure 10.7. Similarly, the validation
gate helps with loss of visibility, occurring either because the object passes partly out
of the image or from partial obscuration when, for instance, a tracked person passes

Figure 10.7: Resistance to clutter. A hand accelerates across a cluttered background.
Note that in the second frame the lower left corner of the contour is momentarily distracted
by the chair but the disturbance is successfully filtered out over time. (Figure by courtesy of
R. Curwen.)

Dynamic contour tracking 225

behind a lamp post. A good example is the tracking of fish viewed underwater, as in
figure 10.8. Of course if the obscuring object is known, it can actually be predicted that
measurements will fail over the corresponding image region. In that case attempts to
measure νi along normals, in the curve-fitting algorithm, are suspended over the region
that is predicted to be obscuring. Where the obscuring object has texture, which could
generate false measurements, predicting the obscuration allows those false features to
be suppressed.

Agile motion

Agility is a challenge because the continuity of motion is disrupted when sudden
changes of speed and direction occur. The validation gate helps here also by signaling
the loss of “lock” on the moving object and allowing the tracker to regress towards
the “open-loop initialisation” state in which greater positional error is tolerated, as
indicated by the widening of the search region. As recovery of lock proceeds, the
tracker progressively returns to the steady state associated with continuous motion
(figure 10.9). Figure 10.10 illustrates the robustness of agile tracking due the temporal
variations of Kalman gain and search-region width.

10.3 Choosing dynamical parameters

This section outlines some design principles for building trackers. How can the pa-
rameters of a synthesised AR process of the sort described in section 9.6, and the
observation parameters, be chosen to meet performance requirements? The AR pa-
rameters to specify are the frequency, damping rate and average displacement

fi s−1, βi s−1 and ρi pixels,

for each shape-subspace Si (of dimension Ni) used. For the observation process, the
parameter ρf must be specified, representing the average displacement error of image
measurements along a curve.

AR parameters

In many applications it is reasonable to maintain the critical damping condition fi = 0
so that there is a single, natural time-scale 1/βi to be chosen for each space Si. In other

226 Chapter 10

Figure 10.8: Expansion of the search region aids recovery from occlusion. A
tracked fish (top) passes behind another fish (left). The remaining successful observations,
together with the dynamical model in shape-space, compensate for lost measurements around
the head. Observations around the head resume as it re-emerges (right), one second later.

Dynamic contour tracking 227

Time t = 0.72 s Time t = 1.2 s Time t = 1.48 sTime t = 0.12 s

S
ca

le
 (

m
m

)

3.4

3

2.6

2.2

1.8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (s)

Figure 10.9: Loss and recovery of lock. When an object falls outside its validation gate,
owing to a sudden discontinuity of motion for example, the validation gate widens rapidly.
Interestingly, in the case illustrated of a constant-velocity model, it can be shown that gate
width grows in proportion to t3/2. The expanding gate will therefore catch up with any object
fleeing at a constant velocity. Once lock is recovered, the gate collapses rapidly. (Figure
courtesy of Rupert Curwen.)

applications, such as lip motion with its characteristic oscillations during speech, it is
more appropriate to set fi > 0 over shape-subspaces associated with lip deformation.

Once dynamical constants fi and βi are fixed, it remains to choose the average dis-
placements ρi. That fixes the open-loop search-region width, which is proportional to
the average displacement ρo, over the whole shape-space, under open-loop conditions:

ρo =
√∑

i

ρ2
i .

228 Chapter 10

Snapshot at 10.0 seconds Snapshot at 17.6 seconds

Varying gain and search region

Fixed gain and search region

Figure 10.10: Validation gate strengthens tracking performance for agile motion.
The “chirp” test sequence used here, of 20 seconds duration, involves oscillatory motions of
steadily increasing frequency. At around 10 seconds, accelerations are such that the tracked
curve lags the hand appreciably. Variation of gain and search-region width allows lost lock to
be recovered (left). However, if variation is inhibited by fixing covariance at P∞ (right), lock
is lost irretrievably. The time-course of the translational component of motion is shown in
figure 10.11.

Dynamic contour tracking 229

0

d

20
secs

0.2

−0.2

radians

Varying gain and search region

0

d

20
secs

0.2

−0.2

radians

Fixed gain and search region

Figure 10.11: Time-course of the translational component of motion for the test of fig-
ure 10.10. In the fixed gain case, the loss of lock after 12 seconds or so is clearly visible.

For example, for the hand-mouse it is appropriate to use just two shape-subspaces Ss

and Sd for translation and deformation respectively. Time constants of the order of a
second are appropriate in both subspaces but ρs might be set an order of magnitude
greater than ρd to reflect relatively large translational excursions across the field of
view. The open-loop steady-state distribution will then have a correspondingly large
average displacement from the template shape ρo ≈ ρs, dominated by its translational
component.

230 Chapter 10

Observation error

Given complete image observations, the search region collapses to the size and shape
determined by the prediction covariance P̃ (t∞) in the closed-loop steady state. The
associated average displacement ρc relative to the predicted shape, given by

ρ2
c = tr(P̃ (t∞)H),

is determined by the setting of ρf , together with the AR parameters above, and this
gives a guide to the size of the search region during steady-state tracking. It is difficult
to predict exactly what value ρc takes but in the case that ρf is small, including the
case ρf = 0,

ρc ≈
√

tr(B0BT
0 H), (10.8)

approximately independent of the precise value of ρf . For the partitioned harmonic
model this gives

ρc ≈
√∑

i

(bi0)2Ni. (10.9)

For example, in the case of simple harmonic motion over an unpartitioned shape-space
this becomes

ρc ≈ b0
√
NX

which can be related to ρc under the continuous-time assumption (9.27) to give

ρc

ρo

= 2
(
β
(
β2 + 2π2f2

))1/2
τ3/2. (10.10)

This is a useful design rule, giving the factor by which the search region contracts
between the open and closed-loop conditions. Note that this case of exact measurement
is extreme; as measurements become less precise, the ratio between search-region
dimensions in the open condition versus the closed one decreases.

Setting ρf to a small value also ensures accurate position estimates — average
positional error is bounded by ρf in general — but only if observations are successful.
If the background is clutter-free, tracking may succeed with a small ρf , and estimated
positions will be accurate. If there is significant background clutter, this must be
reflected by assuming a larger value of ρf , the average observation error. The effect
is to widen the search region, tolerating greater levels of clutter-induced observation
error, at the expense of less accurate position estimates.

Dynamic contour tracking 231

10.4 Case study

To conclude the chapter, typical, practical settings of dynamical parameters are given
for an application — the digital desk. First the case of tracking hand motion over a
clean desk is given, and this applies also to a cluttered desk in which the background
has been modelled and can be discounted. The aim is to achieve tracking of the agile
motions that occur in drawing and pointing gestures. Then the more difficult problem
of tracking over unmodelled clutter is addressed.

Three different settings of dynamical parameters, in a shape-space of Euclidean
similarities, are illustrated in figures 10.12 and 10.13: “slow,” “fast” and “tight.”

“Slow” dynamics are:

translation:
f = 0, β = 2 s−1 and ρo = 2000 pixels,

which is critically damped, slow given its 1
2 second time-constant, and very

loosely constrained spatially, to allow free rein over the 500 pixel extent of
the image.

rotation/scaling:
f = 0, β = 10 s−1 and ρo = 50 pixels,

which is tightly constrained, reflecting relatively strong prior knowledge
about the shape of the outline.

Observed features are edges detected with a Gaussian operator of width 2 pixels,
and with a contrast threshold of 8 grey-levels. Typically several features are
detected along each search line; the one with strongest contrast is chosen but
with a modest bias for zero innovation. Observation uncertainty is set to

ρf = 5 pixels,

a reasonable value to allow for measurement error, unmodelled shape variations,
and the possibility of reporting clutter as an object feature.

“Fast” More agile performance is allowed by increasing the damping rate for trans-
lation to

β = 5 s−1.

232 Chapter 10

This has the side-effect of increasing the uncertainty in predicted position at each
time-step and increasing the width of the search region, increasing the tendency
for distraction by spurious features internal to the hand. To compensate, account
is taken of contrast polarity, accepting only light to dark transitions on the
hand outline. To help further, the contrast threshold is increased to 25 grey-
levels, capitalising on the darkness of the background. Now tracking is fast and
accurate.

“Tight” A cluttered background (figure 10.13) that is entirely static can be modelled
and suppressed, and the problem is essentially no harder than before. Otherwise,
clutter seriously distracts the “fast” tracker, so that dynamical parameters need
to be tightened up for tracking to work at all. The clutter problem is exacerbated
further by the fact that contrast with the desk is no longer so pronounced; the
contrast threshold has to be increased to 12 grey-levels, and this increases the
effective density of clutter. What is more, polarity of contrast can no longer
be relied upon, since some of the desktop is darker than the hand and some
lighter. An alternative that works well is to use colour (chapter 5), relying on
the distinctive pink hue of skin to discriminate from the background. Sensitivity
to clutter needs to be reduced further. This is done by reducing freedom to
rotate/scale, by setting

ρo = 25 pixels,

half its previous value. The search region along each line is artificially restricted
to 60% of its normal value by reducing the length factor κ in the validation test
of figure 8.6 from the usual κ = 2 to κ = 1.2. Now slower hand motions can be
tracked satisfactorily over clutter.

