
Part I

Geometrical Fundamentals

Chapter 3

Spline curves

Throughout this book, visual curves are represented in terms of parametric spline
curves, as is common in computer graphics. These are curves (x(s), y(s)) in which s is a
parameter that increases as the curve is traversed, and x and y are particular functions
of s, known as splines. A spline of order d is a piecewise polynomial function, consisting
of concatenated polynomial segments or spans, each of some polynomial order d,
joined together at breakpoints. Parametric spline curves are attractive because they
are capable of representing efficiently sets of boundary curves in an image (figure 3.1).
Simple shapes can be represented by a curve with just a few spans. More complex
shapes could be accommodated by raising the polynomial order d but it is preferable to
increase the number of spans used. Usually the polynomial order is fixed at quadratic
(d = 3) or cubic (d = 4)1. Maintaining a fixed, low polynomial degree, even in the
face of geometric complexity, makes for computational stability and simplicity.

The chapter begins by explaining spline functions and their construction. Later
sections explain how parametric curves are constructed from spline functions and
introduce methods for matching one curve to another. This forms the basis for the
algorithms developed in subsequent chapters for active contour matching.

1The order of a polynomial is the number of its coefficients. Hence a quadratic function a+bx+cx2

has order d = 3. Its degree — the highest power of x — is 2.

42 Chapter 3

Figure 3.1: Image edges represented as parametric spline curves.

3.1 B-spline functions

B-splines are a particular, computationally convenient representation for spline func-
tions. In the B-spline form, a spline function x(s) is constructed as a weighted sum
of NB basis functions (hence ‘B’-splines) Bn(s), n = 0, . . . , NB − 1. In the simplest
(“regular”) case, each basis function consists of d polynomials each defined over a span
of the s-axis. We take each span to have unit length. The spans are joined at knots as
in figure 3.2. It shows the simplest case in which the knots are evenly spaced and the
joins between polynomials are regular — that is, as smooth as possible, having d− 2
continuous derivatives. The quadratic spline, for instance, has continuous gradient in
the regular case. The constructed spline function is

Spline curves 43

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0
B0(s)

s

B-1 (s) B0(s) B1(s) B2(s)

-1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s

Figure 3.2: (top) A single quadratic B-spline basis function B0(s). “Knots” at s =, 0, 1, 2, 3, 4
mark transitions between polynomial segments of the function. (bottom) In the regular case
which has evenly spaced knots (at integral values of s), each B-spline basis function is a trans-
lated copy of the previous one.

x(s) =
NB−1∑
n=0

xnBn(s) (3.1)

where xn are the weights applied to the respective basis functions Bn(s), as in fig-
ure 3.3. This can be expressed compactly in matrix notation as

x(s) = B(s)TQx, (3.2)

44 Chapter 3

a matrix product between a vector of B-spline functions

B(s) = (B0(s), B1(s), . . . , BNB−1(s))T (3.3)

and a vector of weights

Qx =

 x0

...
xNB−1

 . (3.4)

x0 B0 (s)

x4 B4 (s)x0

x1

x2

x3 x4

0 1 2 3 4 5

0.5

1.0

1.5

2.0
x

s

x0

x1

x2

x3 x4B(s)

0 1 2 3 4 5

0.5

1.0

1.5

2.0

s

Figure 3.3: B-spline basis functions Bn(s) are weighted by coefficients xn (top) and combined
linearly to form a spline function x(s) (bottom). Note that the spline function follows the
“control polygon” closely.

By convention, B-spline basis functions are constructed in such a way that they

Spline curves 45

sum to 1 at all points:
NB−1∑
n=0

Bn(s) = 1 for all s. (3.5)

This summation or “convex hull” property is the underlying reason that the B-
spline function in figure 3.3 follows the “control polygon,” made up of the points
(3
2 , x0), (5

2 , x1), . . . quite closely.
In the simple case of a quadratic B-spline with knots spaced regularly at unit

intervals, the first B-spline basis function has the form

B0(s) =

s2/2 if 0 ≤ s < 1
3
4 − (s− 3

2)2 if 1 ≤ s < 2

(s− 3)2/2 if 2 ≤ s < 3

0 otherwise

(3.6)

and the others are simply translated copies:

Bn(s) = B0(s− n).

However, this basis is bi-infinite: there are infinitely many Bn and the functions
x(s) they are used to construct are bi-infinite, extending to s → ±∞. For practical
applications finite bases are needed.

3.2 Finite bases

A finite spline basis can be either periodic (figure 3.4) or aperiodic (figures 3.5 and 3.6)
over a closed interval 0 ≤ s ≤ L. The periodic basis is simply the bi-infinite basis
suitably wrapped around. For example, the basis functions for regular, quadratic
splines are B0, . . . , BL−1 (NB = L), defined as above, but treated as periodic over
the interval 0 ≤ s ≤ L. The four periodic basis functions for the case that L = 4
are illustrated in figure 3.4. A non-periodic basis on a finite interval is more complex
to construct, requiring so-called “multiple knots” (see later) at its endpoints. This
allows full control over boundary conditions — the value of the function x(s) and its
derivatives at the ends s = 0, L of the interval. Details of the construction of the Bn

for this case can be found in appendix A. It is no longer the case that the number of

46 Chapter 3

B3(s) B0(s) B1(s) B2(s)

B2(s) B3(s)

0 2 4

1.0

s

Figure 3.4: Periodic B-spline basis, as figure 3.2 but for construction of functions that
are periodic over the range 0 ≤ s ≤ 4. Again each B-spline basis function is a translated copy
of the previous one, but also wrapped around where the periodicity demands it.

basis functions NB is equal to the interval length L. Additional basis functions are
needed to control boundary conditions (values of the spline function and its derivatives
at s = 0, L). In the regular case, d − 1 extra functions are needed (d is the order of
the polynomial) so that NB = L+ d− 1. In figure 3.5, for example, L = 5 and d = 3
(quadratic) so there must be NB = 7 basis functions.

There is an efficient algorithm for generating spline functions from the weights
xn in which the basis functions are represented in terms of a matrix of polynomial
coefficients. The standard method is given in appendix A.

3.3 Multiple knots

Sometimes it is desirable to allow a reduced degree of continuity at some point within
the domain of a function x(s). This can be achieved by forming a multiple knot,
in which two knots in the B-spline basis approach one another and coincide. The
spline then consists of a sequence of polynomial spans joined at breakpoints, some of
which are single knots while others are multiple knots. At a regular breakpoint (single
knot), the degree of smoothness is at its maximal value, that is Cd−2 — continuity of

Spline curves 47

B1(s)
B2(s) B3(s) B4(s)

B5(s)

B0(s) B6(s)

0 1 2 3 4 5

1.0

s

Figure 3.5: Spline basis over an interval. Basis functions are not entirely composed
of translated copies of one another, as they were in the bi-infinite case, but include special
functions at the extremes of the interval for control of boundary conditions.

all derivatives up to the (d − 2)th. At a double knot, however, continuity is reduced
to Cd−3 and generally, continuity at a knot of multiplicity m is Cd−m−1. Forming a
multiple knot is a limiting process in which m consecutive regular knots approach one
another, as illustrated in figure 3.7 for the quadratic case. Once a double knot has been
introduced into the basis, any constructed spline function generally loses one order of
continuity at that breakpoint. In the quadratic case for instance, a spline function
is C0 at the knot: it remains continuous but its gradient becomes discontinuous —
see figure 3.8 for an illustration. If a triple knot is introduced, the function becomes
discontinuous, broken into two continuous pieces, one on each side of the knot. Hence
triple knots are used to terminate a quadratic B-spline basis over a finite interval as
in figure 3.5.

3.4 Norm and inner product for spline functions

It is very useful to be able to calculate the so-called “L2-norm” ‖x‖ of a function x(s):

‖x‖2 =
1
L

∫ L

0
x(s)2 ds. (3.7)

48 Chapter 3

x1B1(s) x2B2(s)

x3B3(s)

x4B4(s)

x5B5(s)

x0B0(s)

x6B6(s)

0 1 2 3 4 5

1.0

1.5

2.0

s

x(s)

0 1 2 3 4 5

0.5

1.0

1.5

2.0

s

Figure 3.6: Splines over an interval. Basis functions in figure 3.5 are blended to form a
spline function x(s). The choice of basis functions allows the boundary values x(0), x(5) to be
controlled directly by the weights x0, x6. Then weights x1, x5 control the values of derivatives
at the extremes of the interval.

Spline curves 49

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s

Figure 3.7: Forming multiple knots. A double knot is introduced into a quadratic B-spline
basis at s = 2. The resulting basis functions are the limit reached as the knot initially at s = 3
approaches s = 2.

which is precisely the “root-mean-square” value2 of x(s) over the range 0 ≤ s ≤ L.
The functional norm is especially useful for measuring the difference between two
functions x1(s), x2(s) as ‖x1 − x2‖, for instance when it is necessary to measure how
closely a function x1 is approximated by another function x2.

The norm has a corresponding “inner product,” denoted < · , · >, which is bilinear
and is applied to a pair of functions x, y as < x, y >. The relationship between an
inner product and a norm is that < x, x >= ‖x‖2, so in the L2 case the inner product
between two functions works out to be:

< x, y >=
1
L

∫ L

0
x(s)y(s) ds. (3.8)

2Conventionally the 1
L

scaling factor in the definition of the norm would be omitted; we include it
so that ‖x‖ is truly a root-mean-square measure.

50 Chapter 3

0 1 2 3 4

0.5

1.0

1.5

2.0

s

multiple knot

Figure 3.8: Reduced continuity. Using a basis with a double knot as in figure 3.7, in which
a double knot has been introduced at s = 2, constructed functions show a gradient discontinuity
at s = 2 — compare with figure 3.6.

The inner product will be used later to express function approximations concisely.
Since we are representing functions compactly as vectors Qx of spline weights, it

is natural to express norms and inner products in terms of these vectors, that is, to
define ‖ · ‖ for weight vectors such that

‖Qx‖ = ‖x‖.
Now from (3.2)

‖x‖2 = (Qx)T 1
L

(∫ L

0
B(s)B(s)T ds

)
Qx

so the norm must be defined as:

‖Qx‖ =
√

(Qx)TBQx (3.9)

where

B =
1
L

∫ L

0
B(s)B(s)T ds (3.10)

defines the metric matrix for a given class of B-spline function, and the inner product
is

< Qx
1 ,Q

x
2 >≡ (Qx

1)TBQx
2 . (3.11)

Spline curves 51

The B-matrices are sparse. This reflects the fact that each weight Qx
n affects the

function x(s) only over a short sub-interval — the “support” of the corresponding basis
function Bn — and this lends efficiency to least-squares approximation algorithms. In
the periodic, quadratic case the B-matrices are sparse circulants of order 5, and in
general they have order 2d− 1 (the number of non-zero elements in each row). For a
given polynomial order d, therefore, the sparsity is most significant when the number
NB of basis functions is large. For periodic quadratic splines with NB = 8 the B-
matrix is:

B =
1
8

0.55 0.217 0.008 0.0 0.0 0.0 0.008 0.217
0.217 0.55 0.217 0.008 0.0 0.0 0.0 0.008
0.008 0.217 0.55 0.217 0.008 0.0 0.0 0.0
0.0 0.008 0.217 0.55 0.217 0.008 0.0 0.0
0.0 0.0 0.008 0.217 0.55 0.217 0.008 0.0
0.0 0.0 0.0 0.008 0.217 0.55 0.217 0.008

0.008 0.0 0.0 0.0 0.008 0.217 0.55 0.217
0.217 0.008 0.0 0.0 0.0 0.008 0.217 0.55

(3.12)

— note the circulant structure (repeating rows), characteristic of the periodic case.
For a non-periodic quadratic function, B is still sparse, no longer a circulant, but now
pentadiagonal, as shown here for the case NB = 6 (L = 4):

B =
1
4

0.2 0.117 0.017 0.0 0.0 0.0
0.117 0.333 0.208 0.008 0.0 0.0
0.017 0.208 0.55 0.217 0.008 0.0
0.0 0.008 0.217 0.55 0.208 0.017
0.0 0.0 0.008 0.208 0.333 0.117
0.0 0.0 0.0 0.017 0.117 0.2

(3.13)

and would be heptadiagonal for cubic splines.
Armed with the inner product, some approximation problems become straightfor-

ward. The simplest tutorial example is the problem of approximating a spline function
represented as Qx in terms of two other spline functions Qx

1 ,Q
x
2 . The least-squares

approximation can be expressed, using inner products, as

Q̂x = (Qx
1 Qx

2)

 〈Qx

1 ,Q
x
1〉 〈Qx

1 ,Q
x
2〉

〈Qx
2 ,Q

x
1〉 〈Qx

2 ,Q
x
2〉

−1
 〈Qx

1 ,Q
x〉

〈Qx
2 ,Q

x〉

 (3.14)

52 Chapter 3

Qx
1 Qx

2

^

0.0

1.0

0 1 2 3 4
s

Qx

Qx

Figure 3.9: Spline approximation: Q̂x is the least-squares approximation of a spline Qx

in terms of two other splines Qx
1 ,Q

x
2 . The solution can be concisely expressed in terms of

inner products — see text.

— see figure 3.9. A development of this method appears later when, in the interests
of economy and of stability over time, it is required to express spline curves in terms
of a relatively small number of parameters. The reduction of the parameter set is
expressed as a projection operation rather like the approximation Qx → Q̂x above,
but for curves instead of functions.

Another important type of problem is to approximate some function f(s), not
necessarily a spline, as a spline function x(s), represented, as usual, by weights Qx.
Again, the solution can be derived neatly using inner products to give:

Qx = B−1 1
L

∫
B(s)f(s) ds (3.15)

and an example is shown in figure 3.10. Functional approximation of this kind can
be developed to construct approximations of curves in image data, and this is close
to what will be required for active contour algorithms. Of course it is not possible
to evaluate integrals over data exactly, so in practice data must be sampled. The
simplest approximation of a sampled function as a spline is:

Qx = B−1 1
N

N∑
n=1

B(sn)f(sn).

Spline curves 53

−1.0

−0.5

0.0

0.5

1.0

4
s

exp −x/4 sin πx

B−spline approximation

Figure 3.10: Spline approximation: least-squares spline approximation to a damped sine
wave (L = 4, NB = 6).

The application to image curves is discussed in chapter 6.

3.5 B-spline parametric curves

Spline functions were introduced to serve as a tool for constructing curves in the plane,
which they do in the following manner. Parametric spline curves

r(s) = (x(s), y(s))

have coordinates x(s), y(s) each of which is a spline function of the curve parameter s.
First it is necessary to choose an appropriate interval 0 ≤ s ≤ L covering L spans and
an appropriate basis B0, B1, . . . , BNB−1 of NB B-spline functions or basis functions.
If the interval [0, L] is taken to be periodic the resulting parametric curve will be
closed. Alternatively, an open curve requires a B-spline basis over a finite interval as
in figure 3.6. For each basis function Bn a control point qn = (qx

n, q
y
n)T must now be

defined and the curve is a weighted vector sum of control points

r(s) =
NB−1∑
n=0

Bn(s)qn for 0 ≤ s ≤ L, (3.16)

54 Chapter 3

a smooth curve that follows approximately the “control polygon” defined by linking
control points by lines (figure 3.11). The component functions of r(s) do, of course,
turn out to be spline functions, for instance:

x(s) =
NB−1∑
n=0

Bn(s)qx
n for 0 ≤ s ≤ L, (3.17)

— a weighted sum of basis functions with weights qx
n. The example curve in figure 3.11

uses the basis functions Bn for regular, periodic, quadratic splines that were defined
earlier in (3.6) on page 45 and, as before, NB = L so that the number of control points
of the curve is equal to the number of its spans.