To summarise, good performance can be obtained with manually set dynamics, for
tracking with a clean background, or a background that is cluttered but static so that
it can be discounted. If clutter persists, performance is more limited. In that case,
the next chapter shows how to set more acutely tuned dynamical parameters, using
examples of motion tracked against a clean background for training. This helps some-
what to deal with the cluttered background by strengthening prior knowledge of shape
and motion. More radically, the methods of chapter 12 offer powerful, non-Gaussian
methods to handle clutter which are very effective but more costly computationally.

Dynamic contour tracking 233

Figure 10.12: Case study: setting up for the digital desk. “Slow” tuning (top) is
stable, works well for gentle motions, but is derailed by faster ones. “Fast” tuning (bottom)
is not quite so stable but is capable of following rapid motions — note the motion blur in the
still image.

Bibliographic notes

Established uses of Kalman filtering in machine vision include (Bolles et al., 1987;
Broida and Chellappa, 1986; Bolles et al., 1987; Dickmanns and Graefe, 1988b;
Matthies et al., 1989; Gennery, 1992). Terzopoulos and Szeliski (1992) recognised
the connection between snakes with dynamics and the formalism of the Kalman filter.
Low-dimensional curve parameterisations such as the B-spline make it practicable to
implement a snake as a Kalman filter (Blake et al., 1993). The idea of using a spatially
extended validation gate in a contour tracker was proposed and developed in (Curwen
and Blake, 1992; Blake et al., 1993).

234 Chapter 10

Figure 10.13: Case study: heavy background clutter. The “fast” tracker of figure 10.12
is too easily distracted by clutter (left) to be used successfully against an unmodelled background
of text and pictures. “Tight” parameter settings (right) secure adequate stability, but can only
track slower motions.

In its standard form, the Kalman filter is formulated in terms of Kalman gain
(Gelb, 1974), which is derived from the information weighted mean using the “matrix
inversion lemma” (Bar-Shalom and Fortmann, 1988). The form of Kalman filter used
in this chapter, that avoids singularity problems when measurements are degenerate or
fail altogether, was taken from (Harris, 1992b) in which Kalman filtering was applied
to the non-linear parameters for position/orientation of a single, polyhedral rigid body.
It achieved impressive results in terms of efficiency and agility of tracked motion. Lowe
(1992) addressed the related problem of tracking an articulated pair of rigid bodies,
in terms of its extended, non-linear parameterisation.

Chapter 11

Learning motion

In the previous chapter, dynamic contour tracking was based on prediction using
dynamical models of the kind set out in chapter 9. The parameters of the models
were fixed by hand to represent plausible motions such as constant velocity or critically
damped oscillation. Experimentation allows these parameters to be refined by hand for
improved tracking but this is a difficult and unsystematic business, especially in high-
dimensional shape-spaces which may have complex couplings between the dimensions.
What is far more attractive is to learn dynamical models on the basis of training sets.
Initially, a hand-built model is used in a tracker to follow a training sequence which
must be not too hard to track. This can be achieved by allowing only motions which
are not too fast, and limiting background clutter or eliminating it using background
subtraction (chapter 5). Once a new dynamical model has been learned, it can be
used to build a more competent tracker, one that is specifically tuned to the sort of
motions it is expected to encounter. That can be used either to track the original
training sequence more accurately, or to track a new and more demanding training
sequence, involving greater agility of motion. The cycle of learning and tracking is
described in figure 11.1. Typically two or three cycles suffice to learn an effective
dynamical model.

In mathematical terms, the problem is to estimate the coefficients A1, A2, X and
B0 which best model the motion in a training sequence of shapes X1, . . . ,XM , where
now Xk ≡ X(tk), gathered at the image sampling frequency. A general algorithm
to do this is described below. Note that the learning algorithm as presented treats
estimated shape-vectors Xk in a training sequence as if they were exact observations
of the physical process, rather than noisy estimates obtained from a visual tracker. In

236 Chapter 11

Shape-space

Hand-built
dynamics

Training sequence
slow, clutter-free

Fast test
sequences

Faster training
sequence

Infer dynamical
model

Iterate

Figure 11.1: Iterative learning of dynamics. The model acquired in one cycle of learning
is installed in a tracker to interpret the training sequence for the next cycle. The process is
initialised with a hand-built tracker of the sort described in chapter 9 and 10.

practice this often works quite well but can give surprising results with highly periodic
training motions, and this is discussed later.

11.1 Learning one-dimensional dynamics

First a learning algorithm is described for the simple case of a particle in one dimension
— no curve or splines are involved here for the sake of tutorial simplicity, just one
number describing the position of the particle along a rail. The problem is to estimate
a discrete-time, second order model for particle position xk so the state-space is defined
in terms of Xk ≡ xk. Then the dynamical coefficients A1, A2 and B0 become scalars
denoted a1, a2 and b0. For simplicity, assume that the mean x = 0 is known, so
that the quantity xk − a2xk−2 − a1xk−1 is an independent, zero-mean, scalar, normal
variable b0wk, for each k, with unknown variance b20. The algorithm is summarised in
figure 11.2.

The problem is expressed in terms of a “log-likelihood” function, defined up to an
additive constant by

L(x1, . . . , xk|a1, a2, b0) ≡ log p(x1, . . . , xk|a1, a2, b0) + const

Learning motion 237

where, since the wk are independent,

p(x1, . . . , xk|a1, a2, b0) ∝
∏
k

pb0wk
(xk − a2xk−2 − a1xk−1)

so, using the fact that the pb0wk
(·) are standard normal distributions,

L(x1, . . . , xk|a1, a2, b0) = − 1
2b20

M∑
k=3

(xk − a2xk−2 − a1xk−1)
2 − (M−2) log b0, (11.1)

up to an additive constant. Maximum Likelihood Estimates (MLE) for the coefficients
a1, a2 and b0 are obtained by maximising the function L, and this is straightforward
because L is quadratic. First, the maximisation over b0 factors out, leaving estimates
â1 and â2 to be determined by minimising

M∑
k=3

(xk − a2xk−2 − a1xk−1)
2

whose derivatives with respect to a1 and a2 are set to 0 to give â1, â2 as the solution
of the simultaneous equations in step 2 of the algorithm in figure 11.2. Now a1 and
a2 can be regarded as constants in L, fixed at their estimated values, and L can be
maximised with respect to b0 to give b̂0:

b̂0
2

=
1

M − 2

M∑
k=3

(xk − â2xk−2 − â1xk−1)
2 (11.2)

which, it can be shown, can be computed directly in terms of auto-correlation coeffi-
cients, as in step 3 of the algorithm.

Exercising the learning algorithm

Talking lips

Learned univariate motion is illustrated by the example used earlier, in chapter 9, of
the opening/shutting motion of a pair of talking lips. Once the learning is done, the
learned model (â2, â1, b̂0) can be displayed in spectral form, as was done in chapter 9
for models fit by hand. Figure 11.3 shows that the spectrum of the learned model

238 Chapter 11

Dynamical learning problem

Given a training set {x1, . . . , xM} of shapes from an image sequence, learn the
parameters a1, a2, and b0 for a second-order AR process that describes the
dynamics of the moving shape.

Algorithm

1. First, auto-correlation coefficients rij for i, j = 0, 1, 2 are computed:

rij =
M∑

k=3

xk−ixk−j for i, j = 0, 1, 2

2. Estimated parameters â1 and â2 are obtained by solving the simultane-
ous equations

r02 − â2r22 − â1r12 = 0
r01 − â2r21 − â1r11 = 0,

3. The covariance coefficient b0 is estimated as

b̂0
2

=
1

m− 2
(r00 − â2r20 − â1r10)

Figure 11.2: Algorithm for learning one-dimensional dynamics.

fits fairly well, having a resonant frequency of around 1 Hz, which is a little higher
than the peak of 0.8 Hz in the spectrum of the data. The hand-fitted spectrum in
figure 9.11 on page 201 was constrained to have its resonant peak coinciding with that
of the data. However, as a trade-off for the shift in its resonant peak, the learned
model fits the high frequency spectrum rather better. The learned model should also
capture some of the phase coherence of the data, something that was not taken into

Learning motion 239

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

Figure 11.3: Power spectrum of learned lip motion The power spectrum of the learned
model (solid) fits that of the lip-motion training data (dashed) quite well.

account in the hand-fitted model. In fact, the learned deterministic parameters are

f = 0.95 Hz, β = 2.9 s−1,

giving the coherence time-constant 1/β = 0.35 s for the process, short enough to
indicate that successive cycles in the signal are largely uncorrelated.

As in chapter 9, the learned model can be simulated and compared with the data.
The result (figure 11.4) appears, to the naked eye, to be as plausible a replica of the
data as the simulation of the hand-fitted model was (figure 9.12 on page 202).

Beating heart

It is instructive to see how the learning algorithm deals with training data that is
highly periodic and coherent. Of course, perfectly coherent, periodic data of frequency
f0 can be represented by a second-order ARP with f = f0, β = 0 and with b0 = 0
— zero driving noise, so that the process is entirely deterministic. The behaviour of
such a process is solely determined by initial conditions: once launched, the process
follows an entirely predictable trajectory. Such a model, if used as a predictor for
tracking, would have the strange effect that the gain of the Kalman filter would fall

240 Chapter 11

seconds

10 20 30 40 50

pixels

0

−100

100

Figure 11.4: Simulation of learned lip motion A sample path for the learned process is
shown here and appears plausibly comparable with the original signal in figure 9.8 on page 198.

to 0 in the steady state, because the strength of the predictions would overwhelm the
observations. Consequently observations would be ignored.