3.6 Curves with vertices

It is often necessary to introduce a vertex or hinge at a certain point along a parametric
curve, to fit around sharp corners on an object outline. One straightforward way of
doing this is to allow two or more consecutive control points to coincide to form
a “multiple control point.” When n consecutive control points coincide, the order
of continuity of the curve is reduced by n − 1. A quadratic spline, for instance,
has continuous first derivative but discontinuous second derivative when all control
points are distinct. A hinge (discontinuous first derivative) is formed therefore when
2 consecutive control points coincide, as in figure 3.12. Unfortunately, introducing a
hinge in this way generates spurious linearity constraints (see figure). What is more,
the parameterisation of the curve behaves badly in the vicinity of the hinge in the
sense that r′(s) = 0 so that the parameter s is changing infinitely fast as the curve
passes through the hinge. This would have the effect in the curve-fitting algorithms to
be described in chapter 6 of giving undue weight to the region of the curve around the
hinge. A good alternative is to use multiple knots — not quite as simple but having
good geometric behaviour. The formation of multiple knots in a B-spline basis was
explained earlier, in section 3.3. Parametric curves defined with the new basis inherit
its reduced continuity. For example, a hinge can be formed in a quadratic, parametric
curve by introducing a double knot into the underlying quadratic B-spline basis, as
in figure 3.13. Alternatively a triple knot introduces a break in a quadratic B-spline
curve.

Spline curves 55

−1.0 0.0 1.0

−1.0

0.0

1.0

x

y

s=8 (s=0)

s=2

s=3
s=4

s=5

s=6

s=7

r (s)
s

s=1

−1.0 0.0 1.0

−1.0

0.0

1.0

x

y

q
6

q
7

q
0

q
1 q

2

q
3

q
4

q
5

Figure 3.11: A quadratic (d = 3), parametric spline curve r(s) is shown (top) that is regular,
and closed. It has 8 knots, so L = 8, and 0 ≤ s ≤ 8, and s is treated as periodic. The curve is
a smooth approximation to its “control polygon” (bottom) formed from a sequence of control
points q0,q1, . . . ,q7. Note that NB = L for regular closed spline curves — here NB = L = 8.

56 Chapter 3

linear segments

Figure 3.12: Multiple control points. On a quadratic, parametric spline curve, the curve
tangent becomes discontinuous when two control points coincide, forming a “hinge.” However,
forming a hinge in this fashion turns out to be unsatisfactory, partly because of the segments
on either side of the vertex which are constrained to be linear, and partly because of problems
with uneven parameterisation — see text.

Spline curves 57

01

2

3

4 5 6

7

8

9

10
s

01

2

3

4
5

6 7

8

9

10s

multiple knot

Figure 3.13: The outline of the pretzel at the top is heart-shaped with a vertex at its apex.
A regular, parametric spline curve (left) does not follow the outline as closely as one with a
multiple knot (right). In the case of a quadratic spline curve, a tangent discontinuity forms at
the control point corresponding to the double knot.

3.7 Control vector

Dealing with control points explicitly is cumbersome so, as a first step towards a more
compact notation, let us first define a space SQ of control vectors Q consisting of

58 Chapter 3

control point coordinates, first all the x-coordinates, then all the y-coordinates:

Q =
(

Qx

Qy

)
where Qx =

qx
0

. . .

. . .
qx
NB−1

 (3.18)

and similarly for Qy. Then the coordinate functions can be written as

x(s) = B(s)TQx,

where B(s) is a vector of B-spline basis functions as defined earlier, and similarly for
y(s), so that

r(s) = U(s)Q for 0 ≤ s ≤ L (3.19)

where

U(s) = I2 ⊗ B(s)T =
(

B(s)T 0
0 B(s)T

)
, (3.20)

a matrix of size 2 × 2NQ. (Note that ⊗ denotes the “Kronecker product” of two
matrices, a notation that will be used again. See appendix A for details. The matrix
Im denotes an m× m identity.)

3.8 Norm for curves

Now that we have set up a representation of curves as parametric splines, the next
step is therefore to extend the norm and inner product to curves, for use in curve
approximation. We can define a norm ‖ · ‖ for B-spline curves which is induced by the
Euclidean distance measure in the image plane:

‖Q‖2 =
1
L

∫ L

s=0
|r(s)|2 ds (3.21)

or equivalently, from (3.19) and (3.10),

‖Q‖2 = QTUQ, (3.22)

where the metric matrix for curves U is defined in terms of the metric matrix B for
B-spline functions:

U ≡ 1
L

∫ L

0
U(s)TU(s) ds (3.23)

Spline curves 59

or, equivalently,

U = I2 ⊗ B =
(B 0

0 B
)
.

Of course, the norm also implies an inner product for curves:

〈Q1,Q2〉 = QT
1 UQ2.

The curve norm is particularly meaningful when used as a means of comparison be-
tween two curves, using the distance ‖Q1 −Q2‖. This is the basis for approximation
of visual data by curves, and is illustrated in figure 3.14.

There are potentially simpler norms than the one above, the obvious candidate
being the Euclidean norm |Q|2 ≡ QTQ of the control vector. Compared with the
L2 norm ‖ · ‖ defined above, the Euclidean norm is simpler to compute because the
banded matrix U is replaced by the identity matrix. However, attractive as this short
cut may be, the simpler norm does not work satisfactorily. This is made clear by
the counter-example of figure 3.15 in which decreasing the displacement between two
curves produces an increase in the Euclidean norm. This example makes it clear that
the Euclidean norm is not suitable for ranking the closeness of curve approximations.

Invariance to re-parameterisation

It is important to note that the curve norm, as a measure of the difference between
a pair of curves, does not allow for possible re-parameterisation of one of the curves.
For example, a curve r(s), 0 ≤ s ≤ 1 could be reparameterised to give a new curve
r∗(s) = r(1−s), 0 ≤ s ≤ 1. Geometrically, the two curves are identical; the difference
between them is simply a reversal of parameterisation. We would like ideally to
measure shape differences in a way that is invariant to re-parameterisation, so that
the vector difference function r∗ − r would ideally have a norm of zero. However, the
L2 norm will not behave in this way:

‖r∗(s) − r(s)‖2 =
1
L

∫
|r(1 − s) − r(s)|2 ds 	= 0,

in general. As a result, any curve-fitting algorithm that uses the norm will be disrupted
if the parameterisation of the target curve fails to match that of the template, and
this is illustrated in figure 3.16.

60 Chapter 3

01

2

3

4
5

6 7

8

9

10

0 0.5 1

s

length scale

01

2

3

4
5

6 7

8

9

10 s

01

2

3

4

5

6
7

8

9

10

average displacement: norm= 0.22 average displacement: norm= 0.08

Figure 3.14: Measuring average displacement between curves. The pretzel curve
(top) is compared, using the norm as a measure, with two modified curves: a translation (left)
and a modest distortion (right). The values given for the norm in each case represent average
(root-mean-square) displacements for the curves, in length units as shown on the scale.

A general solution to the problem of parameterisation invariance would require
a search over possible parameterisations. The proximity of a curve r(s) to a second
curve r∗(s) could be evaluated as

min
g

‖r(s) − r∗(g(s))‖

Spline curves 61

r1 (s)

a)

r0 (s)

r2 (s)
r0 (s)

r2 (s)
r1 (s)

r0 (s)

b)

c)

Figure 3.15: Euclidean distance between control vectors is a poor measure of
curve displacement. In a) and b) two cubic spline curves r1, r2 are shown together with
their control points (crosses) and control polygons (dotted). Each is to be compared with a
standard curve r0. It is clear that, pointwise, r2 is closer to r0 than r1 is. Any reasonable
curve metric should reflect that and, sure enough, in the L2 norm, ‖r2 − r0‖ < ‖r1 − r0‖.
However it is clear from the shape of the control polygons that, in Euclidean distance, r2 is
actually further from r0 than r1 is. Euclidean distance between control vectors is therefore
ruled out as a curve metric.

62 Chapter 3

01

2

3

4
5

6 7

8

9

10

0 0.5 1

s

length scale

s

01

2

3

4

5

6
7

8

9

10
0

1

2

3
4

5

6 7 8

9

10

s

average displacement: norm= 0.08 average displacement: norm= 0.34

Figure 3.16: Norm-difference is sensitive to re-parameterisation. A substantial
change in parameterisation (right), though it gives rise to little change in shape, nonethe-
less registers a larger average displacement than the more distorted shape (left).

where the minimum is explored over some space of re-parameterisation functions g,
using an appropriate optimisation procedure. Suitably powerful optimisation proce-
dures have been developed (see the bibliographic notes at the end of this chapter) but
they are computationally costly. A more economical approach is to use a distance
measure d(r, r∗) that is invariant to minor re-parameterisation of the curve r. This is
developed later, in chapter 6. The distance measure is based on the normal displace-

Spline curves 63

ment of r relative to r∗, that is, omitting any tangential component of displacement —
the sliding of one curve along the other. It will be shown that such a distance measure
is approximately invariant and it remains to achieve a rough alignment of two curves
sufficient for the invariant distance approximation to be effective. One way of doing
this uses moments, as described below.

3.9 Areas and moments

Applications in computer vision often require the computation of gross properties
of a curve. Curve moments — area, centroid, and higher moments are useful for
computing approximate curve position and orientation, and to obtain gross shape
information sufficient for some coarse discrimination between objects.

Generally, moments have two roles in active contours. The first is initialisation, in
which a spline template is positioned sufficiently close to the tracked object to “lock”
onto it. At this stage moments may also be used for coarse shape discrimination to
confirm the identity of the object being tracked. The second role is in interpreting
the position and orientation of a tracked object, for example the 3D visual mouse in
figure 1.16 on page 20. For example, if hand motion is restricted to 3D translation and
rotation in the image plane, those four parameters can be recovered from the zeroth
moment (area) the first moment (centroid) and the second moment (inertia).

Centroid

A conventional definition for the centroid of a curve is

r =
1
L

∫ L

0
r(s) ds

which can be computed straightforwardly from the spline-vector Q using inner prod-
ucts:

r =

 〈1x,Q〉

〈1y,Q〉

 where 1x =

 1

0

 and 1y =

 0

1

 . (3.24)

This simple definition of centroid is computationally convenient but has the drawback
that it is not invariant to re-parameterisation of the curve, as figure 3.17 shows. This
is because s is not generally true arclength; it is simply a convenient spline parameter.

64 Chapter 3

01

2

3

4
5

6 7

8

9

10

centroid

0

1

2

3
4 5 6 7 8

9

10
centroid

Figure 3.17: Simple centroid is not invariant. The centroid of the pretzel curve (left),
calculated as in (3.24), shifts substantially when the curve is reparameterised (right), even
though there is almost no shape change.

Spline curves 65

The length of an infinitesimal segment of curve is not ds but |r′(s)|ds, so that an
invariant centroid of the curve would be

r =

∫ L
0 r(s)|r′(s)| ds∫ L

0 |r′(s)| ds
.

The square root implicit in |r′(s)| means that this invariant centroid cannot be com-
puted directly in terms of the spline-vector Q. An alternative invariant centroid for
closed curves is the centroid of area described below, which can be computed directly,
as a cubic function of Q. For many purposes, non-invariant moments are adequate.
For example, in a hand-tracking application the parameterisation of the tracked curve
is, typically, strongly stabilised by a template. The parameterisation of the tracked
curve does not, in practice, deviate much from the standard parameterisation inher-
ited from the template. In that case the 2D translational motion of the tracked object
can be recovered satisfactorily from the non-invariant centroid.

Invariant moments

Suppose an active contour is to be initialised from an area of pixels detected by
image processing based on brightness, colour or motion. The vector Q for the initial
configuration of the tracked curve is set by manipulating it to bring the moments of
the area enclosed by the curve into close agreement with the moments of the active
area.

The simplest available parameterisation-invariant measure for a closed curve is the
area ∫ ∣∣r(s), r′(s)∣∣ ds
where |x,y| denotes the determinant of the matrix whose columns are x,y. This is
neatly expressible as a quadratic form in Q:

A(Q) = QTAQ, (3.25)

reminiscent of the norm in (3.22) but in place of the symmetric matrix U we have:

A ≡
(B′ 0

0 −B′

)
where B′ =

∫ L

0
B(s)B′T (s) ds. (3.26)

66 Chapter 3

(Details of efficient computation of A are given in appendix A.2.) As with the matrix
U , A is 2NQ × 2NQ where

NQ = 2NB, (3.27)

the dimension of the spline space. The matrix A is sparse which makes the com-
putation of the area quadratic form relatively efficient. One direct application for
curve area computation is in visual navigation, and a picturesque example is given in
figure 3.18.

The centroid r of the area enclosed by a closed B-spline curve, which is invariant
to curve re-parameterisation, is given by

r =
1

A(Q)

∫ L

0

∣∣r(s), r′(s)∣∣ r(s) ds. (3.28)

In principle this is a useful measure for positioning, but is moderately costly — O(N3
Q)

— to compute exactly. This improves to O(N3
X) if curves are restricted to a “shape-

space” of reduced dimension NX , and this is discussed in the next chapter. Similarly,
the second moment

I =
1

A(Q)

∫ L

0

∣∣r(s), r′(s)∣∣ r(s)rT (s) ds (3.29)

is invariant and useful in principle for orienting a shape, but the computational cost
is O(N4

Q), again reduced if a shape-space is used.

Bibliographic notes

This chapter has outlined a framework for representing curves in the image plane. It
has been common both in robotics and in computer vision to represent curves alge-
braically as f(x, y) = 0 where f is a polynomial (Faverjon and Ponce, 1991; Petitjean
et al., 1992; Forsyth et al., 1990). Although such representations are often attractive
mathematically, for the purpose of constructing proofs, they are cumbersome from the
computational point of view. Practical systems using curve approximation are better
founded on B-splines. Tutorials on splines can be found in graphics books such as
(Foley et al., 1990) or in books on computer-aided design such as (Faux and Pratt,
1979). Some essential details and algorithms are given also in the appendix of this

Spline curves 67

Figure 3.18: While a travelling video camera approaches a car, a B-spline curve is locked
onto the outline of the windscreen in successive video frames. The computed windscreen area
a(t), increasing over time, can be used to estimate time-to-collision as a(t)/ȧ(t). (Figure
reproduced from (Cipolla and Blake, 1992a).)

68 Chapter 3

book. A more complete book on splines, oriented toward computer graphics is (Bar-
tels et al., 1987) and a mathematical source on spline functions (but not curves) is
(de Boor, 1978).

Splines, common in computer graphics, have also been used in computer vision for
some years, for shape-warping (Bookstein, 1989), representing corners and edges in
static scenes (Medioni and Yasumoto, 1986; Arbogast and Mohr, 1990) and for shape
approximation (Menet et al., 1990) and tracking (Cipolla and Blake, 1990).

Shape approximation using spline curves is an application of the “normal equa-
tions” for approximation problems (Press et al., 1988). Equivalently it uses a “pseudo-
inverse” (Barnett, 1990) of which the B-spline metric matrix B is a component. Func-
tion norms are a standard mathematical tool for functional approximation (Kreysig,
1988) and in signal processing (Papoulis, 1991) and image processing (Gonzales and
Wintz, 1987) for least-squares restoration problems.

Measures of curve difference that are more economical to compute than the L2

norm can be made by replacing the metric matrix with the identity to give the Eu-
clidean distance between control vectors, as done for polygons in (Cootes and Taylor,
1992). However, such measures do have some undesirable properties, as explained ear-
lier. Curve matching using norms is not invariant to re-parameterisation; matching
algorithms do exist that deal with re-parameterisation, for example ones developed
for stereoscopic image matching (Ohta and Kanade, 1985; Witkin et al., 1986) but
they are computationally expensive, too much so for use in real-time tracking systems.
This is discussed again in chapter 6.

Chapter 4

Shape-space models

In practice, it is very desirable to distinguish between the spline-vector Q ∈ SQ that
describes the basic shape of an object and the shape-vector which we denote X ∈ S,
where S is a shape-space. Whereas SQ is a vector space of B-splines and has dimension
NQ = 2NB, the shape-space SX is constructed from an underlying vector space of
dimension NX which is typically considerably smaller than NQ. The shape-space is
a linear parameterisation of the set of allowed deformations of a base curve. The
necessity for the distinction is made clear in figure 4.1. To obtain a spline that does
justice to the geometric complexity of the face shape, thirteen control points have
been used. However, if all of the resulting 26 degrees of freedom of the spline-vector
Q are manipulated arbitrarily, many uninteresting shapes are generated that are not
at all reminiscent of faces. Restricting the displacements of control points to a lower-
dimensional shape-space is more meaningful if it preserves the face-like quality of the
shape. Conversely, using the unconstrained control-vector Q leads to unstable active
contours and this was illustrated in figure 2.4 on page 31.

The requirement that a shape-space be a linear parameterisation is made for the
sake of computational simplicity. The curve-fitting and tracking procedures described
in the book are substantially simplified by linearity and in many cases exact algorithms
are available only for linear parameterisations. Linearly parameterised, image-based
models work well for rigid objects however, and for simpler non-rigid ones. Linearity
can certainly be a limitation when the allowed motions of an object become more
complex, for example a three-dimensional object with articulated parts. Articulation
can in fact be dealt with in linearly parameterised, image-based models but only at
the cost of relaxing certain geometric constraints. This is explored further in the

70 Chapter 4

modifying the configuration vector

arbitrary displacement
of control vectorQ

X
(translate-rotate-scale in this example)

control point

Figure 4.1: Configuration vector. Arbitrary manipulation of the spline-vector Q of a
spline curve is likely to be too general to be practically interesting. In this example a face curve
ceases to look face-like. What is far more interesting is a restricted class S of transformations,
parameterised by a relatively low-dimensional configuration vector X. In this case X is a
Euclidean similarity transformation which does retain the face-like character.

discussion of shape-spaces below. A more detailed discussion of the trade-off between
image-based models and three-dimensional models is given in appendix C.

4.1 Representing transformations in shape-space

Rigid motion

A simple example of a shape-space is the space of Euclidean similarities of a template
curve r0(s). This is a space of dimension 4 corresponding exactly to the variation of
an image curve as a camera with a zoom lens looks directly down on a planar object
that is free to move on a table top. The effect on the curve is that it moves rigidly in

Shape-space models 71

the image plane and may also magnify or diminish in size, but its shape is preserved,
as in figure 4.2. Alternatively it could be that the camera is able to translate in three

pretzel outline

translate horizontally translate vertically

rotate scale isotropically

Figure 4.2: Euclidean similarities. The shape-space of Euclidean similarities has 4 degrees
of freedom. They are depicted here as applied to the outline of a pretzel (the pretzel from
figure 3.13 on page 57 of the previous chapter).

72 Chapter 4

dimensions and to rotate about an axis perpendicular to the table top (something
that occurs, for example, when a camera is mounted on a “SCARA” arm, popular in
robot automation, which translates freely and rotates in the plane of the table). This
combination also sweeps out a shape-space of Euclidean similarities.

Another important shape-space is the one that arises when a planar object has
complete freedom to move in three dimensions. Its motion has 6 degrees of freedom,
three for translation and three for rotation. Provided perspective effects are not too
great, the image of a planar object contour is well described as a shape-space of planar
affine transformations, a space with dimension 6. It can be thought of as the space of
linear transformations of a template. Alternatively, it is the space of transformations
which preserves parallelism between lines. The planar affine group of transformations
is depicted in figure 4.3. Figure 4.4 illustrates how the planar affine shape-space can
enhance active contours when used appropriately. The figure shows tracking of an
outstretched hand which, being almost planar, is well modelled by a planar affine
space. The increased degree of constraint enhances immunity to distraction from
clutter in the background.

The planar affine and Euclidean similarity shape-spaces work efficiently in the
sense that the dimension of the shape-space is exactly equal to the number (six/four
respectively) of the degrees of freedom of camera movement. Unfortunately this happy
state of affairs does not persist in general because transformation groups do not neces-
sarily form vector spaces; it is not always possible to find a vector space which matches
exactly the degrees of freedom of camera/object motion. Consider the case of a cam-
era with fixed magnification, viewing a planar object moving rigidly on a table. The
image curve translates and rotates rigidly without any change of size. This is now
simply the planar Euclidean group which does not however form a vector space. To see
this, consider the template r0(s) and a copy of it rotated through 180o to give −r0(s);
when these two are added vectorially they give r0(s) + (−r0(s)) = 0 which is not a
rotated version of the template at all. The rotation operation is therefore not “closed”
under addition and therefore cannot form a vector space. Rotation and scaling taken
jointly do form a vector space, of dimension 2. Combining them with translation
gives the Euclidean similarities, of dimension 4. The smallest vector space that en-
compasses Euclidean transformations is therefore the space of Euclidean similarities.
The price of insisting on a linear representation of the Euclidean transformations is
that 4 dimensions are needed to represent 3 degrees of freedom; the resulting space is
underconstrained by one degree of freedom.

Shape-space models 73

translate horizontally translate vertically

rotate scale horizontally

scale vertically scale diagonally

Figure 4.3: Planar affine basis. The planar affine transformation group has 6 degrees of
freedom. A basis for them is depicted here, as applied to the pretzel outline from figure 4.2 on
page 71. The first three elements of the basis correspond to the first three for the Euclidean
similarities. The last three elements span a subspace that includes the fourth element —
scaling — for the Euclidean similarities and two further degrees of freedom for directional
scaling. Directional scaling occurs when a planar object, initially co-planar with the image, is
allowed to rotate about an axis that lies parallel to the image plane.

74 Chapter 4

Spline space Affine shape-space

Figure 4.4: Shape-space can impose constraints that allow background clutter to
be ignored. A test sequence of hand motion against background clutter consists of vertical
oscillation at around 0.5Hz. The tracking algorithm developed later in the book (chapter 10)
is applied over spline space and over an affine shape-space. The figure depicts snapshots after
9 seconds of tracking. It appears that the use of a planar affine shape-space confers enhanced
immunity to background clutter.

Definition of shape-space

At this stage, a more precise definition of shape-space is called for. A shape-space
S = L(W,Q0) is a linear mapping of a “shape-space vector” X ∈ R

NX to a spline-
vector Q ∈ R

NQ :
Q = WX + Q0, (4.1)

where W is a NQ ×NX “shape-matrix.” The constant offset Q0 is a template curve
against which shape variations are measured; for instance, a class of shapes consisting
of Q0 and curves close to Q0 could be expressed by restricting the shape-space S to
“small” X. The image of R

NX need not necessarily be a vector space itself but is a
“coset” — an underlying vector space {WX, X ∈ R

NX} plus an offset Q0. We talk of
the “basis” V of a shape-space meaning a basis for the underlying vector space. The
matrix W is comprised of columns which are the vectors of the basis V. In fact the two
spaces discussed in this chapter — Euclidean similarity and Affine, are vector spaces,

Shape-space models 75

because there exists an X for which Q = WX. In chapter 8 we encounter shape-spaces
whose images are not vector spaces because the offset Q0 is linearly independent of
the basis V. In fact the simplest shape-space that is not a pure vector space is the
space of translations of a template Q0.

4.2 The space of Euclidean similarities

The Euclidean similarities of a template curve r0(s) represented by Q0 form a 4-
dimensional shape-space S with shape-matrix

W =

 1

0

0

1

Qx
0

Qy
0

−Qy
0

Qx
0

 (4.2)

where the NB-vectors 0 and 1 are:

0 = (0, 0, . . . , 0)T , 1 = (1, 1, . . . , 1)T .

The first two columns of W govern horizontal and vertical translations respectively.
The third and fourth columns, made up from components of the spline-vector Q0

for the template, cover rotation and scaling. By convention, we choose Q0 to have
its centroid at the origin (< Qx

0 ,1 >=< Qy
0,1 >= 0) so that the third and fourth

columns are associated with pure rotation and scaling, free of translation. In practice
the template is obtained by fitting a spline interactively around a standard view of
the shape, and translating it so that its centroid lies over the origin.

Some examples of shape representations in the space of Euclidean similarities fol-
low.

1. X = (0, 0, 0, 0)T represents the original template shape Q0

2. X = (1, 0, 0, 0)T represents the template translated 1 unit to the right, so that,
from (4.1),

Q = Q0 +

 1

0

3. X = (0, 0, 1, 0)T represents the template doubled in size

Q = 2Q0

76 Chapter 4

4. X = (0, 0, cos θ − 1, sin θ)T represents the template rotated through angle θ:

Q =

cos θ Qx
0 − sin θ Qy

0

sin θ Qx
0 + cos θ Qy

0

 .

As an example, the lotion bottle in figure 4.5 moves rigidly from the template
configuration X = 0 in shape-space to the configuration

X = (0.465, 0.047,−0.282,−0.698)T

representing a translation through (0.465, 0.047)T , almost horizontal as the figure
shows, a magnification by a factor√

(1 − 0.282)2 + 0.6982 = 1.001

and a rotation through

arctan(1 − 0.282,−0.698) = −44.2o

— all consistent with the figure.

4.3 Planar affine shape-space

It was claimed that for a planar shape just six affine degrees of freedom are required
to describe, to a good approximation, the possible shapes of its bounding curve. The
planar affine group can be viewed as the class of all linear transformations that can
be applied to a template curve r0(s):

r(s) = u +Mr0(s), (4.3)

where u = (u1, u2)T is a two-dimensional translation vector and M is a 2× 2 matrix,
so that M,u between them represent the 6 degrees of freedom of the space. This class
can be represented as a shape-space with template Q0 and shape-matrix:

W =

 1 0 Qx

0 0 0 Qy
0

0 1 0 Qy
0 Qx

0 0

 . (4.4)

Shape-space models 77

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 4.5: Euclidean similarities. The outline of a bottle in a standard position (left)
is taken as a template for a shape-space of Euclidean similarities in which any new outline
(right) can be described. In this case the new outline is displaced and rotated relative to
template (bottom) and this is apparent from the shape-space representation — see text.

(A derivation is given below.) The first two columns of W represent horizontal and
vertical translation. As before, by convention, the template r0(s) represented by Q0

is chosen with its centroid at the origin. Then the remaining four affine motions
(figure 4.3), which do not correspond one-for-one the last four columns of W , can
however be expressed as simple linear combinations of those columns. Recall that
the shape-space transformation is Q = WX + Q0 so that the elements of X act as
weights on the columns of W . The interpretation of those weights in terms of planar

78 Chapter 4

transformations (4.3) of the template is:

X = (u1, u2,M11 − 1,M22 − 1,M21,M12)T . (4.5)

Some examples of transformations are:

1. X = (0, 0, 0, 0, 0, 0)T represents the original template shape Q0

2. X = (1, 0, 0, 0, 0, 0)T represents the template translated 1 unit to the right,

3. X = (0, 0, 1, 1, 0, 0)T represents the template doubled in size

4. X = (0, 0, cos θ − 1, cos θ − 1,− sin θ, sin θ)T represents the template rotated
through angle θ

5. X = (0, 0, 1, 0, 0, 0)T represents the template doubled in width

In practice it is convenient to arrange for the elements of the affine basis to have similar
magnitudes to improve numerical stability. If the control-vector Q0 is expressed in
pixels, for computational simplicity, the magnitudes of the last four columns of the
shape-matrix may be several hundred times larger than those of the first two, and it
is then necessary to scale the translation columns to match.

Derivation of affine basis. Using (3.19), (4.3) can be rewritten:

r(s) − r0(s) = u + (M − I)U(s)Q0.

Now using the definition (3.20) of U(s) and noting that B(s)T 1 = 1 (3.5), this becomes:

r(s) − r0(s) =

 u1BT (s)1

u2BT (s)1

+

 (M11 − 1)BT (s)Qx

0 +M12BT (s)Qy
0

M21BT (s)Qx
0 + (M22 − 1)BT (s)Qy

0

= u1U(s)

 1

0

+ u2U(s)

 0

1

+ (M11 − 1)U(s)

 Qx

0

0

+ M12U(s)

 Qy

0

0

+M21U(s)

 0

Qx
0

+ (M22 − 1)U(s)

 0

Qy
0

 .

Shape-space models 79

From (3.19),
r(s) − r0(s) = U(s)(Q − Q0)

and comparing this with the expression for r(s)− r0(s) above shows that Q−Q0 belongs to a
vector space of dimension 6, for which the rows of W in (4.4) form a basis, and furthermore,
given that Q = WX + Q0, X is composed of elements of M and u as in (4.5).

4.4 Norms and moments in a shape-space

Given that it is generally preferred to work in a shape-space S, a formula for the
curve norm is needed that applies to the shape-space parameter X. We require a
consistent definition so that, for a given space, ‖Q1 − Q2‖ = ‖X1 − X2‖. The L2

norm in shape-space S is said to be “induced” from the norm over SQ, which was
in turn induced from the L2 norm over the space of curves r(s). From (4.1), this is
achieved by defining:

‖X‖ =
√

XTHX, (4.6)

where
H = W TUW. (4.7)

The norm over S has a geometric interpretation:

‖X‖ = ‖Q − Q0‖

is the average displacement of the curve parameterised by X from the template curve.
We can also now define a natural mapping from SQ onto the shape-space S. Of course
there is in general no inverse of the mapping W in (4.1) from SQ to X but, providing
W has full rank (its columns are linearly independent), a pseudo-inverse W+ can be
defined:

X = W+(Q − Q0) where W+ = H−1W TU . (4.8)

It turns out (see chapter 6) that W+ can be naturally interpreted as an error-
minimising projection onto shape-space.

In the case of spline space, it was argued in the previous chapter, the Euclidean
norm | · | defined by |Q|2 ≡ QTQ is not as natural as the L2-norm ‖Q‖, although
the two can have approximately similar values in practice, especially when curvature
is small. Their approximate similarity derives from the fact that the metric matrix
U is banded. However, the matrix H above is dense and so the Euclidean norm |X|

80 Chapter 4

in shape-space does not approximate the induced L2-norm, and in fact |X| has no
obvious geometric interpretation. Therefore, while one might get away with using
the Euclidean norm in spline space, it is of no use at all in shape-space — only the
L2-norm will do.

Computing Area

As with the norm, the area form A(X) can be expressed in a shape-space as a function

A(X) = (WX + Q0)TA(WX + Q0)

that is quadratic in X, and whose quadratic and linear terms involve just NX(NX +
3)/2 coefficients so that, in the case of Euclidean similarity, there are just 14 indepen-
dent coefficients.

Centroid and inertia

The centroid r of the area enclosed by a closed B-spline curve ((3.28) on page 66) is a
symmetric cubic function of the configuration X. Such a function has O((NX)3) terms
which is obviously large for larger shape-spaces, but works out to be just 20 terms in
the case of Euclidean similarities — quite practical to compute. (The exact formula
for the number of terms is NX(NX + 1)(NX + 2)/6.) The invariant second moment
or inertia matrix ((3.29) on page 66) could be expressed in terms of a symmetric
quartic form which, surprisingly, has only 23 terms in the case of Euclidean similarity
(NX = 4) but of course this number is O((NX)4) in general. In cases where the size
of the configuration space is too large for efficient computation of invariant moments,
the alternative is to compute them by numerical integration.