What is more realistic is almost periodic training data such as that from the
beating heart in figure 9.7 on page 198. It appears to be a regular, periodic process
with some additive noise, attributable perhaps to noise in observations. As noted
earlier, the learning algorithm neglects to allow for observation noise and it is with
highly periodic data that the discrepancy introduced by this erroneous assumption is
most evident. Figure 11.5 shows a simulation of a learned dynamical model, exhibiting
the right kind of motion over short time-scales (of the order of half a period), but over
longer time-scales the phase coherence of the original signal is lost. The deterministic
parameters of the learned model are

f = 1.12 Hz, β = 3.5 s−1,

representing an oscillation of period 1/f = 0.90 s which matches closely the average
period 0.87 s of the data (based on zero crossings). However, the damping represented
by the factor β is strong, representing a decay in amplitude by a factor of 5 over
one half period. This corresponds to the loss of coherence apparent in the simulation
over times greater than one half period or so. In fact the learned model, despite
its imperfection, is still useful for tracking because it works well as a predictor over
shorter time-scales, and visual observations carry the signal over longer time-scales.
Moreover, the imperfection can be remedied by recourse to a more elaborate learning

Learning motion 241

2 4 60
seconds

Figure 11.5: Simulating the learned motion of a beating heart. A dynamical model
learned from the training data of figure 9.7 on page 198 is simulated here. Limitations of the
learning algorithm (see text) means that although the periodic nature of the training data is
represented (each half-cycle is roughly the right size) its phase coherence is lost.

procedure using “Expectation–maximisation” or EM (see bibliographic notes) which
takes explicit account of observation noise.

Learning accuracy and training-sequence duration

Intuitively, a longer training sequence should give more reliable learned dynamical parameters.
This is indeed the case, and the nature of the influence of the number of frames M on the
accuracy of learned parameters a1, a2 and b0 can be made precise. In fact what is most
relevant is to quantify the effect of training-set duration T = (M − 2)τ on the parameters
β, f and ρ of the underlying continuous process. In this way, a characterisation of learning
performance is obtained that is independent of sampling rate τ . The characterisation is valid
under the assumptions that βτ � 1 and that the process is observed in its steady state. A
derivation is given in appendix B.

The principal result is that the proportional error in the parameters β and ρ is of order
1/
√
βT , and that the proportional error in f relative to β is also of order 1/

√
βT . As expected,

accuracy varies as the square root of training-set size, the usual statistical phenomenon of error
averaging. What may be more surprising at first sight is that the error depends not on M
directly, but on βT which can be thought of as the number of independent chunks in the
training signal. This is because 1/β is a “coherence time,” the duration over which parts
of the signal are correlated. In the lip-motion example above, for instance, the coherence
duration is 1/β = 0.35 s and the total duration of the training set (figure 9.8 on page 198) is

242 Chapter 11

60 seconds. In that case βT = 171 so that the proportional error in the continuous dynamical
parameters should be

100

√
60

0.35
% ≈ 7.6%.

For the beating heart the coherence duration is 0.29 s but the training sequence lasts only 8
seconds, giving a bound on error in dynamical parameters of

100

√
8.0
0.29

% ≈ 19%.

11.2 Learning AR process dynamics in shape-space

The general multi-variate learning algorithm follows broadly the line of the univariate
one, but the separability of the estimation of deterministic and stochastic parameters,
although it still holds, is no longer so obvious. Furthermore, it will no longer be
assumed that the mean X is known, so that it also must be learned. The log-likelihood
function for the multi-variate normal distribution is then, up to a constant:

L(X1, . . .XM |A1, A2, C,X) = (11.3)

−1
2

M∑
k=3

∣∣B−1
0

(
X′

k −A2X′
k−2 −A1X′

k−1

)∣∣2 − (M − 2) log detB0

where
X′

k = Xk − X, (11.4)

and
C = B0B

T
0 . (11.5)

The problem is to estimate A1, A2, X and C by maximising the log-likelihood L. This
is a non-linear problem because, unlike the simple case considered earlier in which the
mean was fixed at 0, the mean X now has to be estimated. This means that the
likelihood is quartic (rather than quadratic) in the unknowns, owing to the product
terms A2X and A1X that appear inside the | · |2 term in (11.3). The non-linearity
can be removed by using the alternative form for the AR process from chapter 9
(equation (9.6) on page 193) in which

D = (I −A2 −A1)X

Learning motion 243

so that the likelihood becomes

L(X1 . . .XM |A1, A2, C,D) = (11.6)

−1
2

M∑
k=3

∣∣B−1
0 (Xk −A2Xk−2 −A1Xk−1 − D)

∣∣2 − (M − 2) log detB0

which is then quadratic in A2, A1 and D.
Minimising the log-likelihood L leads to the learning algorithm of figure 11.6 which

estimates the dynamical parameters A2, A1, D and C. It is clearly a generalisation
of the univariate algorithm (figure 11.2). A derivation (optional) is given later.

Example: learning the dynamics of writing

As an illustration of multi-variable learning, the written name of figure 9.2 on page 187
is used as training data, to learn a dynamical model for finger-writing. A good test
for the plausibility of a learned model is to simulate it randomly, as was done in
chapter 9 for synthesised dynamical models. A random simulation of the model for
finger-writing is demonstrated in figure 11.7. The resulting scribble has characteristics
consistent with the training set in terms of direction and the size, shape and frequency
of excursions. Note that the dynamical model was actually learned in the affine space
for the finger outline and that the simulation therefore contains (minor) changes of
finger shape. The figure shows just the translational components, which account for
most of the motion in this case. (The learned model specifies dynamics in the steady
state, but not initial conditions; the speed at which the hand drifts across the page is
left indeterminate by the model. In this demonstration, the handwriting simulation
was initialised with zero velocity, and then superimposed on a constant velocity drift
roughly matching that in the training set.)

Modular learning: aggregation of training sets

It is often convenient to collect several training sets and to construct a dynamical
model which explains the motion in all of the training sets taken jointly. For example,
it might be desired to broaden the finger-writing model to cover writing in various
directions, not just the single direction in the training set illustrated. Alternatively,
when learning lip dynamics (see below) it might be convenient to construct separate
training sets for rigid motion of the head, and deformation during speech. In either

244 Chapter 11

Dynamical learning problem

Given a training set {X1, . . . ,XM} of shapes from an image sequence, learn
the parameters A1, A2, B0 and X for a second-order AR process that describes
the dynamics of the moving shape.

Algorithm

1. First, sums Ri, i = 0, 1, 2 and auto-correlation coefficients Rij and
R′

ij , i, j = 0, 1, 2 are computed:

Ri =
M∑

k=3

Xk−i, Rij =
M∑

k=3

Xk−iXT
k−j , R′

ij = Rij − 1
M − 2

RiR
T
j .

2. Estimated parameters Â1, Â2 and D̂ are given by

Â2 =
(
R′

02 −R′
01R

′−1
11 R

′
12

)(
R′

22 −R′
21R

′−1
11 R

′
12

)−1

Â1 =
(
R′

01 − Â2R
′
21

)
R′−1

11

D̂ =
1

M − 2

(
R0 − Â2R2 − Â1R1

)
.

3. If required for the standard form of the AR process, the mean X is
estimated from

X̂ = (I − Â2 − Â1)−1D̂.

4. The covariance coefficient B0 is estimated as a matrix square root B̂0 =√
Ĉ where

Ĉ =
1

M − 2

(
R00 − Â2R20 − Â1R10 − D̂RT

0

)
.

Figure 11.6: Algorithm for learning multi-variate dynamics.

Learning motion 245

0 100 200−100−200

100

0

−100

0 100 200−100−200

100

0

−100

Figure 11.7: Scribbling: simulating a learned model for finger-writing. A training
set (left) consisting of six handwritten letters is used to learn a dynamical model for finger
motion. A random simulation from the model (right) exhibits reasonable gross characteristics.

case it is incorrect simply to concatenate the training sets and treat them as one long
training set because the abrupt transition at the join of the sets would be treated
as genuine data, whereas in fact it is spurious. The solution is to compute autocor-
relations individually for the training sets and to combine them in a linear fashion.
Details of the combination method are omitted here, but see the bibliographic notes.

Derivation of the learning algorithm of figure 11.6.

Maximising likelihood L (11.6) first with respect to A1, A2 and D, it will be shown that
separability holds — the resulting estimates Â2, Â1 and D are independent of the value of C.
To show this, a lemma is needed.