Finally, note that there is an important special case in which invariant moments
are easily computed. The special properties of the affine space mean that moments
can be computed efficiently under affine transformations. For instance, although the
invariant second moment for a 6-dimensional shape-space turns out generally to be a
quartic polynomial with 101 terms, in the affine space it can be computed simply as
a product of three 2 × 2 matrices:

I = MI0M
T

where I0 is the inertia matrix of the template, computed numerically from (3.28) on
page 66. Similarly, for area:

A = (detM)A0.

Shape-space models 81

Note that I represents only 3 constraints on M and one of those is duplicated by the
area A. So I, r and A between them give only 5 constraints on the 6 affine degrees of
freedom. It would be necessary to compute higher moments to fix all 6 constraints.
On the other hand, those moments up to second-order are sufficient to fix a vector in
the space of Euclidean similarities.

Using moments for initialisation

For the Euclidean similarities, a shape-vector X can be recovered from the moments
up to second order, as follows.

1. The displacement of the centroid r gives the translational component of X.

2. The scaling is given by
√
A/A0.

3. The rotation is the angle θ through which the largest eigenvector of I rotates.

This procedure is illustrated in figure 4.6 below. In the illustration given here, mo-
ments were computed over a foreground patch segmented from the background on the
basis of colour. An effective method for certain problems such as vehicle tracking, in
which the foreground moves over a stationary background, is to use image motion.
So-called “optical flow” is computed over the image, and a region of moving pixels is
delineated. Either a snake may be wrapped around this region directly or, in a shape-
space, moments can be computed for initialisation as above. Background subtraction
methods are also useful here — see chapter 5 for an explanation.

4.5 Perspective and weak perspective

The next task is to set up notation for perspective projection in order to show that,
under modest approximations, the set of possible shapes of image contours do indeed
form affine spaces. Standard camera geometry is shown in figure 4.7 and leads to
the following relationship between a three-dimensional object contour R(s) and its
two-dimensional image r(s):

r(s) =
f

Z(s)

 X(s)

Y (s)

 where R(s) =

X(s)

Y (s)

Z(s)

 . (4.9)

82 Chapter 4

Figure 4.6: A contour is initialised using moments. An image (left) (colour version
in figure 1.6 on page 10) is processed using straightforward colour segmentation to obtain an
interior region (right). Moments of the outline are calculated; the second moment is shown
as an ellipse (bottom) and used to initialise a curve in a shape-space of Euclidean similarities
(grey curve).

Shape-space models 83

Image curve r(s)

Object contour R(s)

f

z

y

x

Figure 4.7: It is a universally accepted fiction that, contrary to the layout of real cameras,
the centre of projection in a mathematical camera is taken to lie behind the image plane. The
focal length is f , measured in the same units as x, y and z, say mm for convenience.

The 1/Z term is intuitively reasonable as it represents the tendency of objects to
appear smaller as they recede from the camera. However, it makes the projection
function non-linear which is problematic given that shape-spaces, being vector spaces,
imply linearity. Fortunately there are well-established methods for making good linear
approximations to perspective. The most general of these is the weak perspective
projection.

Note that a good approximate value for f can be obtained simply by using the
nominal value usually printed on the side of a lens housing, which we denote f∞. To
a first approximation, f = f∞, but a better one, taking into account the working
distance Zc, is

f = f∞
(

1 − f∞
Zc

)−1

. (4.10)

Since image positions x, y available to a computer are measured in units of pixels
relative to one corner of the camera array, a scale factor is needed to convert pixel
units into length units (mm). This can be done quite effectively by taking a picture,

84 Chapter 4

as in figure 4.8, of a ruler lying in a plane parallel to the image plane. Moving a

200mm = 597 pixels

Figure 4.8: A simple camera calibration procedure. The ruler is set at a distance
1060mm from the camera iris.

cursor over the image shows that 597 pixels corresponds to 200 mm at a distance of
Zc = 1060 mm from the camera iris, and the nominal focal length is f∞ = 25 mm.
From (4.10) we have f = 25.6 mm, and the scaling factor for distance x on the image
plane is

200
597

f

Zc
mm/pixel =

200
597

25.6
1060

mm/pixel = 8.09 × 10−3 mm/pixel.

(This puts the width of the entire physical camera array of 768 pixels at 768× 8.09×
10−3 mm or 6.21 mm which is a very reasonable figure). Of course, for cameras whose
pixels are not square, this procedure must be repeated in the vertical direction to
calculate the vertical scaling factor.

Finally, note that more precise calculations, including allowances for minor me-
chanical defects such as asymmetry of lens placement with respect to the image array,
can be made precisely using automatic but somewhat involved “camera calibration”
procedures. However, the simple procedure above has proved sufficient for active
contour interpretation, in most cases.

Weak Perspective

The weak perspective approximation is valid provided that the three-dimensional ob-
ject is bounded so that its diameter is small compared with the distance from camera
to object. Taking Rc = (Xc, Yc, Zc)T to be a point close to the object — think of it
as the object’s centre, replace R(s) in the projection formula by Rc + R(s) and then
the assumption about object diameter can be written as

|R(s)| � Zc ∀ s. (4.11)

Shape-space models 85

A useful alternative form of the assumption is that the subtended angle of the image
contour is much less than 1 radian when viewed from any aspect.

That assumption can now be used in the perspective equation (4.9) to give the
weak perspective projection:

r(s) =
f

Zc

 Xc

Yc

+

 X(s)

Y (s)

− Z(s)

Zc

 Xc

Yc

 (4.12)

which is linear in R(s) and approximates perspective projection to first order in
|R(s)|/Zc. The tendency of image size to diminish as an object recedes is present
in the f/Zc term, now approximated to an “average” value for a given object. As
individual points of R(s) recede they tend to move towards the centre of the image
and the third term expresses this. In typical views, the approximation works well,
as figure 4.9 shows. If, in addition to the camera having a large field of view, the
object also fills that field of view, then errors in the weak perspective approximation
become significant. That is not a situation that commonly arises in object tracking
however. If the camera is mounted on a pan-tilt head, the camera’s field of view is
likely to be narrow in order to obtain the improved resolution that the movable head
allows. Alternatively, when the camera is fixed, the image diameter is likely to be
several times smaller than the field of view to allow for object movement. Since the
field of view of a wide-angle camera lens is of the order of 1 radian, it follows that
object diameter is likely to be considerably less than 1 radian, precisely the condition
for the weak perspective approximation to hold good.

Orthographic projection

For a camera with a narrow field of view (substantially less than one radian) it can
further be assumed, in addition to the assumption (4.11) about object diameter, that

|Xc| � Zc and |Yc| � Zc (4.13)

— simply the condition that the contour centre is close enough to the centre of the
image for the object actually to be visible. In that case, the third term in (4.12) is
negligible and image perspective is well approximated by the orthographic projection

r(s) =
f

Zc

 Xc +X(s)

Yc + Y (s)

 . (4.14)

86 Chapter 4

(a) (b)

mismatch

(c) (d)

Figure 4.9: The weak perspective approximation is normally accurate. (a–c) This
image of a hand being tracked in a camera with a wide field of view shows that the weak
perspective image of the hand outline closely approximates the true perspective image. (d)
Under extreme viewing conditions, when perspective effects are strong, approximation error
may be appreciable, visible here as the mismatch of the curve around the fingers.

Shape-space models 87

Suppose the object contour Rc + R(s) derives from a contour R0(s) in a base
coordinate frame which has then been rotated to give R(s) = RR0(s) and translated
through Rc, so that R,Rc are parameters for three-dimensional motion. Suppose
also that the object is planar so (without loss of generality) Z0(s) = 0. Then the
orthographic projection equation becomes

r(s) = u +
f

Zc
R2×2

 X0(s)

Y0(s)

where u is the orthographic projection of the three-dimensional displacement vector
Rc and R2×2 is the upper-left 2 × 2 block of the rotation matrix R. Finally, take
M = (f/Zc)R2×2 and adopt the convention that Zc = f in the standard view so that

r0(s) = (X0(s), Y0(s))T

is the image template. This gives a general planar affine transformation as in (4.3),
so the image of a planar object moving rigidly in three dimensions does indeed sweep
out a planar affine shape-space.

If the orthographic constraint (4.13) is relaxed again, to allow general weak per-
spective, it turns out that, when R(s) is planar, r(s) still inhabits the planar affine
shape-space. Later we return to weak perspective for a general analysis of planar affine
configurations, in particular to work out the three-dimensional pose of an object from
its affine coordinates. This is used, for example, to calculate the three-dimensional
position and attitude of the hand in the mouse application of figure 1.16 on page 20.
That general method of pose calculation will work even when the camera is positioned
obliquely relative to table-top coordinates and when the hand moves over the whole
of a wide field of view.

4.6 Three-dimensional affine shape-space

Shape-space for a non-planar object is derived as a modest extension of the planar
case. The object concerned should be visualised as a piece of bent wire, rather than a
smooth three-dimensional surface. Smooth surfaces are, of course, of great interest but
shape-space treatment is more difficult because of the complex geometrical behaviour
of silhouettes. The bent wire model also implies freedom from hidden lines; the
approach described here deals with parallax effects arising from three-dimensional

88 Chapter 4

shape but not with the problem of “occlusion” for which additional machinery is
needed.

Clearly the 6-dimensional planar affine shape-space cannot be expected to suffice
for non-planar surfaces and this is illustrated in figure 4.10. The new shape-space is

Figure 4.10: The views of a general three-dimensional contour cannot be en-
compassed by a planar affine shape-space. A planar affine space of contours has been
generated from the outline of the first view of the cube. The outlines of subsequent views do not
however lie in the space, as evidenced by the visible mismatch in the fitted contours. (Figure
reprinted from (Curwen, 1993).) A similar effect is observed with the leaves.

“three-dimensional affine” with 8 degrees of freedom, made up of the six-parameter
planar affine space and a two-parameter extension. Consider the object to be a three-

Shape-space models 89

dimensional curve
R0(s) = (X0(s), Y0(s), Z0(s))T

which is projected orthographically as in (4.14) to give an image curve

r(s) = u +
f

Zc
R2×3

X0(s)

Y0(s)

Z0(s)

and this can be expressed as the standard planar affine transformation (u,M) of (4.3)
with an additional depth-dependent term:

r(s) = u +Mr0(s) + vZ0(s) (4.15)

where
R2×3 =

Zc

f
(M | v) . (4.16)

The three-dimensional shape-space therefore consists of the two-dimensional one for
the planar affine space generated by template Q0, with two added components to
account for the depth variation that is not visible in the template view. The two
additional basis elements are:

V ′ =

 Qz

0

0

 ,

 0

Qz
0

 .

The extra two elements are tacked onto the planar affine W -matrix (4.4) to form the
W -matrix for the three-dimensional case:

W =

 1 0 Qx

0 0 0 Qy
0 Qz

0 0

0 1 0 Qy
0 Qx

0 0 0 Qz
0

 . (4.17)

Just as equation (4.5) provided a conversion from the planar affine shape-space to the
real-world transformation, the three-dimensional affine shape-space components have
the following interpretation:

X = (u1, u2,M11 − 1,M22 − 1,M21,M12, v1, v2). (4.18)

The expanded space now encompasses the outlines of all views of the three-dimensional
outline as figure 4.11 shows. Automatic methods for determining Qz

0 from example
views are discussed in chapter 7.

90 Chapter 4

Figure 4.11: Three-dimensional affine shape-space. The outlines of views of a cube
which could not be contained in a planar affine shape-space now fall within a suitably con-
structed 3D affine space. (Figure reprinted from (Curwen, 1993).) Similarly, the non-planar
arrangement of leaves is happily encompassed by a 3D affine space.

4.7 Key-frames

Affine spaces are appropriate shape-spaces for modelling the appearance of three-
dimensional rigid body motion. In many applications, for instance facial animation,
speech-reading and cardiac ultrasound, as described in chapter 1, motion is decidedly
non-rigid. In the absence of any prior analytical description of the motion, the most
effective strategy is to learn a shape-space from a training set of sample motion. A
general approach to this, based on statistical modelling, is described in chapter 8.

Shape-space models 91

In the meantime, a simpler methodology is presented here, based on “key-frames” or
representative image outlines of the moving shape. Often, an effective shape-space
can be built by linear combination of such key-frames.

As an example, in figure 4.12, a sequence of three frames is shown which can be
used to build a simple shape-space in which the first frame Q0 acts as the template
and the shape-matrix W is constructed from the two key-frames Q′

1,Q
′
2:

W =

 Qx

1 Qx
2

Qy
1 Qy

2

 . (4.19)

where Qi = Q′
i −Q0. This two-dimensional shape-space is sufficient to span all linear

Template Q0 Key-frame: opening Q1 Key-frame: protrusion Q2

Figure 4.12: Key-frames. Lips template followed by two key-frames, representing inter-
actively tracked lips in characteristic positions. The key-frames are combined linearly with
appropriate rigid degrees of freedom, to give a shape-space suitable for use in a tracker for
non-rigid motion.

combinations of the three frames. What is more, the shape-space coordinates have
clear interpretations, for example:

• X = (0, 0)T represents the closed mouth;

92 Chapter 4

• X = (1/2, 0)T represents the half-open mouth;

• X = (1/4, 1/2)T represents the mouth, half-protruding and slightly open.

A little more ambitiously, the same three frames can be used to build a more versatile
shape-space that allows for translation, zooming and rotation of any of the expres-
sions from the simple two-dimensional shape-space. Minimally, this should require
2 parameters for expression plus 4 for Euclidean similarity, a total of 6 parameters.
However, the linearity of shape-space leads to a wastage of 2 degrees of freedom and
the shape-space is 8-dimensional with template Q0 as before and shape-matrix

W =

 1

0

0

1

Qx
0

Qy
0

−Qy
0

Qx
0

Qx
1

Qy
1

−Qy
1

Qx
1

Qx
2

Qy
2

−Qy
2

Qx
2

 . (4.20)

This is based on the shape-matrix for Euclidean similarities (4.2) on page 75, extended
to all three frames. Again, expressions are naturally represented by the shape-vector,
for example:

• X = (u, 0, 0, 0, 1, 0, 0, 0)T represents the fully open mouth, shifted to the right
by u;

• X = (0, 0, cos θ− 1, sin θ, 0, 0, 1
2 cos θ, 1

2 sin θ)T represents the closed mouth, half-
protruding and rotated through an angle θ.

Of course this technique, illustrated here for 2 key-frames under Euclidean simi-
larity, does apply to an arbitrary number of key-frames, and a general space of rigid
transformations spanned by a set {T j , j = 1, . . . , Nr}. In that case any contour cor-
responding to the appearance of ith key-frame is composed of a linear combination of
contours

Q1
i ,Q

2
i , . . . ,Q

Nr
i ,

for an Nr-dimensional space of rigid transformations. Then the W -matrix is composed
of columns which are vectors Qj

i , i = 0, 1, . . . , j = 1, 2, . . . , Nr. To avoid introduc-
ing linear dependencies into the W -matrix, it is best to omit translation from the
space of rigid transformations and treat it separately, as in the two key-frame exam-
ple above. Then the W-matrix for the composite shape-space of rigid and non-rigid
transformations is

W =

 1

0

0

1
Q1

0 Q2
0 . . . Q1

1 Q2
1 . . .

 . (4.21)

Shape-space models 93

One final caveat is in order. With Nr degrees of transformational freedom (exclud-
ing translation) and Nk key-frames, there are a total of Nr + Nk degrees of freedom
in the system. However the linear representation as a shape-space with a W -matrix
as above has dimension Nr × (Nk + 1), a “wastage” of Nk(Nr − 1) degrees of free-
dom. The two key-frame example above has Nr = 2, Nk = 2 so the wastage is just
2 degrees of freedom, in a shape-space of total dimension 8 (including translation).
With more key-frames and larger transformational spaces such as three-dimensional
affine (Nr = 6), the wastage is more severe — 5 degrees of freedom per key-frame. In
such cases, the constructed shape-space is likely to be too big for efficient or robust
contour fitting. However, it is often possible to construct a smaller space by other
means such as “PCA” (chapter 8) and use the large shape-space constructed as above
for interpretation. In particular, shape displacements can be factored into components
due to rigid and non-rigid transformations respectively, and this is explained at the
end of chapter 7.

4.8 Articulated motion

When an object (e.g. a hand) is allowed, in addition to its freedom to move rigidly, to
support articulated bodies (fingers), more general shape-spaces are needed. Clearly,
one route is to take a kinematic model in the style used in robotics for multi-jointed
arms and hands and use it as the basis of a configuration space. The advantage
is that the resulting configuration space represents legal motions efficiently because
the configuration space has minimal dimension. The drawback is that the resulting
measurement models (see next chapter) are non-linear. This is due to trigonomet-
ric non-linearities as in the previous section on rigid motion but exacerbated by the
hinges added onto the base body. The result is that classical linear Kalman filtering
is no longer usable, though non-linear variants exist which are not however probabilis-
tically rigorous. Furthermore, linear state-spaces admit motion models which apply
globally throughout the space. In a non-linear space, motion models could perhaps be
represented as a set of local linear models in tangent spaces placed strategically over
a manifold. This is hard enough to represent and the task of learning such models
seems a little daunting.

As with rigid motion, there is a way to avoid the non-linearities by generating
appropriate shape-spaces. Again, there is some inefficiency in doing this and the
resulting space underconstrains the modelled motion. The degree of wastage depends

94 Chapter 4

on the precise nature of the hinging of appendages, and this is summarised in the
below. Proofs are not given here, but there is a more detailed discussion in appendix C.

Two-dimensional hinge

For a body in two dimensions, or equivalently a three-dimensional body con-
strained to lie on a plane, each additional hinged appendage increments the
dimension of shape-space by 2, despite adding only one degree of kinematic
freedom. Hence the wastage amounts to 1 degree of freedom per appendage.

Two-dimensional telescopic appendage

Still in two dimensions, each telescopic element added to the rigid body in-
crements the shape-space dimension by 2, causing a wastage of one degree of
freedom, as for the hinge.

Hinges on a planar body in three dimensions

The rigid planar body above, with its co-planar hinged appendages, is now
allowed to move out of the ground plane, so that it can adopt any three-
dimensional configuration. Each hinged appendage now adds 4 to the dimension
of shape-space, resulting in the wastage of 3 degrees of freedom.

Universal joints on a rigid three-dimensional body

Given a three-dimensional rigid body, whose shape-space is 3D affine, each ap-
pendage attached with full rotational freedom (via a ball joint, for instance)
increments the dimension of shape-space by 6. Such an appendage introduce 3
kinematic degrees of freedom, so the wastage is 3.

Hinges on a rigid three-dimensional body

For appendages attached to the three-dimensional body by planar hinges, with
just 1 kinematic degree of freedom, the dimension of shape-space increases by
4, so again the wastage is 3 degrees of freedom per appendage.

Note that the above results hold regardless of how the appendages are attached —
whether directly to the main body (parallel), or in a chain (serial) or a combination
of the two.

Shape-space models 95

Bibliographic notes

This chapter has explained how shape-spaces can be constructed for various classes of
motion. The value of shape-spaces of modest dimensionality was illustrated in (Blake
et al., 1993) as a cure to the instability that can arise in tracking with high-dimensional
representations of curves such as the original finite-element snake (Kass et al., 1987) or
unconstrained B-splines (Menet et al., 1990; Curwen and Blake, 1992). Shape-spaces
are linear, parametric models in image-space, but non-linear models or deformable
templates are also powerful tools (Fischler and Elschlager, 1973; Yuille, 1990; Yuille
and Hallinan, 1992). Linear shape-spaces have been used effectively in recognition
(Murase and Nayar, 1995). Shape-spaces discussed so far have been image-based but
a related topic is the use of three-dimensional parametric models for tracking, either
rigid (Harris, 1992b) or non-rigid (Terzopoulos and Waters, 1990; Terzopoulos and
Metaxas, 1991; Lowe, 1991; Rehg and Kanade, 1994).

Initialisation from moments is discussed in (Blake and Marinos, 1990; Wildenberg,
1997) and the use of 3rd moments to recover a full planar affine transformation is
described in (Cipolla and Blake, 1992a). In some circumstances, region-based optical
flow computation (Buxton and Buxton, 1983; Horn and Schunk, 1981; Nagel, 1983;
Horn, 1986; Nagel and Enkelmann, 1986; Enkelmann, 1986; Heeger, 1987; Bulthoff
et al., 1989) can be used to define the region for snake initialisation. This has been
shown to be particularly effective with traffic surveillance (Koller et al., 1994).

Shape-spaces are based on perspective projection and its linear approximations in
terms of vector spaces (Strang, 1986). Mathematically, projective geometry is a some-
what old-fashioned topic and so the standard textbook (Semple and Kneebone, 1952)
is rather old-fashioned too. More accessible, is a graphics book such as (Foley et al.,
1990) for the basics of camera geometry and perspective transformations. Computer
vision has been concerned with camera calibration (Tsai, 1987) in which test images
of grids are analysed to deduce the projective parameters for a particular camera, in-
cluding both extrinsic parameters (the camera-to-world transformation) and intrinsic
parameters such as focal length.

The most general linear approximation to perspective is known variously as para-
perspective (Aloimonos, 1990) or weak perspective (Mundy and Zisserman, 1992) and
can be particularly effective if separate approximations are constructed for differ-
ent neighbourhoods of an image (Lawn and Cipolla, 1994). The gamut of possible
appearances of three-dimensional contours under a particular weak perspective trans-
formation forms an affine space (Ullman and Basri, 1991; Koenderink and van Doorn,

96 Chapter 4

1991). This idea led to a series of studies on using affine models to analyse motion,
including (Harris, 1990; Demey et al., 1992; Bergen et al., 1992a; Reid and Murray,
1993; Bascle and Deriche, 1995; Black and Yacoob, 1995; Ivins and Porrill, 1995;
Shapiro et al., 1995).

The first three chapters of (Faugeras, 1993) are an excellent introduction to pro-
jective and affine geometry and to camera calibration.

Articulated structures are most naturally described in terms of non-linear kine-
matics (Craig, 1986) in which the non-linearities arise from the trigonometry of rotary
joints. Such a model has been incorporated into a hand tracker, for instance (Rehg and
Kanade, 1994), in which the articulation the fingers is full treated. Articulated struc-
tures can be embedded in linear shape-spaces but this can be very “inefficient,” in the
sense of section 4.1, that kinematic constraints have to be relaxed — see appendix C.

Finally, smooth silhouette curves and their shape-spaces are beyond the scope of
this book. However, it can be shown that a shape-space of dimension 11 is appropriate.
This shape-space representation of the curve is an approximation, valid for sufficiently
small changes of viewpoint. Its validity follows from results in the computer vision
literature about the projection of silhouettes into images (Giblin and Weiss, 1987;
Blake and Cipolla, 1990; Vaillant, 1990; Koenderink, 1990; Cipolla and Blake, 1992b).

Chapter 5

Image processing techniques for
feature location

The use of image-filtering operations to highlight image features was illustrated in
chapter 2. Figure 2.1 on page 27 illustrated operators for emphasising edges, valleys
and ridges, and it was shown how the emphasised image could be used as a landscape
for a snake. However, for efficiency, the deformable templates described in the next
two chapters are driven towards a distinguished feature curve rf (s) rather than over
the entire image landscape F that is used in the snake model. This is rather like
making a quadratic approximation to the external snake energy:

Eext ∝ −F (r) ∝
∫

(r(s) − rf (s))2 ds, (5.1)

where rf (s) lies along a ridge of the feature-map function F . The increase in efficiency
comes from being able to move directly to the curve rf , rather than having to iterate
towards it as in the original snake algorithm described in section 2.1.

It is therefore necessary to extract rf (s) from an image. One way of doing this
is to mark high strength values on the feature maps and group them to form point
sets to which spline curves could be fitted. An example of feature curves grouped in
this way was given, for edge-features, in figure 3.1 on page 42. However, the wholesale
application of filters across entire images is excessively computationally costly. At any
given instant, an estimate is available of the position of a tracked image-contour and
this can be used to define a “search-region,” in which the corresponding image feature
is likely to lie. Image processing can then effectively be restricted to this search region,

98 Chapter 5

Figure 5.1: Search region. It is computationally efficient to restrict image processing
operations to lie within a “region of interest” (dashed lines), one either side of the currently
estimated contour position (solid line). Image processing operations are then performed along
certain lines passing through the estimated contour. In this example, the lines are normals to
the estimated curve, three of which are shown as arrowed white lines.

as in figure 5.1. The search region displayed in the figure is formed there by sweeping
normal vectors of a chosen length along the entire contour. Features can then be
detected by performing image filtering along each of the sampled normals, and this
is very efficient. If normals are constructed at points s = si, i = 1, . . . , N , along the
curve r(s), this will give a sequence of sampled points rf (si), i = 1, . . . , N along the
feature curve rf (s). It is of course possible that more than one feature may be found
on each normal, but for now it is assumed that just one — the favourite feature — is
retained.

Image processing techniques for feature location 99

5.1 Linear scanning

In order to perform one-dimensional image processing, image intensity is sampled at
regularly spaced intervals along each image normal. An arbitrarily placed normal line
generally intersects image pixels in an irregular fashion, as in figure 5.2. This is well

Figure 5.2: Irregular image sampling. Listing the intensities of pixels crossed by a normal
line would result in a non-uniform sampling of intensity that would suffer abrupt variations
as the line moved over the image.

known to produce undesirable artifacts in Computer graphics — “jaggies” in static
images and twinkling effects in moving ones, for which the usual cure is “anti-aliasing.”
Unlike graphics, in which the task is to map from a mathematical line onto pixels, the
problem here is to generate the opposite mapping, from image to line. This calls for
a sampling scheme of its own.

An effective sampling scheme, spatially regular and temporally smooth (when the
line moves) involves interpolation as follows. A sequence of regularly spaced sample
points are chosen along the line. The intensity I at a particular sample point (x, y) is
computed as a weighted sum of the intensities at 4 neighbouring pixels, as in figure 5.3.
A pixel with centre sited at integer coordinates (i, j) has intensity Ii,j . The intensity

100 Chapter 5

i i+1

(x,y)
j

j+1

Figure 5.3: Interpolated image sampling. The intensity at a chosen sampling point
(x, y) is computed as a weighted sum of the intensities at the four immediately adjacent pixels.

I at (x, y) is then computed by bilinear interpolation:

I =
∑
i,j

wi,jIi,j (5.2)

with weights

wi,j =

 (1 − |x− i|)(1 − |y − j|) if |x− i| < 1 and |y − j| < 1

0 otherwise
(5.3)

so that at most four pixels, the ones whose centres are closest to (x, y), have non-zero
weights, as the figure depicts.

5.2 Image filtering

Analysis of image intensities now concentrates on the one-dimensional signals along
normals. The intensity I(x) along a particular normal is sampled regularly at x = xi

Image processing techniques for feature location 101

and intensities are stored in an array Ii = I(xi), i = 1, . . . , N . A variety of feature
detection operators can be applied to the line, popular ones being edges, valleys and
ridges. Features are located by applying an appropriate operator or mask Cn, −NC ≤
n ≤ NC , by discrete convolution, to the sampled intensity signal In, 1 ≤ n ≤ NI , to
give a feature-strength signal

En =
NC∑

m=−NC

CmIn+m.

Maxima of that signal are then located, and marked wherever the value at that maxi-
mum exceeds a preset threshold (chosen to exclude spurious, noise-generated maxima).
This is illustrated for edges in figure 5.4 and for valleys in figure 5.5.

Corners

Effective operators for corners also exist and have been used for visual tracking. How-
ever, corners do not quite fit into the search paradigm described here. Being discrete
points, a corner is likely to be missed by search along normals unless it happens to
lie exactly on some normal; more generally it will be located in the gap between two
adjacent normals. This problem does not arise with edges because they are extended
and should generally intersect one or more of the normals. If corners are to be used
they must be located by an exhaustive search over the region of interest, which is
rather more expensive computationally than a search that is restricted to normals.

One operator, the “Harris” corner detector, works by computing a discrete ap-
proximation to the moment matrix

S(x, y) =
∫
G(x′, y′)[∇I(x+ x′, y + y′)][∇I(x+ x′, y + y′)]T dx′ dy′

at each image point (x, y), where ∇I = (∂I/∂x, ∂I/∂y)T , the image-gradient vector at
a point, and G is a two-dimensional Gaussian mask for smoothing, typically 2–4 pixels
in diameter. The trace tr(S) and the determinant det(S) are examined at each point
(x, y). Wherever tr(S) exceeds some threshold, signaling a significantly large image
gradient, and also the ratio tr(S)/2

√
det(S) is sufficiently close to its lower bound of

1, a corner feature is marked. The Harris detector responds reliably to objects that are
largely polyhedral, marking corners that are likely to be stable to changing viewpoint.
Natural shapes (figure 5.6) may however fire the corner detector in locations that are

102 Chapter 5

operator

-2 2

1

0

-1
0 97

x

intensity

edge
strength

0 97

threshold

Figure 5.4: Operator for edge detection The problem is to search along a line in an
image (top) to find edges — locations where contrast is high. An operator (left, shown on an
expanded length scale) is convolved with the image intensity function along the line (right).
One edge is found, corresponding to a maximum of the feature-strength function (bottom).

Image processing techniques for feature location 103

operator

-4 4

1

0

-1
0 66

x

intensity

feature
strength

0 66

threshold

Figure 5.5: Operator for valley detection The problem is to search along a line in
an image (top) to find valleys — locations of minimum intensity. The valley operator (left)
convolved with the intensity signal (right) produces a ridge (bottom) corresponding to the dark
line between adjacent fingers.

104 Chapter 5

Figure 5.6: Corner detection. The corner detector fires reliably at sharp, polyhedral
corners and junctions. It also fires on certain other features such as tighter curves, but with
less spatial accuracy and reliability. (Figures courtesy of Andrew Fitzgibbon).

hard to predict and may be unstable under changing viewpoint. Not surprisingly, it
works best where there are well-defined geometrical features, such as on buildings.
On a natural object such as a face, the response is a mixture of reasonably reliable
features at eye corners and other less reliable responses on curves.

5.3 Using colour

Colour in images is a valuable source of information especially where contrast is weak,
as in discriminating lips from facial skin. Colour information is commonly presented
as a vector I = (r, g, b) of red-green-blue values, at each pixel. The most economical
way to treat the colour vector is to reduce it to a single value by computing a suitable
scalar function of I. The scalar I can then be treated as a single intensity value

Image processing techniques for feature location 105

and subjected to the same image-feature operators as were used above, for processing
monochrome images. Two scalar functions are described here: one that is general,
the hue function and one that is customised — learned from training data, the Fisher
linear discriminant.

The hue function is used commonly to represent colour in graphics, vision and
colorimetry and corresponds roughly to the polar angle for polar coordinates in r, g, b-
space. It separates out what is roughly a correlate of spectral colour — i.e. colour
wavelength — from two other colour components: intensity (overall brightness) and
saturation (“colouredness” as opposed to whiteness). This explains why it is particu-
larly effective when contrast is low so that changes in intensity (r+ g+ b) are hard to
perceive. Hue is defined as follows

hue(r, g, b) = arctan
(
(2r − g − b),

√
3(g − b)

)
. (5.4)

Note that there is a linear “hexcone” approximation to the hue function for appli-
cations where it is important to compute it fast, for example to convert entire video
images.