Lemma: Given a scalar function f(Y) of a matrix Y of the form

f = tr(KZ) with Z(Y) = Y SY T − Y S′T − S′Y T ,

in which K, S and S′ are constant matrix coefficients and S and K are non-singular and
symmetric, the value Y = Ŷ at which ∂f/∂Y = 0 is independent of K.
Proof: Z(Y) can be rewritten

Z(Y) = (Y − Ŷ)S(Y − Ŷ)T + const where Ŷ = S′S−1

246 Chapter 11

and then
dZ = dY S(Y − Ŷ)T + (Y − Ŷ)S dY T

and, since K is symmetric,
df = 2 tr

(
K dY S(Y − Ŷ)T

)
so that df = 0 for all dY iff Y = Ŷ , independent of the value of K.
�

Now we can proceed with maximising L, which is equivalent to minimising

f(A1, A2,D) =
M∑

k=3

∣∣B−1
0 (Xk −A2Xk−2 −A1Xk−1 − D)

∣∣2 (11.7)

with respect to A1 and A2. This function can be expressed as

f(A1, A2,D) = tr(ZC−1)

where

Z =
M∑

k=3

(Xk −A2Xk−2 −A1Xk−1 − D) (Xk −A2Xk−2 −A1Xk−1 − D)T

and C = B0B
T
0 . Invoking the lemma three times, with Y as each of A0, A1 and D in turn

(and with the other two treated as constant), indicates that we can effectively set B0 = I, for
the purposes of determining Â1, Â2 and D by finding the minimum of

tr(Z) =
M∑

k=3

|Xk −A2Xk−2 −A1Xk−1 − D|2 .

Setting to 0 the derivatives of tr(Z) with respect to A0, A1 and D respectively shows that the
minimum must satisfy the simultaneous equations

R02 − Â2R22 − Â1R12 − D̂R2 = 0 (11.8)

R01 − Â2R21 − Â1R11 − D̂R1 = 0
R0 − Â2R2 − Â1R1 − D̂(M − 2) = 0,

where Ri and Rij are defined as in step 1 of the algorithm. Note that a minimum of f must
exist because it is quadratic and bounded below by 0.

Lastly, the simultaneous equations can be simplified by subtracting multiples of the third
from the first and second to give

R′
02 − Â2R

′
22 − Â1R

′
12 = 0

R′
01 − Â2R

′
21 − Â1R

′
11 = 0

R0 − Â2R2 − Â1R1 − D̂(M − 2) = 0

Learning motion 247

where R′
ij is defined as in step 1 of the algorithm. Now the first two equations can be solved

directly for Â1 and Â2 which can then be substituted into the last one to give D̂, all as in
step 2 of the algorithm.

It remains to estimate B0 which is obtained as the square root of C = B0B
T
0 . Rewrit-

ing (11.6) as

L = −1
2
tr(ZC−1) +

1
2
(m− 2) log detC−1,

fixing A2 = Â2, A1 = Â1 and D = D̂, and extremising with respect to C−1 (using the identity
∂(detM)/∂M ≡ (detM)M−T) gives

Ĉ =
1

M − 2
Z(Â2, Â1, D̂), (11.9)

which simplifies, using the equations of step 2 of the algorithm, to give the formula for Ĉ in
step 4.

11.3 Dynamical modes

One of the advantages of the “state-space” form for the second-order AR process is that
the characteristics of the underlying continuous process can readily be identified. The
continuous-time interpretation consists of a number of “modes.” Some are damped
oscillations with the impulse response exp−βt cos 2πft that is characteristic of second-
order motion. Others are simple decays, with impulse responses of the form exp−βt,
associated with first-order motion. Each mode exhibits a particular pattern of motion.
For example, for a finger tracing out letters (figure 9.2 on page 187) one would expect
a slow exponential associated with the gradual, lateral drift, a faster oscillatory mode
associated with letter strokes, and various other “minor” modes with relatively rapid
decay. Modes characterise the deterministic component of dynamics, indicative of the
behaviour of a tracker when the observation process suddenly fails and tracking is left
to rely on prediction. That leaves the stochastic component which is relevant under
normal tracking conditions, and in particular when observations suddenly resume. The
Gaussian envelope following an extended period of prediction is given by the steady-
state covariance P∞, which can be computed from A and B. In fact P∞ represents
the static prior for the dynamical model and as such is similar to the covariance P for
the training set treated as a static set of shapes, as analysed by PCA in chapter 8.

248 Chapter 11

Modal analysis

Modes of the underlying dynamical process are characterised as follows. First, eigen-
values λm and eigenvectors XA

m for m = 1, . . . , 2NX of the matrix A are computed.
Any real, positive eigenvalue with λm < 1 corresponds to a exponentially decaying
mode, as for first-order processes, of the form exp−βmt where

βm =
1
τ

log
1
λm

. (11.10)

Note that if λm > 1 the mode is unstable because βm < 0. The mode’s pattern of
motion in shape-space is given by XA

m which is the upper half of the eigenvector

XA
m =

 XA

m

YA
m

 . (11.11)

(Note that the upper and lower halves are related by YA
m = λmXA

m.) Suppose, for
an object in Euclidean similarity shape-space, and assuming a sampling interval τ =
1/50 s, that λ1 = 0.99 and XA

m = (1, 1, 0, 0, 0.99, 0.99, 0, 0)T . This implies a decaying
exponential impulse response with

β1 = 50 log(1/0.99) = 0.50 s−1

so that the characteristic decay time of the mode is 1/0.50 = 2.0 s. The pattern of
displacement for the mode is given by XA

1 = (1, 1, 0, 0)T representing translation up
and to the right.

Otherwise, eigenvalues can be negative or complex and represent harmonic motion
of the form exp−βmt cos 2πfmt where

βm =
1
τ

log
1

|λm| (11.12)

fm =
1

2πτ
arg λm (11.13)

(where arg denotes the canonical argument of a complex number). Again, the mode-
shape is conveyed by the upper half XA

m of the corresponding eigenvector. In general,
the elements of XA

m are complex, their moduli indicating the amplitude of oscillation
in each shape-space component while their complex arguments indicate their relative

Learning motion 249

phases of oscillation. Note that complex eigenvalues must come in conjugate pairs, so
each oscillatory mode is expressed in terms of two of the eigenvalues out of the 2NX

eigenvalues of the matrix A. This means that A can have 2NX exponential modes, or
just NX oscillatory ones, or some combination of the two kinds.

As an example of an oscillatory mode, considering again the object in Euclidean
similarity shape-space, λ2 = 0.95 + 0.24i and XA

2 = (−1, 1, 0, 0)T imply a damped
oscillatory impulse response for which

β2 = 50 log
1√

0.952 + 0.242
= 1.02 s−1

f2 =
50
2π

arctan(
0.24
0.95

) = 1.97 Hz

representing an oscillatory period of 1/1.97 = 0.51 s. The decay time-constant is
1/1.02 = 0.98 s, indicating that the oscillation is coherent over approximately two
periods; over intervals longer than this, the phase of oscillation would be expected to
drift. The corresponding pattern of motion given by XA is translational, up and to
the left. If instead XA

2 = (1, i, 0, 0), the horizontal and vertical components are 90o out
of phase, indicating circular motion. Note that there must be a conjugate eigenvalue,
say λ3 = λ∗2, representing the same frequency (up to a change of sign) and damping
constant, and with XA

3 = (XA
2)∗.

Example: analysis of finger-writing

Earlier, in figure 11.7, the learned dynamical model for finger-writing was displayed
by a simulation which depicted a plausible scribble. Modal analysis as above reveals
that all the modes are stable (βm < 0) and that the two slowest modes have time
constants

1
βm

= 75 s, 1.15 s

respectively. The first of these has frequency fm = 0 so that, given the long decay
time, this is effectively a constant-velocity mode. It has an (upper) eigenvector

XA = (1.0,−1.18,−0.10, 0.05,−0.05,−0.05)T

in affine space which represents predominantly translational motion along the upper-
left to lower-right diagonal, following the gross flow of finger-writing in the training set.
(Note that affine space has been set up as described in chapter 4 so that components

250 Chapter 11

have comparable units, and the neglect of the non-translational components for this
mode is therefore valid.) The next mode is oscillatory, with frequency 1.01 Hz. This
is consistent with the formation of letters, involving one or two strokes each, so that
with around 12 strokes in “andrew,” written over a duration of 10 seconds, 1 Hz is
a very plausible frequency. The decay time of 1.15 s is almost exactly one period of
oscillation, suggesting that the stroke sequence is not coherent — successive strokes
are sufficiently independent that their phases do not match. The eigenvector for the
mode is

XA = (1, 0.38 − 0.28i,−0.74 + 0.13i, 0.47 − 0.28i,−0.51 + 0.53i,−0.43 + 0.23i)T

which contains translation and also other affine components. The translational part,
being complex, represents an elliptical motion at the 1 Hz frequency.

11.4 Performance of trained trackers

Preceding sections have shown, using modal analysis, that trained models capture the
oscillatory behaviour of typical motions. This section demonstrates that, as expected,
tracking performance is enhanced by replacing default dynamics in the predictor with
specific dynamics learned from a training set.

Tuning for lip gestures

First an example is given of tracking the motion of talking lips. Lips may be tracked
either in a frontal or in a side-on view. The side-on view, whilst arguably less in-
formative in speech analysis applications, has the advantage that the mouth outline
is silhouetted and therefore offers high contrast. Deformations of the lips for two
sounds are shown in figure 11.8. Individual dynamical models are learned for each
of the sounds “Ooh” and “Pah.” For example the “Pah” model is learned from a
training sequence in which the “Pah” motion is repeated several times. The resulting
selectivity is shown in figure 11.9. It is clear from these results that the tuning effect
for individual sounds is strong. Actually to render assistance for speech analysis, it
is necessary to learn the repertoire of lip motions that occurs in typical connected
speech, and this is addressed next.

Learning motion 251

Figure 11.8: Single-syllable training. Deformations of the mouth are shown corresponding
to the sounds a) “Pah” and b) “Ooh.”