The Fisher linear discriminant is an alternative scalar function that attempts to
represent as much of the relevant colour information as possible in a single scalar value.
Its efficiency is optimal in certain sense, but this comes at the cost of re-deriving the
function, in a learning step, for each new application. Learning is straightforward and
works as follows. First, a foreground area F and a background area B are delineated
in a training image. For instance, in figure 5.7, F would be the lip region and B would
be part of the immediate surround. The Fisher discriminant function is defined as a
simple scalar product:

fisher(I) = f · I where I = (r, g, b)T . (5.5)

The function is learned from the foreground and background areas F and B by the
algorithm of figure 5.8, which determines the coefficient vector f . The effect of the
algorithm is to choose the vector f in colour (r, g, b) space which best separates the
background and foreground populations of colours. When the Fisher function is used
in place of intensity, feature detection works effectively, as figure 5.7 shows.

5.4 Correlation matching

The oldest idea in visual matching and tracking, and one that is widely used in
practical tracking systems, is correlation. Given a template T in the form of a small

106 Chapter 5

Figure 5.7: Detecting colour boundaries. Contrast between lip and skin can be lost if
only intensity (top) is extracted from a colour image; this is especially so for the lower lip in
this example. The hue function (left) shows improved contrast, but is rather noisy, and this
tends to disturb the operation of an active contour by generating spurious clutter. A better
solution is the Fisher discriminant function (right). In this example, colour is to be used
to locate lip boundaries. A colour training image is used to learn the Fisher discriminant
function. (Figures courtesy of Robert Kaucic.)

array of image intensities, the aim is to find the likely locations of that template in
some larger test image I. In one dimension for example, with image I(x) and template
T (x), 0 ≤ x ≤ ∆, the problem is to find the offset x′ for which T (x) best matches
I(x + x′) over the range 0 ≤ x ≤ ∆ of the template. This is most naturally done by

Image processing techniques for feature location 107

1. Calculate the mean pixel values in each class

IF =
1
NF

∑
(x,y)∈F

I(x, y)

IB =
1
NB

∑
(x,y)∈B

I(x, y)

2. Determine the within class scatter matrices

SF =
∑

(x,y)∈F

(I(x, y) − IF)(I(x, y) − IF)T

SB =
∑

(x,y)∈B

(I(x, y) − IB)(I(x, y) − IB)T

3. Find the Fisher discriminant vector

f = S−1(IF − IB) where S = SF + SB.

Figure 5.8: Learning the Fisher discriminant function. A discriminant vector f is
computed from the foreground F and background B populations of pixels, aiming to separate
foreground optimally from background.

minimising a difference measure such as

M(x′) =
∫ ∆

x=0
(I(x+ x′) − T (x))2 dx (5.6)

with respect to x′. In practice this theoretical measure must be computed as a sum
over image pixels.

An illustration is given in figure 5.9 in which the problem is to locate the position
of the eyebrow along a particular line. A template T is available that represents an
ideal distribution of intensity along a cross-section located in a standard position. The
task is to find the position on the line which best corresponds to the given intensity

108 Chapter 5

0 160

x

template T(x)

0 160

x

intensity I(x)

0 160

x

difference M(x)

threshold

Figure 5.9: One-dimensional correlation matching. The problem is to search along a
line in an image (top) to find the position of an eye. A template (left) of the cross-section of
an eye is to be matched with the image intensity function along the line (right). The correct
position is marked by the minimum of the matching function (bottom). Figure courtesy of
Robert Kaucic.

Image processing techniques for feature location 109

template, and this is achieved by minimising M(x) as above. The nomenclature
“correlation” derives from the idea that in the case that T (x) and I(x) span the
same x-interval, and are periodic, minimising M(x) is equivalent to maximising the
“mathematical correlation” ∫ ∆

x=0
I(x+ x′)T (x) dx. (5.7)

Correlation matching can be used to considerable effect as a generalised substitute
for edge and valley location. Position of the located feature along each normal can
be reported in the same way as for edges and used for curve matching. This can be
particularly effective in problems where image contrast is poor. In the lip-tracking
application of figure 1.10 on page 14, tracking without lip make-up proved possible
only when edge detection was replaced by correlation.

There are numerous variations on the basic theme (see bibliographic notes, at the
end of the chapter). One variation is to pre-process I(x), for example to emphasise
its spatial derivative, which tends to generate a sharper valley in M(x′), which can
then be located more accurately. More modern approaches dispense with intensities
altogether, representing I and T simply as lists of the positions of prominent features.
The problem then is to match those lists, using discrete algorithms. This has the
advantage of efficiency because of the data-compression involved in reducing the in-
tensity arrays to lists. It is also more robust for two reasons. First, intensity profiles
vary as ambient illumination changes whereas the locations of features are approx-
imately invariant to illumination. Secondly, there is the additional flexibility that
different amounts of offset x′ can be associated with different features, for example
when performing stereo matching over a large image region, whereas in the correla-
tion framework x′ is fixed. For these reasons, feature-based matching is considered
superior to correlation for many problems.

Correlation matching is often used in two dimensions with a template T (x, y)
matched to an offset image I(x + x′, y + y′), as in figure 5.10. This is considerably
more computation-intensive than in one dimension as it involves a double integral
over x, y and also a two-dimensional search to minimise M with respect to x′, y′.
Various techniques such as Discrete Fourier Transforms and “pyramid” processing at
multiple spatial scales can be used to improve efficiency. In higher dimensions than
two, for example when rotation and scaling are to be allowed in addition to translation,
exhaustive correlation becomes prohibitively expensive and alternative algorithms are
needed. One approach is to generate the offsets in higher dimensions in a more sparing

110 Chapter 5

Figure 5.10: Matching eyes by image correlation. The template (top) is a reversed copy
of the right eye in the face image (bottom). When the template is correlated with the image, its
centre collocates accurately with the centre of the left eye. (Figures courtesy of Steve Smith.)

fashion, using gradient descent for instance. Numerous authors have shown that this
can be very successful.

5.5 Background subtraction

A widely used technique for separating moving objects from their backgrounds is based
on subtraction. It is used as a pre-process in advance of feature detection to suppress
background features to prevent them distracting fitting and tracking processes. It is
particularly suited for applications such as surveillance where the background is often
largely stationary.

An image of IB(x, y) of the background is stored before the introduction of a
foreground object. Then, given an image I(x, y) captured with the object present,
feature detection is restricted to areas of I(x, y) that are labelled as foreground because

Image processing techniques for feature location 111

they satisfy
|I(x, y) − IB(x, y)| > σ,

where σ is a suitable chosen noise threshold. As figure 5.11 shows, background features
tend to be successfully inhibited by this procedure. Cancellation can disrupt the

Background IB(x, y) Image I(x, y)

Background suppressed

Figure 5.11: Background subtraction. The difference between an image (right) and a
stored background (left) is computed to suppress background features (bottom), though some
background features do “print through” the foreground.

foreground, as the figure shows, where the background intensity happens to match

112 Chapter 5

the foreground too closely. This results in some loss of genuine foreground features, a
cost which is eminently justified by the effectiveness of background suppression.

Finally, it should be noted that the expense of computing the entire difference
image ∆I can be largely saved by computing differences “lazily” just of those pix-
els actually required for interpolation along normals in (5.2). This is an important
consideration for real-time tracking systems.

Bibliographic notes

The Bresenham algorithm (Foley et al., 1990) is routinely used in graphics to convert a
mathematical line to a sequence of pixels and “anti-aliasing” is employed to achieve an
interpolated pattern of pixel intensities which varies smoothly, without flicker, as the
line is moved. The interpolated sampling scheme described in this chapter is similar
in spirit, but uses a different sampling pattern which performs the inverse function of
mapping from an array of pixels to an arbitrary point on a mathematical line.

A general reference on feature detection and the use of convolution masks is (Bal-
lard and Brown, 1982). A much-consulted study of trade-offs in the design of op-
erators for edge detection is (Canny, 1986) and the design of operators for ridges
and valleys is described in (Haralick, 1980); the discussions relate to two-dimensional
image processing whereas in this chapter the simpler one-dimensional problem is ad-
dressed. Effective detectors for corners exist (Kitchen and Rosenfeld, 1982; Zuniga
and Haralick, 1983; Noble, 1988) and have been used to good effect in motion analysis,
e.g. (Harris, 1992a) and tracking (Reid and Murray, 1996). Operators that respond
to regions rather than curves are also important, for example texture masks (Jain
and Farrokhnia, 1991) which can be used effectively in snakes that settle on texture
boundaries (Ivins and Porrill, 1995).

Correlation matching is based on the idea of “mathematical correlation” which
is central to the processing of one-dimensional signals (Bracewell, 1978). It is also
used in two-dimensional processing of images to locate patterns (Ballard and Brown,
1982), track motion (Bergen et al., 1992b) and register images for stereo vision (Lucas
and Kanade, 1981). Two-dimensional correlation can be computed efficiently using
pyramid architectures (Burt, 1983). A notable variation on the correlation approach is
to allow the correlation offset to vary spatially, adding considerable flexibility at some
computational expense (Witkin et al., 1986). Successful applications of correlation
in higher dimensions have used gradient descent (Sullivan, 1992) which may also be

Image processing techniques for feature location 113

coupled with feature detection (Bascle and Deriche, 1995) for added robustness to
illumination variations and specularity. Very efficient algorithms can be constructed
in the case of affine shape-spaces, by pre-processing image deformation maps (Hager
and Belhumeur, 1996). One-dimensional correlation along normals has proved a useful
tool in matching contours (Cootes et al., 1993; Rowe and Blake, 1996a).

The hue model for colour is used in vision (Ballard and Brown, 1982) and in
graphics (Foley et al., 1990) in the form of a linear “hexcone” approximation which
can be computed efficiently. The Fisher discriminant function is a general technique in
pattern recognition (Bishop, 1995) that has also been used to good effect in vision to
discriminate faces from one another (Belhumeur et al., 1996). A Bayesian treatment of
colour segmentation for tracking is given in (Crisman, 1992). With careful modelling
of the physics of reflection, colour segmentation can be even made robust in an outdoor
environment with its varying illumination (Plá et al., 1993).

Background subtraction/cancellation assists greatly in the generation of benign
training sets, by suppressing clutter, and is a valuable technique in learning dynamics
(chapter 11). A variety of techniques exists based on linear and non-linear (morpho-
logical) filtering, and on statistical hypothesis testing (Baumberg and Hogg, 1994;
Murray and Basu, 1994; Koller et al., 1994; Rowe and Blake, 1996b).

Chapter 6

Fitting spline templates

Chapters 3 and 4 dealt with the geometry and representation of curves and classes
of curves — the shape-spaces. Now it is time to look at some image data to see
how shapes can be approximated by members of those classes. The norm and inner
product machinery developed earlier proves useful together with the image-processing
techniques of chapter 5. Curve approximation techniques are built up step by step
in this chapter until the necessary tools are assembled for basic B-spline snakes and
deformable templates.

6.1 Regularised matching

Generally, measurements made from images are “noisy” — prone to unpredictable
variations from a number of sources. At the finest grain there is the effect of electrical
noise on the video signal from the camera and optical noise such as the flickering of
fluorescent lights. Coarser effects are the interactions of lighting with object surfaces,
causing specularities or highlights and shadows which vary in a manner that is too
hard to model. Since we have to live with such disturbances it is imperative that
algorithms for analysing images are designed to be intrinsically robust to them. This
is standard practice in image processing, where “regularisation” is used to clean poor
quality images by imposing prior constraints on the likely appearance of valid images.
This section describes the application of regularisation to curves reconstructed from
image data. First basic curve-fitting machinery is developed.

116 Chapter 6

Projection

Shape-space was introduced as a means of reducing shape-variability and, in the con-
text of the problem of fitting an image-feature curve, acts as a way of encouraging
smoothness. Suppose the image feature were expressed in the form of a spline curve
rf where rf (s) = U(s)Qf . If the fitted spline Q is restricted to shape-space, and
using the energy landscape for a quadratically approximated feature map ((5.1) on
page 97), the fitting problem is

min
X

‖WX + Q0 − Qf‖2.

The solution X = X̂ is given (proof below) by the pseudo-inverse W+ = H−1W TU
that was defined in the previous chapter:

X̂ = W+(Qf − Q0). (6.1)

The fact that X̂ minimises the error in approximating the curve Q within shape-space
S motivates the interpretation of W+ as an operator for projection onto shape-space.
It also explains why, in the example of figure 6.1, this operator manages to smooth
noisy data while staying close to the gross shape of that data.

Figure 6.1: Curve approximation in shape-space. A distorted bottle shape (left, black
curve) does not fit the bottle outline at all well. Projecting the distorted curve onto the
lotion bottle shape-space of figure 4.5 on page 77, finds the closest “valid” curve shape (right).
Clearly this removes the distortion.

Fitting spline templates 117

Regularisation

Further tolerance to noise is procured by biasing the fitted curve towards a mean
shape r(s) to a degree determined by a regularisation constant α. In the simplest
form of the problem, the fitted curve is the solution of

min
r(s)

α‖r − r‖2 + ‖r − rf‖2 (6.2)

where rf is a member of a class SQ of B-spline curves, and the possible fitted curves
r are constrained to lie in some shape-space S ⊂ SQ. The problem can be expressed
conveniently as

min
X

α‖X − X‖2 + ‖Q − Qf‖2 with Q = WX + Q0.

The idea of the regularising term is that it tends to pull any fitted curve towards the
mean r but this is rarely satisfactory as it stands. For example, it may be desirable
in practice for r to influence the shape of the fitted curve but not its position or
orientation. A more general regulariser is needed therefore, using a weight matrix S
(which must be positive semi-definite), so that the fitting problem becomes:

min
X

(X − X)TS(X − X) + ‖Q − Qf‖2 with Q = WX + Q0. (6.3)

For instance, the regulariser α‖X − X‖2 would be obtained by setting S = αH. To
achieve the desired invariance of the regulariser over some subspace Ss ⊂ S of trans-
formations, for instance the Euclidean similarities, S must be restricted by means of a
projection operation Ed to operate over deformations outside the invariant subspace
Ss:

S = αEdTHEd. (6.4)

The projection operator can be expressed in terms of the shape-matrix Ws for the
subspace and its pseudo-inverse shape-matrix W+

s :

Ed = I − Es where Es = W+WsW
+
s W. (6.5)

The solution X = X̂ to the fitting problem (6.3) is obtained in two stages, a
projection onto shape-space

Xf = W+(Qf − Q0), (6.6)

118 Chapter 6

followed by weighted summation

X̂ =
(
S + H)−1 (

SX + HXf

)
. (6.7)

This is illustrated in the example of figure 6.2, in which the shape-space S is taken
to be the entire spline space (S = SQ) and the invariant subspace Ss is the space of
Euclidean similarities which allows the shape of X to influence the fit while its position
and orientation are ignored. As α → 0, the influence of the template diminishes and
the fitted curve moves closer to the data, as expected.

Proof that projection is realised by the pseudo-inverse. Writing Q′ = Qf − Q0, the
fitting problem above is to minimise

‖WX − Q′‖2 = (WX − Q′)TU(WX − Q′)

= XTWTUWX − XTWTUQ′ − Q′TUWX + const
= (X − X̂)TWTUW (X − X̂) + const,

(completing the square) in which

X̂ = (WTUW)−1WTUQ′ = H−1WTUQ′,

which gives the required result (6.1).