Connected speech

Two-stage training is used to learn a dynamical model for connected speech. In the
bootstrap stage, the default tracker follows a slow-speech training sequence which is
then used, via the learning algorithm, to generate a trained tracker. This “boot-
strapped” tracker is capable of following speech of medium speed and is used to follow
a medium-speed training sequence, from which dynamics for a full-speed tracker are
obtained. The trained tracker is then compared with the default tracker, using a test
sequence entirely different from the training sequences. Two deformation components
of lip motion are extracted, at 50 Hz, as “lip-reading” signals. The more significant
one, in the sense that it accounts for the greater part of the lip motion, corresponds
approximately to the degree to which the lips are parted. This component is plotted
for the default tracker and the partly and fully trained ones in figure 11.10. It is clear
from the figure that the trained filter is considerably more agile. In a demonstration
in which the signal was used to animate a head, the untrained filter was clearly able
to follow only very slow speech, whereas the trained filter successfully follows speech
delivered at normal speed.

252 Chapter 11

-50

0

50

100

4 8

seconds

Test sequence "Pah" - Filter "Pah"

-50

0

50

100

4 8

seconds

Test sequence "Pah" - Filter "Ooh"

Figure 11.9: Filter selectivity for lip gestures. The sound “pah” is repeated and tracked
by filters trained on the sounds “pah” (left) and “ooh” (right) respectively. Plotted signals re-
fer to the Principal Component of motion in the “Pah” training sequence, which corresponds
roughly to the degree to which the mouth is open. Corresponding tracked contours, approx-
imately 4.1 s after the start of the signal, are shown in the snapshots (top left and right).
Clearly the filter trained on “Pah” relays the test sequence faithfully, whereas the filter trained
on “Ooh” suppresses the test signal almost entirely.

Bibliographic notes

The dynamical learning algorithm presented here is based on the “Maximum Likeli-
hood” principle (Rao, 1973; Kendall and Stuart, 1979). Maximum likelihood algo-
rithms for estimating dynamics are based on the “Yule-Walker” equations for esti-
mation of the parameters of auto-regressive models (Gelb, 1974; Goodwin and Sin,
1984; Ljung, 1987). A multi-dimensional version of the algorithm which estimates

Learning motion 253

-100

0

100

seconds4 8

Un-trained lip tracker

-100

0

100

seconds4 8

Bootstrapped lip tracker

-100

0

100

seconds
4 8

Fully trained lip tracker

Figure 11.10: Trained lip tracker. Training a tracker for side-on viewing of speaking
lips greatly enhances tracking performance. The graphs show plots from the untrained, default
filter, the bootstrapped filter after one training cycle and lastly the filter after a second training
cycle. One component of deformation of the lips is shown, corresponding to the degree to which
the mouth is open — the space of deformations spanned by the first two templates in figure 4.12
on page 91. Note the considerable loss of detail in the default filter and the overshoots in both
default and bootstrapped filters, compared with the fully trained filter. (The sentence spoken
here was “In these cases one would like to reduce the dependence of a sensory information
processing algorithm on these constraints if possible.”)

254 Chapter 11

not only deterministic parameters A but also the stochastic parameters B is given
in (Blake and Isard, 1994; Blake et al., 1995). The particular compact form of the
estimator for C in the learning algorithm here is due to Wildenberg (Wildenberg,
1997). A related algorithm for learning deterministic parameters A only is described
by Baumberg and Hogg (Baumberg and Hogg, 1995b), who also address the issue
of orthogonality constraints on A. The extension of the algorithm to estimate the
shape-mean X originated from (Reynard et al., 1996).

An extension of the basic algorithm for classes of objects, dealing independently
with motion and with variability of mean shape/position over the class, is described
in (Reynard et al., 1996). The same algorithm is also used for modular learning — the
aggregation of training sets for which a joint dynamical model is to be constructed.

The result that the steady-state covariance P∞ in a learned dynamic model ap-
proximates to the sample covariance P for the training set treated as a static set of
shapes is described by (Wildenberg, 1997).

The learning algorithm treats the training set as exact whereas in fact it is inferred
from noisy observations. Dynamics can be learned directly from the observations using
Expectation–maximisation (EM) (Dempster et al., 1977). Learning dynamics by EM
is suggested by Ljung (Ljung, 1987) and the detailed algorithm is given in (North and
Blake, 1998). It is related to the Baum-Welch algorithm used to learn speech models
(Huang et al., 1990; Rabiner and Bing-Hwang, 1993) but with additional complexity
because the state-space is continuous rather than discrete.

A number of alternative approaches have been proposed for learning dynamics,
with a view to gesture recognition rather than tracking — see for instance (Mardia
et al., 1993; Campbell and Bobick, 1995; Bobick and Wilson, 1995).

Chapter 12

Non-Gaussian models and
random sampling algorithms

This chapter describes in detail a powerful algorithm for contour tracking that uses
random sampling — the Condensation algorithm. It applies to cases where there is
substantial clutter in the background. Clutter presents a particular challenge because
elements in the background may mimic parts of foreground features. In the most severe
case of camouflage, the background may consist of objects similar to the foreground
object, for instance when a person is moving past a crowd. The probability density
for X at time tk is multi-modal and therefore not even approximately Gaussian. The
Kalman filter is not suited to this task, being based on pure Gaussian distributions.

The Kalman filter as a recursive linear estimator is a special case, applying only
to Gaussian densities, of a more general probability density propagation process. In
continuous time the process would be described in terms of diffusion, governed by
a “Fokker-Planck” equation, in which the density for X (t) drifts and spreads under
the action of a stochastic model of its dynamics. In the simple Gaussian case, the
diffusion is purely linear and the density function evolves as a Gaussian pulse that
translates, spreads and is reinforced. It remains Gaussian throughout, as in figure 10.1
on page 214, and its evolution is described analytically and exactly by the Kalman
filter. The random component of the dynamical model leads to spreading — increasing
uncertainty — while the deterministic component causes the density function to drift
bodily. The effect of an external observation Z(t) is to superimpose a reactive effect
on the diffusion in which the density tends to peak in the vicinity of observations. In

256 Chapter 12

p(x)

x

p(x)

x

p(x)

x

p(x)

x

deterministic drift

stochastic diffusion

reactive effect of measurements

z2z1

Figure 12.1: Probability density propagation. In general, the state density describing an
object is multi-modal (compare with the Gaussian model used by the Kalman filter in figure 10.1
on page 214). Propagation occurs in three phases: drift due to the deterministic component
of object dynamics; diffusion due to the random component; reactive reinforcement due to
observations.

clutter, there are typically several competing observations and these tend to encourage
a non-Gaussian state density (figure 12.1).

The Condensation algorithm (Conditional density propagation) is designed
to address this more general situation. It has the striking property that, general-
ity notwithstanding, it is a considerably simpler algorithm than the Kalman filter.
Moreover, despite its use of random sampling which is often thought to be compu-
tationally inefficient, the Condensation algorithm runs in near real time. This is
because tracking over time maintains relatively tight distributions for shape at succes-
sive time-steps, and particularly so given the availability of accurate, learned models
of shape and motion.

Non-Gaussian models and random sampling algorithms 257

12.1 Factored sampling

This section describes the factored sampling algorithm, which can be used to search
single still images for an object when observations are non-Gaussian. Then, in the fol-
lowing section, the Condensation algorithm is presented as an extension of factored
sampling which handles temporal image sequences.

Chapter 8 introduced the notion of the posterior distribution for an object, and
the task of curve-fitting was cast as the problem of maximising p(X|Z) ((8.19) on
page 171), where Z denoted the “aggregated observation” from least-squares fitting
in chapter 6. By restricting the prior and observation densities to be Gaussian, the
posterior was also constrained to be Gaussian, described completely by its mean and
covariance matrix which were evaluated in closed form using the recursive fitting
algorithm on pages 127 and 174.

In clutter, Z has to incorporate all of the information in an image. It is no longer
valid to assume that the features consist of one measurement on each normal of a
single curve, and details of the form of Z to be used will be given in section 12.3. In
the general case the prior p(X) and the observation density p(Z|X) are non-Gaussian,
and there is no closed-form algorithm to evaluate the posterior. Factored sampling
provides a way of approximating the posterior, using a random number generator
to sample from a prior for curve-shape. Random sampling methods were used in
chapter 8 as a way of visualising distributions; here they form an integral part of the
algorithm.

The factored sampling algorithm generates a random variate X̃ from a distribution
p̃(X̃) that approximates the posterior p(X|Z). First a sample set {s(1), . . . , s(N)} is
generated1 from the prior density p(X) and then an index n ∈ {1, . . . , N} is chosen
with probability π(n), where

π(n) =
pz(s(n))∑N
j=1 pz(s(j))

and

pz(s) = p(Z|X = s),

1This can be done for example using (8.8) on page 164. Note that the presence of clutter causes
p(Z|X) to be non-Gaussian, but the prior p(X) may still happily be Gaussian, and that is what is
assumed in later examples.

258 Chapter 12

Probability

weighted
sample

posterior
density

State X

Figure 12.2: Factored sampling. A set of points s(n), the centres of the blobs in the
figure, is sampled randomly from a prior density p(X). Each sample is assigned a weight π(n)

(depicted by blob area) in proportion to the value of the observation density p(Z|X = s(n)).
The weighted point set then serves as a representation of the posterior density p(X|Z), suitable
for sampling. The one-dimensional case illustrated here extends naturally to the practical case
that the density is defined over several position and shape variables.

the conditional observation density. The value X̃ = s(n) chosen in this fashion has
a distribution which approximates the posterior p(X|Z) increasingly accurately as N
increases (figure 12.2).