Derivation of the shape-space regularisation formula. First a “projection lemma”
is needed, essentially Pythagoras’ theorem applied to shape-space, that

‖Q − Qf‖2 = ‖X − Xf‖2 + ‖WXf + Q0 − Qf‖2, (6.8)

and this is illustrated in figure 6.3. (Note that ‖WX −WXf‖ = ‖X − Xf‖ by definition of
the norm over S). Now the problem of (6.3) becomes the minimisation of

(X − X)TS(X − X) + (X − Xf)TH(X − Xf)

and this is simplified by “completing the square” to give

(X − X̂)T (S + H)(X − X̂) + c

where X̂ is as defined above and c is a constant independent of X, so that the minimising
shape is X = X̂ as in 6.7.

Fitting spline templates 119

Noisy data Qf Mean shape X

Fitted curve: α = 0.5 Fitted curve: α = 3.0

Figure 6.2: Curve-fitting with regularisation. A regularisation parameter α controls the
trade-off from high noise resistance but biased towards a mean shape (α large) to more accurate
fitting but with greater sensitivity to noisy data (alpha small). The regulariser is constructed
to be invariant to Euclidean similarity transformations, so the position and orientation of the
mean shape have no influence on the fitted curve.

120 Chapter 6

W X + Q

Q=WX+Q shape−spacespline−space Q
f

f

f

f
||X − X||

||Q − Q||

||WX + Q − Q ||
ff 0

0

0

Figure 6.3: Projection lemma.

6.2 Normal displacement in curve fitting

In chapter 3 we saw that the measure of curve difference using the norm is sensitive
to parameterisation. Two curves with similar shapes will nonetheless register a sub-
stantial difference according to the norm unless the parameterisations of those curves
also match. One example, figure 3.16 on page 62, showed two similarly shaped curves
with a norm-difference that was substantial simply because the parameterisation of
one of the curves had been shifted.

Curve fitting based on the norm will therefore suffer from sensitivity to parameter-
isation. This is particularly a problem when the data-curve is derived from an image
because, as the previous section showed, the parameterisation of an image curve is
inherited from a spline curve r(s), either the template curve itself or some initial esti-
mate of the image curve. This anchors the parameterisation of the image curve rf (s)
close to that of r(s). The result is that the fitted curve exhibits “reluctance” to move
away from r(s), as figure 6.4 illustrates.

A solution to this problem, proposed in chapter 3, is to redefine the fitting prob-
lem to take re-parameterisation explicitly into account when measuring the difference

Fitting spline templates 121

(a) (b)

Figure 6.4: Inherited parameterisation leads to reluctance in curve fitting. Curve
fitting using norm-difference is applied repeatedly to a sequence of images starting with (a) and
ending with (b). In each case, the fitted curve obtained from the previous image is used as the
initial estimate for fitting in the current image. At each step, the inherited parameterisation
of the feature curve follows closely the parameterisation of the estimated curve. The result is
a reluctance to move, as illustrated.

between the fitted curve r and the data rf . A re-parameterisation function g(s) is
defined such that g(s) = s gives the original inherited parameterisation, mapping
points on curve r to points on data-curve rf . Then the image-data curve rf (s) is
to be compared with the re-parameterised version of the curve r(g(s)). In place of
‖r − rf‖ in (6.2), the alternative curve-displacement measure d(r, rf) is:

d2 = min
g

1
L

∫
D2 ds where D2(s) = (r(g(s)) − rf (s))2, (6.9)

defined as a minimum over all possible reparameterisations.

Local invariance

Computation of the curve-displacement measure d(r, rf) is feasible if we are content with
local, rather than global minimisation. According to the rules of the “calculus of variations”,
a local minimum of d is achieved when

∂D2

∂g
= 0 for all s,

122 Chapter 6

that is, when
[rf (s) − r(g(s))] · r′(g(s)) = 0.

This says that, for the optimal parameterisation, the vector rf (s)−r(g(s)) joining correspond-
ing points on the two curves is perpendicular to the tangent vector r′(g(s)); it is in the direction
of the normal vector n(g(s)) to the curve r, so that the distance between corresponding points
is

D(s) = |rf (s) − r(g(s))| = [rf (s) − r(g(s))] · n(g(s)).

Now, assuming that the curves are sufficiently similar that the extent of re-parameterisation
is small (g(s) ≈ s), it follows first that

n(g(s)) ≈ n(s)

since the implicit smoothness of the B-spline ensures the curvature is also small. In addition,
using a first-order Taylor expansion,

[r(s) − r(g(s))] · n(s) ≈ (g(s) − s)r′(s) · n(s) = 0,

giving finally
D(s) ≈ [rf (s) − r(s)] · n(s),

the “normal displacement” between corresponding points on the two curves (with the original
parameterisation).

The use of normal displacement, which is a standard technique from Computer
Vision, can be explained intuitively. The total displacement rf (s) − r(s) at a point
can be expressed as the vector sum of components along the curve tangent and nor-
mal respectively (figure 6.5). The tangential component corresponds approximately
to displacement along the curve r(s) without actually travelling any distance away
from the curve. It reflects the variation of parameterisation between curves. If the
tangential component is eliminated, what remains of the total displacement is the
normal component, representing purely the distance between curves.

In terms of the original problem of finding a measure of distance between the
fitting curve r(s) and a feature curve rf (s), we have shown that the distance

d(r, rf) ≈ 1
L

∫
[(r(s) − rf (s)) · n(s)]2 ds (6.10)

is a suitably invariant measure provided that the displacement between the two curves
is small. This is now used to define a new norm ‖ · ‖n with respect to an estimated or

Fitting spline templates 123

a)

n(s)

(s)r
fitting curve

 normal
displacement

(s)r

(s)r
f

b)

feature curve

(s)r
f

total

normal

tangential

Figure 6.5: Normal Displacement. a) Displacement along the normal from one curve to
another, as shown, forms the basis for a measure of difference between curves that is approxi-
mately invariant to re-parameterisation. b) Total displacement can be factored vectorially into
two components, tangential and normal.

template curve r(s), whose normals are n(s):

‖r‖n
2 ≡ 1

L

∫
[r(s) · n(s)]2 ds. (6.11)

It has the property that the norm-difference approximates the invariant distance mea-
sure, that is

‖r − rf‖n ≈ d(r, rf),

provided both curves r and rf are sufficiently close to the estimated curve r. Norms
‖Q‖n in spline space and ‖X‖n in shape-space can be defined by inducing them from
the curve norm ‖r‖n, just as ‖Q‖ and ‖X‖ were induced from ‖r‖ originally.

The next step is to take account of the practicalities of image measurement by
expressing the invariant difference discretely. Suppose normal vectors are sampled at
regularly spaced points s = si, i = 1, . . . , N , with inter-sample spacing h, along the
entire curve r(s), so that, in the case of an open curve,

s1 = 0, si+1 = si + h, and sN = L.

124 Chapter 6

Then the norm-difference (6.10) can be approximated as a sum:

‖r − rf‖n
2 ≈ 1

N

N∑
i=1

[(rf (si) − r(si)) · n(si)]
2 . (6.12)

Recall that, in shape-space, r(si) can be expressed explicitly in terms of the shape-
space vector X:

r(si) = U(si)(WX + Q0)

so the norm-difference can be expressed explicitly in terms of the shape-space vector
X as

‖r − rf‖n
2 ≈ 1

N

N∑
i=1

(
νi − h(si)T [X − X]

)2
(6.13)

where

νi = (rf (si) − r(si)) · n(si), (6.14)

is the “innovation” — the displacement measured relative to the mean shape and
resolved along the normal, and

h(s)T = n(si)TU(si)W. (6.15)

Details of an algorithm to solve the fitting problem, using the invariant norm, are
developed next. In the meantime, note (figure 6.6) that the new algorithm solves the
reluctance problem demonstrated earlier arising from the use of norm-difference with
the inherited parameterisation (figure 6.4).

Fitting spline templates 125

(a) (b)

Figure 6.6: Normal displacement solves the reluctance problem. Curve fitting using
normal displacement is applied repeatedly to a sequence of images starting with (a) and ending
with (b). The fitted curve follows the moving image feature, without the reluctance associated
with norm-difference and inherited parameterisation (figure 6.4).

Weighted norm

A more general sampled form for the norm, in place of (6.13), incorporates weights wi:

‖r − rf‖n2 =

(
N∑

i=1

wi

)−1 N∑
i=1

wiδ
2
i (6.16)

where
δi = νi − h(si)T [X − X].

For instance, setting

w1 = wN =
1
2

and wi = 1, 1 < i < N

implements the trapezium rule which correctly takes account of the ends of an open curve.
For closed curves, in which i = 0 and i = N represent the same physical point which must be
counted exactly once, appropriate weights are

wi = 1 for 1 ≤ i < N and wN = 0.

Weights can also be used to implement modified norms which accentuate areas of the image-
feature curve. One good reason for doing this is to allow increased influence around areas of
fine detail, such as the ends of the fingers in figure 5.1.

126 Chapter 6

A mechanism closely related to variable weighting is non-uniform sampling in which inter-
vals between successive si are allowed to vary. For instance, denser sampling may be desirable
in areas of fine detail. Alternatively, it may be desirable to sample the feature curve at equal
intervals of arclength, rather than of the spline parameter s which is not generally arclength.
Lastly, an effect similar to sampling uniformly in arclength can be achieved by appropriate
weighting that compensates for non-uniform sampling:

wi = |r′(si)| where r′(s) ≡ dr
ds
.

6.3 Recursive solution of curve-fitting problems

We already saw one solution to the regularised curve-fitting problem (6.3), using pro-
jection followed by weighted summation. The new fitting problem based on the normal
displacement measure is best solved in a rather different style. The new algorithm is
recursive, working by traversing the data-curve once, updating the estimated shape X̂
as it does so. (In fact the original problem (6.3) could also be solved concisely in the
recursive manner.) The complete fitting algorithm is given in figure 6.7. For the regu-
larised fitting problem above, we set the “measurement error” constant σi = σ =

√
N ,

but in subsequent chapters, other values of σi will be used. The first two steps of
the algorithm establish feature points rf (si) which serve as the data for curve fitting.
Step 3 initialises the “information matrix” Si which is a measure of the “strength” of
each intermediate estimate X̂i, taking account of the first i data points. Step 3 also
initialises the “information weighted sum” Zi which accumulates the influence of the
mean shape and the individual measurements, each with its proper weight. In step
4, the measurements rf (si) are assimilated in turn. Note that, as expected, it is only
the normal component νi of each measurement that is used. [Note the effect of the

weighted norm (6.16) is to choose a variable “measurement error” σi =
√
w−1

i

∑
j wj .]

In step 5, the “aggregated” observation vector Z is defined, together with S, its sta-
tistical information as an estimator of X. In fact Z is an unbiased estimate not of X
directly, but of SX. (This is much safer than trying to deal with an estimate of X
itself, given that the inverse of S need not exist.) In step 6, the aggregated measure-
ment Z that incorporates the influence of all data points, is finally combined in what
is, in fact, an information weighted sum (see derivation below) to give the estimated
shape-space vector X̂.

Fitting spline templates 127

Curve-fitting problem

Given an initial shape estimate r(s) (or X in shape-space) with normals n(s),
and a regularisation weight matrix S, solve:

min
X

T where T = (X − X)TS(X − X) +
N∑

i=1

1
σ2

i

(
νi − h(si)T [X − X]

)2
.

Algorithm

1. Choose samples si, i = 1, . . . , N , s.t. s1 = 0, si+1 = si + h, sN = L.

2. For each i, apply some image-processing filter along a suitable line (e.g.
curve normal) passing through r(si), to establish the position of rf (si).

3. Initialise
Z0 = 0, S0 = 0.

4. Iterate, for i = 1, . . . , N :
νi = (rf (si) − r(si)) · n(si);

h(si)T = n(si)TU(si)W ;

Si = Si−1 +
1
σ2

i

h(si)h(si)T ;

Zi = Zi−1 +
1
σ2

i

h(si)νi.

5. The aggregated observation vector is
Z = ZN with associated statistical information S = SN .

6. Finally, the best fitting curve is given in shape-space by:
X̂ = X + (S + S)−1Z.

Figure 6.7: Recursive algorithm for curve fitting.

128 Chapter 6

Example 1

A very simple fitting problem for tutorial purposes is illustrated in figure 6.8. It

x

y

0

1

1/2

X
_

mean shape

_
n1

(s)1fr

(s)fr 2

(s)fr 3

1 2 3

h

h

Figure 6.8: Example fitting problem for the recursive algorithm — see text.

involves a family of vertical line segments

r(s) = (x, s)T for 0 ≤ s ≤ L

(a single-span linear spline!) with length L = 1. Take the template Q0 to correspond
to a vertical line at the origin:

r0(s) = (0, s)T for 0 ≤ s ≤ L

Fitting spline templates 129

so that shape-space is then parameterised by the single-component shape-vector X =
x, and

U(s)W = (1, 0)T ,

so that X is transformed to spline space as

U(s)WX + r0 = (x, s)T ,

as required. The mean shape is also taken to be the line through the origin, so X = 0.
Measurements will be made at

s1 = 0, s2 =
1
2
, s3 = 1

so that h = 1/2, as illustrated in figure 6.8,

σ2 = N =
L

h
+ 1 = 3, and n(si) = (1, 0)T for i = 1, 2, 3.

Now we can also calculate

h(si)T = n(si)TU(si)W = 1 for i = 1, 2, 3.

The data points shown in the figure are

rf (s1) = (1, 0)T , rf (s2) = (2, 1/2)T , rf (s3) = (3, 1)T .

It is not difficult to show that the metric matrix for this shape-space is H = 1.
First, take the case of fitting without regularisation, so α = 0. Following the steps

of the algorithm gives

i νi Si Zi

0 0 0

1 1 1
3

1
3

2 2 2
3 1

3 3 1 2

The aggregated measurement is then Z = 2 with information S = 1, and since S = 0
(because α = 0), the estimate is X̂ = S−1Z = 2, simply the average value of the
x-coordinates of the three data points, as might be expected.

130 Chapter 6

Example 2

If regularisation is added with α = 1, the main part of the algorithm proceeds as
above, but since now S = 1, the final step is

X̂ = X +
(
S + S

)−1 Z = 0 +
1
2
· 2 = 1,

which has been pulled down towards X = 0 by regularisation, as expected.

Proof of correctness: the algorithm is of a standard type for recursive solution of least-
squares problems. Defining the partial sum

Ti =
1
σ2

i∑
j=1

(
νj − h(sj)T [X − X]

)2
.

it is straightforward to prove by induction on i that

Ti = (X − X)TSi(X − X) − (X − X)T Zi − ZT
i (X − X) + ci for i = 1, . . . , N,

where ci is a constant, independent of X. When i = N , this gives

TN = (X − X)TS(X − X) − (X − X)T Z − ZT (X − X) + cN ,

where S = SN and Z = ZN , as in the algorithm. Now

T = (X − X)TS(X − X) + TN

and completing the square gives

T = (X − X̂)T (S + S)(X − X̂) + c,

where c is independent of X, and X̂ is as defined in the algorithm, so X = X̂ optimises T , as
required.

Validation gate

The innovation νi in (6.14) represents the difference between the actual measurement
and the measurement that would be predicted at s = si based on the mean shape.
It is potentially useful for detecting and deleting rogue data or “outliers”. In the
context of tracking, outliers arise when the object being tracked is partially obscured,

Fitting spline templates 131

and the edge of some background object is then detected and masquerades as rf (si),
for some i. The resulting error in position may be considerable, well outside the
normal range attributable to random factors such as electrical and optical noise. Such
an “outlier” should be signaled by an unusually large magnitude |νi| of innovation.
If this occurs, the ith measurement can be discarded, and the ith iteration in the
algorithm altogether omitted. Otherwise, the ith data point is said to be validated
and the ith iteration proceeds as normal.