Note that arbitrary posterior expectations E [g(X)|Z] can be generated directly
from the samples {s(n)} by weighting with pz(s) to give:

E [g(X)|Z] ≈
∑N

n=1 g(s
(n))pz(s(n))∑N

j=1 pz(s(j))
. (12.1)

For example, the mean can be estimated using g(X) = X (illustrated in figure 12.3)
and the second moment using g(X) = XXT . In the case that the density p(Z|X)
is normal, the mean obtained by factored sampling is consistent with an estimate
obtained more conventionally, and efficiently, from linear least-squares estimation.
An example of the application of the factored sampling algorithm to locate objects is
given in figure 12.4. A prior distribution is used which is quite diffuse, covering most of
the image area, and allowing a wide range of variation of orientation and shape. Given
a suitable observation density, the posterior distribution shown is strongly peaked at

Non-Gaussian models and random sampling algorithms 259

(a) (b)

Figure 12.3: Sample-set representation of shape distributions. The sample-set repre-
sentation of probability distributions, illustrated in one dimension in figure 12.2, is illustrated
here (a) as it applies to the distribution of a multi-dimensional curve parameter X. Each
sample s(n) is shown as a curve (of varying position and shape) with a thickness proportional
to the weight π(n). The weighted mean of the sample set (b) serves as an estimator of the
distribution mean.

the locations of several genuine objects and also a few fairly convincing frauds.

12.2 The Condensation algorithm

The Condensation algorithm is based on factored sampling but extended to apply
iteratively to images in a sequence, taken at successive times tk. In chapter 10 the
Kalman filter was used to incorporate prediction, using a dynamical model, into the
curve-fitting process. Condensation is the analogous extension to factored sampling,
and in the examples described later the dynamical model used is exactly that devel-
oped in chapters 9 and 11. In fact much more general classes of dynamical models
can be used within the algorithm and these are discussed in the bibliographic notes.

The state of the modelled object at time tk, denoted X (tk) earlier, will now be

260 Chapter 12

Figure 12.4: Sample-set representation of posterior shape distribution for a curve
with parameters X, modelling a head outline. Each sample s(n) is shown as a curve (of
varying position and shape) with a thickness and intensity proportional to the weight π(n).
The prior is uniform over translation, and a constrained Gaussian in the remainder of its
affine shape-space. (Figure taken from (MacCormick and Blake, 1998).)

denoted as Xk, for compactness. Its “history” is X k = {X1, . . . ,Xk}. Similarly the
image observation at time tk, previously denoted Z(tk), will be denoted Zk with history
Zk = {Z1, . . . ,Zk}.

The process at each time-step is a self-contained iteration of factored sampling,
so the output of an iteration will be a weighted, time-stamped sample set, denoted
{s(n)

k , n = 1, . . . , N} with weights π(n)
k , representing approximately the conditional

state density p(Xk|Zk) at time tk. How is this sample set obtained? The process
must begin with a prior density and the effective prior for time-step tk should be
p(Xk|Zk−1). This prior is multi-modal in general and no functional representation
of it is available. It is derived from the sample-set representation {(s(n)

k−1, π
(n)
k−1), n =

1, . . . , N} of p(Xk−1|Zk−1), the output from the previous time-step, to which prediction
must then be applied.

The iterative process as applied to sample sets, depicted in figure 12.5, mirrors
the continuous diffusion process in figure 12.1. At the top of the diagram, the output

Non-Gaussian models and random sampling algorithms 261

measure

(n) (n)π

(n)
s

πs ,
(n) (n)

k

s ,

observation
 density

k−1 k−1

k k

predict

Figure 12.5: One time-step in the Condensation algorithm. The drift and diffusion
steps of the probabilistic propagation process of figure 12.1 are combined into a single prediction
stage.

from time-step tk−1 is the weighted sample set {(s(n)
k−1, π

(n)
k−1), n = 1, . . . , N}. The

aim is to maintain, at successive time-steps, sample sets of fixed size N , so that the
algorithm can be guaranteed to run within a given computational resource. The first
operation therefore is to sample (with replacement) N times from the set {s(n)

k−1},
choosing a given element with probability π(n)

k−1. Some elements, especially those with
high weights, may be chosen several times, leading to identical copies of elements in
the new set. Others with relatively low weights may not be chosen at all.

Each element chosen from the new set is now subjected to a predictive step. This
corresponds to sampling from the distribution p(Xk|Xk−1), and for the second-order
AR models described in chapter 9 the sampling equation is given by (9.17) on page 204.
At this stage, the sample set {s(n)

k } for the new time-step has been generated but, as

262 Chapter 12

yet, without its weights; it is approximately a fair random sample from the effective
prior density p(Xk|Zk−1) for time-step tk. Finally, the observation step from factored
sampling is applied, generating weights from the observation density p(Zk|Xk) to
obtain the sample-set representation {(s(n)

k , π
(n)
k)} of state density for time tk.

Figure 12.6 gives a synopsis of the algorithm. Note the use of cumulative weights
c
(j)
k−1 (constructed in step 3) to achieve efficient sampling in step 1. After any time-

step, it is possible to “report” on the current state, for example by evaluating some
moment of the state density:

E [g(Xk)] =
N∑

n=1

π
(n)
k g

(
s(n)
k

)
.

In later examples the mean position is displayed using g(X) = X .
One of the striking properties of the Condensation algorithm is its simplicity,

compared with the Kalman filter, despite its generality. Largely this is because it is
not necessary in the Condensation framework to propagate covariance explicitly.

12.3 An observation model

The observation process defined by p(Zk|Xk) is assumed here to be stationary in time
(though the Condensation algorithm does not necessarily demand this) so a static
function p(Z|X) needs to be specified. It is also assumed here that observations depend
only on position and shape, not on velocities, so that

p(Z|X) = p(Z|X).

One-dimensional observations in clutter

The observation density p(Z|X) for curves in clutter is quite different to the Gaussian
approximation used in chapter 8, so for clarity a simplified one-dimensional form is
described first. In one dimension, observations reduce to a set of scalar positions
{z = (z1, z2, . . . , zM)} and the observation density has the form p(z|x) where x is
one-dimensional position. The multiplicity of measurements reflects the presence of
clutter so either one of the events

φm = {true measurement is zm}, m = 1, . . . ,M

Non-Gaussian models and random sampling algorithms 263

Iterate

From the “old” sample set {s(n)
k−1, π

(n)
k−1, c

(n)
k−1, n = 1, . . . , N} at time-step tk−1,

construct a “new” sample set {s(n)
k , π

(n)
k , c

(n)
k , n = 1, . . . , N} for time tk.

Construct the nth of N new samples as follows:

1. Select a sample s′k
(n) as follows:

(a) generate a random number r ∈ [0, 1], uniformly distributed.

(b) find, by binary subdivision, the smallest j for which c(j)k−1 ≥ r

(c) set s′k
(n) = s(j)

k−1

2. Predict by sampling from

p(Xk|Xk−1 = s′(n)
k)

to choose each s(n)
k . For instance, in the case that the dynamics are

governed by a linear AR process, the new sample value may be generated
as: s(n)

k = A s′(n)
k +(I−A)X +Bw(n)

k where w(n)
k is a vector of standard

normal random variates, and BBT is the process noise covariance.

3. Measure and weight the new position in terms of the measured features
Zk:

π
(n)
k = p(Zk|Xk = s(n)

k)

then normalise so that
∑

n π
(n)
k = 1 and store together with cumulative

probability as (s(n)
k , π

(n)
k , c

(n)
k) where

c
(0)
k = 0,

c
(n)
k = c

(n−1)
k + π

(n)
k for n = 1, . . . , N.

Figure 12.6: The Condensation algorithm.

264 Chapter 12

occurs, or else the target object is not visible with probability q = 1 −∑m P (φm).
Now the observation density can be expressed as

p(z|x) = q p(z|clutter) +
M∑

m=1

p(z|x, φm)P (φm).

A reasonable functional form for this can be obtained by making some specific as-
sumptions: that P (φm) = p for all m features2, that the clutter is a Poisson process
along the line with spatial density λ and that any true target measurement is unbiased
and normally distributed with standard deviation σ. This leads to

p(z|x) ∝ 1 +
1√

2πσα

∑
m

exp− ν2
m

2σ2
(12.2)

where α = qλ and νm = zm − x, and is illustrated in figure 12.7. Peaks in the
density function correspond to measured features and the state density will tend to
be reinforced in the Condensation algorithm at such points. The background level
reflects the possibility that the true target has not been detected at all, and allows
a good hypothesis to survive a transitory failure of observations due, for example, to
occlusion of the tracked object. The parameters σ (units of distance) and α (units
of inverse distance) must be chosen, though in principle they could be estimated
from data by observing measurement error σ and both the density of clutter λ and
probability of non-detection q.

Considerable economy can be applied, in practice, in the evaluation of the obser-
vation density. Given a hypothesised position x in the “observation” step (figure 12.6)
it is not necessary to attend to all features z1, . . . , zM . Any νm for which

1√
2πσα

exp− ν2
m

2σ2
� 1

can be neglected and this sets a search window around the position x outside which
measurements can be ignored. For practical values of the constants the search window
will have a width of a few σ.

Note that the density p(z|x) represents the information about x given a fixed num-
ber M of measurements. Potentially, the event ψM that there are M measurements,

2There could be some benefit in allowing the P (φm) to vary with m to reflect varying degrees of
feature affinity, based on contrast, colour or orientation.

Non-Gaussian models and random sampling algorithms 265

p(|x)

x

x

Measured
features z5z1 z2 z3 z4 z6

z

Figure 12.7: One-dimensional observation model. A probabilistic observation model
allowing for clutter and the possibility of missing the target altogether is specified here as a
conditional density p(z|x).

regardless of the actual values of those measurements, also constitutes information
about x. However, we can reasonably assume that

P (ψM |x) = P (ψM),

for instance because x is assumed to lie always within the image window. In that case,
by Bayes’ theorem,

p(x|ψM) = p(x)

— the event ψM provides no additional information about the position x. (If x is
allowed also to fall outside the image window then the event ψM is informative: a value
of M well above the mean value for the background clutter enhances the probability
that x lies within the window.)

Two-dimensional observations

In a two-dimensional image, the set of observations Z is, in principle, the entire set
of features visible in the image. However, an important aspect of achieving real-time

266 Chapter 12

Figure 12.8: Observation process. The thick line is a hypothesised shape, represented as
a parametric spline curve. The spines are curve normals along which high-contrast features
(dots) are sought.

performance has been the restriction of measurement to a sparse set of lines normal to
the tracked curve. These two apparently conflicting ideas are hard to resolve and some
discussion is given elsewhere (see bibliographic notes). One good choice is simply to
construct the two-dimensional observation density as the product of one-dimensional
densities (12.2), evaluated independently along M curve normals as in figure 12.8.
Note that locally p(Z|X) is approximately Gaussian, especially if constants are chosen
so that σ is small and only one feature typically falls within each search region. As X
varies across the entire image, however, the multi-modality of the observation density
is apparent.

Non-Gaussian models and random sampling algorithms 267

12.4 Applications of the Condensation algorithm

Four examples are shown here of the practical efficacy of the Condensation algo-
rithm. MPEG versions of some results are available on the web page for the book.

Tracking a multi-modal distribution

The ability of the Condensation algorithm to represent multi-modal distributions
is demonstrated in a sequence of a cluttered room containing three people each facing
the camera (figure 12.9). One of the people moves from right to left, in front of

Figure 12.9: Tracking three people in a cluttered room. The first frame of a sequence
in which one figure moves from right to left in front of two stationary figures.

the other two. The shape-space for tracking is built from a hand-drawn template of
head and shoulders (figure 12.8) which is then allowed to deform via planar affine
transformations. A Kalman filter contour-tracker with default motion parameters is
able to track a single moving person just well enough to obtain a sequence of outline
curves that is usable as training data. Given the high level of clutter, adequate
performance with the Kalman filter is obtained here by means of statistical background

268 Chapter 12

 Time

0 ms

400 ms

800 ms

1200 ms

1600 ms

2000 ms

2400 ms

2800 ms

Figure 12.10: Tracking with a multi-modal state density. An approximate depic-
tion of the state density is shown, computed by smoothing the distribution of point masses
s(1)
k , s(2)

k , . . . in the Condensation algorithm. The density is, of course, multi-dimensional;
its projection onto the horizontal translation axis is shown here. The initial distribution is
roughly Gaussian but this rapidly evolves to acquire peaks corresponding to each of the three
people in the scene. The rightmost peak drifts leftwards, following the moving person, coalesc-
ing with and separating from the other two peaks as it moves. Having specified a tracker for
one person we effectively have, for free, a multi-person tracker, owing to the innate ability of
the Condensation algorithm to maintain multiple hypotheses.

subtraction. It transpires, for this particular training set, that the learned motions
comprise primarily horizontal translation, with vertical translation and horizontal and
vertical shear present to a lesser degree.

The learned shape and motion model can be installed as p(Xk|Xk−1) in the Con-
densation algorithm which is now run on a test sequence but without the benefit of
background modelling, so that the background clutter is now visible to the tracker.
Figure 12.10 shows how the state density evolves as tracking progresses. Initialisation

Non-Gaussian models and random sampling algorithms 269

is performed simply by iterating the stochastic model, in the absence of measure-
ments, to its steady state and it can be seen that this corresponds, at time t0, to a
roughly Gaussian distribution, as expected. The distribution rapidly collapses down
to three peaks which are then maintained appropriately even during temporary occlu-
sion. Although the tracker was designed to track just one person, the Condensation
algorithm takes account of the motion of all three; the ability to represent multi-modal
distributions effectively provides multiple-hypothesis capability. Tracking is based on
frame rate (40 ms) sampling in this demonstration and distributions are plotted in the
figure for alternate frames. A distribution of N = 1000 samples per time-step is used.

Tracking rapid motions through clutter

The ability to track more agile motion, still against clutter, is demonstrated by a
sequence of a girl dancing vigorously to a Scottish reel. The shape-space for tracking is
planar affine, based on a hand-drawn template curve for the head outline. The training
sequence consists of dancing against a largely uncluttered background, tracked by a
Kalman filter contour-tracker with default dynamics to record 140 fields (2.8 seconds)
of tracked head positions, the most that can be tracked before losing lock. Those 140
fields are sufficient to learn a bootstrap motion model which then allows the Kalman
filter to track the training data for 800 fields (16 seconds) before loss of lock. The
motion model obtained from these 800 fields can now be applied to test data that
includes clutter.

Figure 12.11 shows some stills from the test sequence, with a trail of preceding
head positions to indicate motion. The motion is primarily translation, with some
horizontal shear apparent as the dancer turns her head. Representing the state density
with N = 100 samples at each time-step proves just sufficient for successful tracking.
As in the previous example, a prior density can be computed as the steady state of
the motion model and, in this case, that yields a prior for position that spreads across
most of the image area, as might be expected given the range of the dance. Such a
broad distribution cannot effectively be represented by just N = 100 samples. One
alternative is to increase N in the early stages of tracking, and this is demonstrated
later. Alternatively, the prior can be based on a narrower distribution whose centre is
positioned by hand over the object at time t0, and that is what has been done here.
(Observation parameters were α = 0.005, σ = 7 with 18 normals.)

Figure 12.12 shows the motion of the centroid of the estimates head position as
tracked both by the Condensation algorithm and by a Kalman filter using the

270 Chapter 12

field 91 (1820 ms) field 121 (2420 ms)

field 221 (4420 ms) field 265 (5300 ms)

Figure 12.11: Tracking agile motion in clutter. The test sequence consists of 500 fields
(10 seconds) of agile dance against a cluttered background. The dancer’s head is tracked through
the sequence. Several representative fields are shown here, each with a trail of successive mean
tracked head positions at intervals of 40ms. The Condensation algorithm used N = 100
samples per time-step to obtain these results.

Non-Gaussian models and random sampling algorithms 271

X

Y

Condensation tracker

X

Y

Kalman filter tracker

Time = 10 s Time = 10 s

Figure 12.12: The Condensation tracker succeeds where a Kalman filter fails.
The estimated centroid for the sequence shown in figure 12.11 is plotted against time for the
entire 500 field sequence, as tracked first by the Condensation tracker, then by a comparable
Kalman filter tracker. The Condensation algorithm correctly estimates the head position
throughout the sequence. The Kalman filter tracks briefly, but is soon distracted by clutter.

same motion model. The Condensation tracker correctly estimated head position
throughout the sequence, but after about 40 fields (0.80 s), the Kalman filter is dis-
tracted by clutter, never to recover.

Given that there is only one moving person now, unlike the previous example in
which there were three, it might seem that a uni-modal representation of the state
density would suffice. This is emphatically not the case. The facility to represent
multiple modes is crucial to robustness as figure 12.13 illustrates. The figure shows
how the distribution becomes misaligned (at 900 ms), reacting to the distracting form
of the computer screen. After 20 ms the distribution splits into two distinct peaks,
one corresponding to clutter (the screen), one to the dancer’s head. At this point the
clutter peak actually has the higher posterior probability — a uni-modal tracker, for
instance a Kalman filter, would almost certainly discard the lower peak, rendering it
unable to recover. The Condensation algorithm however, capable as it is of carrying
several hypotheses simultaneously, does recover rapidly as the clutter peak decays for
lack of confirmatory observation, leaving just one peak corresponding to the dancer
after 60 ms.

272 Chapter 12

field 45 (900 ms) field 46 (920 ms)

field 47 (940 ms) field 48 (960 ms)

Figure 12.13: Recovering from tracking failure. Detail from 4 consecutive fields of the
sequence illustrated in figure 12.11. Each sample from the distribution is plotted on the image,
with intensity scaled to indicate its posterior probability. (Most of the N = 100 samples have
too low a probability to be visible in this display.) At field 45 the distribution is misaligned,
and has begun to diverge. At fields 46 and 47 it has split into two distinct peaks, the larger
attracted to background clutter, but converges back onto the dancer at field 48.

Non-Gaussian models and random sampling algorithms 273

Tracking an articulated object

The preceding sequences show motion taking place in affine shape-spaces of just 6
dimensions. High dimensionality is one of the factors, in addition to agility and clutter,
that makes tracking hard. In order to demonstrate tracking performance in higher
dimensions, we use a test sequence of a hand translating, rotating, and flexing its
fingers independently, over a highly cluttered desk scene (figure 12.14). Figure 12.15

Figure 12.14: A hand moving over a cluttered desk. Field 0 of a 500 field (10 second)
sequence in which the hand translates, rotates, and the fingers and thumb flex independently.

shows just how severe the clutter problem is — the hand is immersed in a dense field
of edges.

A model of shape and motion has been learned from training sequences of hand
motion against a plain background, tracked by Kalman filter (using signed edges to
help to disambiguate finger boundaries). The procedure comprised several stages, a
creative assembly of methods from the available toolkit for generating a shape-space
and learning dynamics.

1. Shape-space is constructed from 6 templates drawn around the hand with
the palm in a fixed orientation and with the fingers and thumb in various con-
figurations. The 6 templates combine linearly to form a 5-dimensional space

274 Chapter 12

CondensationEdge detector

Figure 12.15: Severe clutter. Detail of one field from the test sequence shows the high
level of potential ambiguity. Output from a directional Gaussian edge detector shows that there
are many clutter edges present as potential distractors.

of deformations which are then added to the space of translations to form a
7-dimensional shape-space.

2. Default dynamics in the shape-space above are adequate to track a clutter-
free training sequence of 600 frames in which the palm of the hand maintains
an approximately fixed attitude.

3. Principal components analysis: the sequence of 600 hand outlines is repli-
cated with each hand contour rotated through 90 degrees, and the sequences
concatenated to give a sequence of 1200 deformations. Projecting out the trans-
lational component of motion, the application of Principal Component Analysis
(PCA) to the sequence of residual deformations of the 1200 contours establishes
a 10-dimensional space that accounted almost entirely for deformation. This is
then combined with the translational space to form a 12-dimensional shape-space
that accounts both for the flexing of fingers and thumb and also for rotations of
the palm.

4. Bootstrapping: a Kalman filter with default dynamics in the 12-dimensional
shape-space is sufficient to track a training sequence of 800 fields of the hand
translating, rotating, and flexing fingers and thumb slowly. This is used to learn
a model of motion.

5. Re-learning: that motion model is installed in a Kalman filter and used to track

Non-Gaussian models and random sampling algorithms 275

Figure 12.16: Tracking a flexing hand across a cluttered desk. Representative stills
from a 500 field (10 second) sequence show a hand moving over a highly cluttered desk scene.
The fingers and thumb flex independently, and the hand translates and rotates. Here the
Condensation algorithm uses N = 1500 samples per time-step initially, dropping over 4
fields to N = 500 for the tracking of the remainder of the sequence. The mean configuration
of the contour is displayed.

another, faster training sequence of 800 fields. This allows a model for more agile
motion to be learned, which is then used in a high-performance Condensation
tracker.

Figure 12.16 shows detail of a series of images from a tracked, 500 field test sequence.
The initial state density is simply the steady state of the motion model, obtained by
allowing the filter to iterate in the absence of observations. Tracker initialisation is
facilitated by using more samples per time-step (N = 1500) at time t0, falling to 500
over the first 4 fields. The rest of the sequence is tracked using N = 500. As with
the previous example of the dancer, clutter may distract the tracker but the ability
to represent multi-modal state density means that tracking can recover.

Tracking a camouflaged object

Finally, the ability of the algorithm to track rapid motion against background distrac-
tion is demonstrated in an extreme case: that background objects actually mimic the
tracked object. A 12 second (600 field) sequence shows a bush blowing in the wind,
the task being to track one particular leaf. A template is drawn by hand around a still
of one chosen leaf and allowed to undergo affine deformations during tracking. Given
that a clutter-free training sequence cannot be obtained in this case, the motion model
is again learned by means of a bootstrap procedure. A tracker with hand-specified

276 Chapter 12

1.46 s 2.66 s

5.54 s 7.30 s

Figure 12.17: Tracking with camouflage. The aim is to track a single camouflaged
moving leaf in this 12 second sequence of a bush blowing in the wind. Despite the heavy clutter
of distractors which actually mimic the foreground object, and occasional violent gusts of wind,
the chosen foreground leaf is successfully tracked throughout the sequence. Representative
stills depict mean contour configurations, with preceding tracked leaf positions plotted at 40ms
intervals to indicate motion.

Non-Gaussian models and random sampling algorithms 277

dynamics proves capable of tracking the first 150 fields of a training sequence before
losing the leaf, and those tracked positions allow a first approximation to the model
to be learned. Installing that in a Condensation tracker, the entire sequence can
be tracked, though with occasional misalignments. Finally, a second learned model
is capable of tracking accurately the entire 12 second training sequence. Despite
occasional violent gusts of wind and temporary obscuration by another leaf, the Con-
densation algorithm successfully follows the object, as figure 12.17 shows. In fact,
tracking is accurate enough using N = 1200 samples to separate the foreground leaf
from the background reliably, an effect which can otherwise only be achieved using
“blue-screening.” Having obtained the model iteratively as above, further sequences
can be tracked without further training. With N = 1200 samples per time-step the
tracker runs at 6.5 Hz on a SGI Indy SC4400 200 MHz workstation. Reducing this to
N = 100 increases processing speed to video field rate (50 Hz), at the cost of occasional
misalignments in the mean configuration of the contour. (Observation parameters are
α = 0.022, σ = 3 with 21 normals.)

Bibliographic notes

There has been much written about non-linear filtering algorithms, for handling non-
Gaussian probability densities. The Extended Kalman filter (Gelb, 1974; Bar-Shalom
and Fortmann, 1988; Jacobs, 1993), is a linearised approximation designed to deal
with non-linearities in dynamics and/or sensors. It effectively approximates the non-
Gaussian state density as a Gaussian. Bayesian multiple-hypothesis filters and approx-
imate variants include the PDAF and JPDAF (Bar-Shalom and Fortmann, 1988) and
can be applied to motion correspondence (Cox, 1993) and visual tracking of discrete
features (Rao et al., 1993). The RANSAC algorithm is an alternative mechanism for
dealing with ambiguous association (Fischler and Bolles, 1981), in which hypotheses
are generated bottom-up, from subsets of image features. Bucy’s numerical integration
of Bayes’ rule for one-dimensional state (Bucy, 1969) is very general but feasible only
in one or two dimensions, inapplicable to the state-spaces used in contour tracking
whose dimensionality is typically 8–30. Additive Gaussian mixtures as used for rep-
resentation of non-Gaussian densities in pattern recognition theory (Duda and Hart,
1973; Bishop, 1995) can be used in temporal filtering by dynamically re-weighting
the mixture (Sorenson and Alspach, 1971). For approximate methods using additive
Gaussian mixtures see also (Anderson and Moore, 1979).

278 Chapter 12

The Fokker-Planck equation (Astrom, 1970) governs the evolution of the probabil-
ity distribution for point particles following a random walk. The equation describes
a diffusing probability density and its coefficients depend on the deterministic and
stochastic components of the random walk, as described by the A and B coefficients
in the case of an AR process.

One of the best known uses of iterative sampling in image processing is in the
statistical restoration algorithms of Geman and Geman (Geman and Geman, 1984) in
which a “Gibbs sampler” is used to sample fairly from the posterior distribution for the
restored image. Their idea has been generalised and named “Markov Chain Monte-
Carlo” (MCMC) (Gelfand and Smith, 1990). Random sampling as a means of image
construction has also been applied to curves rather than image intensities (Ripley
and Sutherland, 1990; Grenander et al., 1991), to sweep out a posterior distribution
for an object outline, and also extended using simulated annealing (Storvik, 1994)
to converge to a particular curve estimate. The term “factored sampling” is due to
Grenander et al. (1991).

Importance sampling is a general technique (Ripley, 1987) for Monte-Carlo meth-
ods to bias generation of variates which would otherwise be generated from the stated
prior. The purpose of the bias is to increase efficiency by concentrating on areas in
which the observation density is likely to be non-negligible. The method includes a
correction factor for the bias so that generated samples continue to be drawn fairly
from the posterior density for the problem.

Fuller details of the Condensation algorithm are given in (Isard and Blake,
1998a), including a proof of the (asymptotic) correctness of the algorithm. A similar
extension of sampling methods to work over time has been reported also by (Gordon
et al., 1993) who refer to the “bootstrap” algorithm and derive it via MCMC, rather
than factored sampling. Another account (Kitagawa, 1996) elegantly extends the idea
to a “smoothing” algorithm which is applicable to off-line applications. It is a two-pass
method in which the estimate at each time-step is derived not only from preceding
observations but also takes into account all following observations. This is analogous
to the smoothing algorithm for Gaussians (Gelb, 1974) which is a two-pass extension
of the Kalman filter.

Reasoning about clutter and false alarms of the sort given in section 12.3 is com-
monly used in target tracking (Bar-Shalom and Fortmann, 1988). Some discussion of
the problem of extending the observation model from a single line to a curve of nor-
mals is given in (Isard and Blake, 1998a). An extension to account for object opacity
is given in (MacCormick and Blake, 1998).

Non-Gaussian models and random sampling algorithms 279

Some progress has been made recently in extending the scope of the motion mod-
els used in the Condensation algorithm to include mixed continuous/discrete states
(Isard and Blake, 1998b). This is related to Hidden Markov Modelling which is the
dominant paradigm for speech recognition algorithms, and a comprehensive introduc-
tion is given in (Rabiner and Bing-Hwang, 1993).