It remains to choose a threshold — at what level is it considered that |νi| is
sufficiently large to signal an outlier? A principled answer to this question emerges
from statistical models described in chapter 8, leading to the “validation-gate” for
outlier removal. The width of the validation gate effectively fixes the width of the
search region for image processing along normals (figure 5.1 on page 98). In fact the
threshold on |νi| determines the length of the search segment, the interval on the
normal that lies within the search region.

Fitting corners

In some applications it may be desired to fit to corner features rather than edge-
features, or to a mixture of corners and edges. The recursive fitting algorithm extends
in a straightforward manner. Suppose the measured feature rf (si) is a corner or other
distinguished point, so that its full displacement νr

i = rf (si) − r(si) must be taken
into account, rather than just the normal component. Then step 4 of the recursive
algorithm in figure 6.7 must be modified to take account of this, as in figure 6.9.

Alternative recursive solution to the fitting problem

For completeness, an alternative to the fitting algorithm described above in figure 6.7 is given
here. It solves exactly the same minimisation problem, but using an alternative set of variables.
Where the algorithm above was based on “information” S, the algorithm here is based on
covariance P . This algorithm will be readily recognised as a special case of a “Kalman filter”
by those who are already familiar with them. This alternative curve-fitting algorithm can also
be explained intuitively. In place of the information matrix Si, this algorithm is expressed in
terms of its inverse Pi = S−1

i (to be interpreted in later chapters as a statistical covariance).
The weighted sum variable Zi is no longer needed; instead successive estimates X̂i, based
on the first i data points, are generated directly. The variable ν′i is a “successive” form of
innovation, the difference between the actual value of the ith measurement and its expected
value based on extrapolation from the previous i−1 measurements, and it is only this difference

132 Chapter 6

Modified iterative step:

4 Iterate, for i = 1, . . . , N :
νr

i = rf (si) − r(si);
hr(si)T = U(si)W ;

Si = Si−1 +
1
σ2

i

hr(si)hr(si)T ;

Zi = Zi−1 +
1
σ2

i

hr(si)νr
i .

Figure 6.9: Recursive fitting algorithm: modification for corner features.

that generates any change in successive estimates X̂i. The proof of equivalence of the two
algorithms is omitted here, but could be found in a standard textbook on statistical filtering.

Computational cost

Both algorithms have computational complexity O(NN2
X), where NX is the dimension of

shape-space, as usual. This is based on the assumption that, for a given shape-space, H−1

and the products U(si)W can be calculated off-line and need not be counted towards the total
computational cost. It is further assumed that N ≥ NX which is normally the case as this
is the minimum value for which S can have full rank. The original algorithm has only one
O(NN2

X) operation, as opposed to two in the alternative algorithm. However, the original
algorithm involves additional matrix inversions which have complexity O(N3

X). This means
that for small NX � N the original algorithm is more efficient, but as NX → N the alternative
algorithm becomes the more efficient.

Example 3

Example 2 is repeated here using the alternative algorithm; of course it should achieve the
same result. The estimate is X̂ = X̂3 = 1, in agreement with the original algorithm.

Fitting spline templates 133

Algorithm:

1. Obtain measurements rf (si) as before.

2. Initialise
P0 = S

−1

X̂0 = X

3. Iterate, for i = 1, . . . , N :
νi = (rf (si) − r(si)) · n(si);

h(si)T = n(si)TU(si)W ;
ν ′i = νi − h(si)T (X̂i−1 − X);
Ki = Pi−1h(si)(h(si)TPi−1h(si) + σ2

i)
−1

X̂i = X̂i−1 +Kiν
′
i;

Pi = (I −Kih(si)T)Pi−1;

4. The best fitting curve is given in shape-space by:
X̂ = XN .

Note that intermediate estimates X̂i are automatically generated by this al-
gorithm.

Figure 6.10: Alternative recursive fitting algorithm.

i νi ν′i Ki X̂i Pi

0 0 1

1 1 1 1
4

1
4

3
4

2 2 7
4

1
5

3
5

3
5

3 3 12
5

1
6 1 1

2

Note also that, as expected, the final value of covariance P3, satisfies P3 = S−1
3 where S3 is

the final information from example 2.

134 Chapter 6

6.4 Examples

B-spline snake

An example of fitting a B-spline snake is given in figure 6.11. Working in a spline

Figure 6.11: Using a snake to capture an outline. For automated planning of robot
grasps (see chapter 1) it is necessary to capture the outline of the part to be grasped. This can
be done even without much prior knowledge of part shape, using a B-spline snake initialised
as an ellipse (left), achieving a good fit (right). (Figure courtesy of Colin Davidson.)

space is appropriate when no strong assumption can be made about the expected
shape. The snake is initialised using moments (as explained in figure 4.6 on page 82)
to obtain a coarse elliptical approximation to the outline. Weak regularisation is used,
just sufficient to stabilise the computation but without unduly biasing the fit. The
low level of regularisation suffices in this case because the background is clean and
featureless.

More stable behaviour may be needed when the background is more cluttered or
the foreground partly obscured or simply outside the search region. Stability can be
achieved by increasing the strength of regularisation as in figure 6.12. In that example,
missing measurements around the fingertips mean that the shape of the fitted curve
is underconstrained. (In fact a minimal regulariser with α = 0.001 is applied simply
to ensure numerical stability). When a significant degree of regularisation (α = 0.1)
is applied, the missing data is satisfactorily interpolated by defaulting to the template
(initial) shape. Regularisation is set to be invariant to Euclidean similarities, to allow
the snake to rotate and translate freely, while maintaining shape constraints. Even

Fitting spline templates 135

(a) (b)

(c) (d)

Figure 6.12: Regularisation stabilises snake fitting. Given an initial snake curve (a) in
which some features (fingertips) fall outside the search region, unregularised fitting gives poor
results (b). Introducing regularisation (with invariance to Euclidean similarities) produces a
good fit (c). This is refined further after iterating the fitting cycle (d).

136 Chapter 6

more accurate fitting is achieved by iterating the fitting process to convergence. At
each successive iteration the fitted shape from the previous iteration is used as an
estimate from which image measurements are made. However the stabilising template
remains constant throughout.

An alternative method of stabilisation is to restrict the displacement of points r(s)
to run along a family of straight lines such as normals, or parallel lines in a chosen
direction. It is simple and effective, but usable only for applications where motion
can be restricted to a fixed family of lines. Surveillance of railed vehicles or traffic
confined to lanes is one example.

Deformable template

At the expense of needing more specific prior knowledge about shape, deformable
templates running in a suitably constrained shape-space generally behave more stably
than snakes. An example of fitting a deformable template in affine shape-space is
shown in figure 6.13. The initial estimated contour was obtained using moments.
Then recursive fitting in affine spaces considerably refines contour shape, as shown.

Rudimentary tracking

Much of the second part of the book concerns tracking shapes in motion and it is
interesting to try applying the curve-fitting algorithm to that problem. Now a curve
must be fitted to each image in a sequence, and an estimated curve is therefore required
for each image. The obvious strategy is to use the fitted curve from one image as the
estimate for the next. This is quite effective, as figure 6.14 shows, provided the normal
search segments are sufficiently long to encompass the lag of the estimated curves.
The faster the motion, the longer search segments need to be. However, longer search
segments have the drawback that tracking becomes more prone to distraction by
background clutter, as the figure shows. There is therefore a trade-off between agility
of motion and density of clutter. The capacity to deal with this trade-off is greatly
expanded by dynamical modelling. If each estimated curve, rather than being a mere
copy of the previous fitted curve, is actually an extrapolation of the motion to date,
tracking performance can be greatly improved, and this is the subject of chapters 9
and 10.

Fitting spline templates 137

Figure 6.13: Deformable template in affine space. From an initial estimate (grey curve,
left) obtained using moments, a cabbage template is fitted to image data over an affine space
to obtain the fit shown (right).

Bibliographic notes

Regularisation, used in this chapter to bias fitted curves towards a default shape, is
a standard algorithmic device for stabilising otherwise unstable or underconstrained
systems of equations (Press et al., 1988). Regularisation has been used a good deal in
Computer Vision (Horn and Schunk, 1981; Grimson, 1981; Ikeuchi and Horn, 1981;
Poggio et al., 1985; Terzopoulos, 1986) and in image processing for “constrained
restoration” of degraded images (Gonzales and Wintz, 1987).

An important aspect of the curve fitter described in the chapter is that it avoids
the very considerable computational expense of applying filters to entire images. Fea-
ture detection is restricted to be one-dimensional, along normal curves (Harris and
Stennett, 1990; Lowe, 1991), and within a region of interest (Inoue and Mizoguchi,
1985) or search region.

The need to use normal displacement, factoring out the spurious tangential dis-
placement is known in vision as the “aperture problem,” is the basis of the visual

138 Chapter 6

Figure 6.14: From fitting to tracking. Recursive fitting is applied to successive images
in a sequence in which a hand moves from right to left. The fitted curve from one image is
used as the initial estimate in the next. With short search segments (left), even slow motion
causes estimated shape to lag sufficiently that the hand falls outside the search region. Longer
search segments (right) may cure this problem, but make tracking more prone to distraction
by clutter (bottom).

“barber’s pole” illusion and has received much attention in the design of algorithms
for analysing visual motion (Horn and Schunk, 1981; Hildreth, 1983; Horn, 1986;
Murray and Buxton, 1990). However, normal displacement alone underconstrains the
motion of a contour — the “aperture problem in the large” (Waxman and Wohn,
1985), though this defect is somewhat mitigated by regularisation.

Curve fitting is done efficiently here by a recursive algorithm, and this is based on

Fitting spline templates 139

recursive least-squares estimation (Bar-Shalom and Fortmann, 1988) which in turn is
an application of the “dynamic programming” principle (Bellman and Dreyfus, 1962)
for optimisation, applied to quadratic, multi-variate minimisation (Jacobs, 1993). Dy-
namic programming was first used with snakes by (Amini et al., 1988), in a discrete
form as opposed to the continuous form described in this chapter. The original snake
paper (Kass et al., 1987) used sparse matrix methods to solve least-squares curve fit-
ting and that is closely related to the recursive algorithm in the case that shape-space
is the spline space SQ. The validation of data by checking the absolute value of innova-
tions is used in a simple form of robust estimator known as an m-estimator (Hampel
et al., 1995). It is a special case from the family of “robust” estimators known as
M-estimators which allow some flexibility in the way outliers are treated. General
M-estimators can be expensive to compute, requiring repeatedly refined regressions
to form the final robust estimate. The simple validation mechanism described in the
chapter, the validation gate (Bar-Shalom and Fortmann, 1988), has the great virtue
of low computational cost and this will be essential for real-time processing of image
sequences in later chapters.

Chapter 7

Pose recovery

In certain three-dimensional applications (chapter 1), such as the 3D mouse in fig-
ure 1.16 on page 20, a shape-vector X is used to compute pose, in that case the
position and attitude of the hand. Similarly, in facial animation, it is desirable to
compute the attitude of the head, independently of expression if possible. The prob-
lem is to convert a shape-vector X, from a planar or three-dimensional shape-space
respectively, into three-dimensional translation Rc and rotation R.

7.1 Calculating the pose of a planar object

In the planar affine space, pose is recovered from a shape-vector X by first obtaining
affine parameters u,M via (4.5) on page 78. Then u,M are used to obtain pose pa-
rameters. This is fairly straightforward under orthographic projection. For large fields
of view however it is necessary to use weak perspective and then the pose-recovery
computation must be elaborated to compensate for the obliqueness of projection in
the periphery of the field of view.

Orthographic projection

First, a solution is presented for the pose of an object under orthographic projection,
suitable for use when the field of view is significantly smaller than 1 radian. Given
a planar affine vector X, the algorithm computes object pose as the position vector
Rc = (Xc, Yc, Zc)T of the object’s centre and the orientation as a rotation R relative
to the reference pose. First the algorithm is given, then a short proof (optional).

142 Chapter 7

1. Compute u and M from
X = (u1, u2,M11 − 1,M22 − 1,M21,M12)T .

2. Compute the eigenvectors v1,v2 and eigenvalues λ1, λ2 (both must be
positive and are ordered so that λ1 ≥ λ2) of the matrix MMT .

3.
Zc = f/

√
λ1

4.

cos θ =
(
Zc

f

)2

detM

5.
(cosφ, sinφ)T = v1

6.
R(ψ) = Sy(1/ cos θ)R(−φ) M

Zc

f

where R(ψ) ≡

 cosψ − sinψ

sinψ cosψ

 and Sy(µ) ≡

 1 0

0 µ

 .

7.
Combined rotation: R = Rz(φ)Rx(θ)Rz(ψ).

8.
Translation: Rc = (Xc, Yc, Zc)T where Xc = u1Zc/f, Yc = u2Zc/f.

Figure 7.1: Algorithm for recovery of the pose of a planar object.

The algorithm is summarised in figure 7.1 and a commentary follows. Given u,M
from step 1 of the algorithm, we first work on M to recover the object’s attitude as
represented by the rotation matrix R. It is well known that a three-dimensional rota-

Pose recovery 143

tion can be decomposed in terms of three Euler angles θ, φ, ψ appearing in a sequence
of three standard rotations. It is particularly convenient here to use a decomposition
that is aligned with the image plane:

R(φ, θ, ψ) = Rz(φ)Rx(θ)Rz(ψ). (7.1)

This should be read from right to left as a z-rotation through an angle ψ followed by
a rotation through angle θ about the x-axis and finally a z-rotation through angle φ,
as illustrated in figure 7.2. Our algorithm recovers θ, φ and ψ so that the rotation
matrix can be calculated as in (7.1). First Zc, φ, θ and ψ are computed in steps 3–6.
Note that a redundancy in φ arises from the indeterminacy of the sign of eigenvalue
v1: for a given rotation R, φ can equally well be replaced by φ+180o (the substitution
φ → 180o + φ, θ → −θ, ψ → 180o + φ leaves R unchanged). Finally, the focal length
f of the camera is known, so the image-plane components of translation Rc can be
recovered directly in step 8. The result of applying this algorithm to a sequence of
images of a moving hand are shown in figure 7.3.

Ambiguities

There are two kinds of ambiguity in the recovered parameter. The first is a straight-
forward indeterminacy in linear scale. If (Xc, Yc, Zc) was doubled and accompanied
by a doubling in size of the object, there would be no visible effect on the image
contour. The scale factor is fixed here by our convention in orthographic perspective
that Zc = f in the standard view.

The second and more complex ambiguity is apparent in step (4) above: since
cos θ = cos(−θ), there must be two possible solutions ±θ. Unlike the indeterminacy
of φ which represents simply an alternative representation of a given physical trans-
formation, this is a genuine ambiguity, a reversal as illustrated in figure 7.4. In the 3D
mouse application, for example, this could result in a “flip” of the object controlled
by the mouse. One practical solution is to arrange for the camera to be oblique to
the table so that the hand avoids the “singular” orientation θ = 0, when image and
object planes are parallel. Then at each time-step, the value ±θ is chosen which give
θ, φ and ψ closest to their values at the previous time-step.

Derivation of pose-recovery algorithm. The key point is that the effect of a rotation
Rx(θ), on the image of a planar object lying on an xy plane, is to compress the image along

144 Chapter 7

x
y

z

R z (30 o)

image plane

object

x
y

z

R x (40 o)x
y

z

x
y

z

R z (50 o)

Figure 7.2: Euler angles. The figure shows Euler angles to describe rotations in the camera
coordinate frame. A general rotation R is expressed as a sequence (7.1) and the case φ = 50o,
θ = 40o, ψ = 30o is illustrated.

Pose recovery 145

Figure 7.3: Computing pose. The outline of a hand is tracked in a planar affine
shape-space and the pose-recovery algorithm described above is applied. Computed pose is
displayed using the “target” icon in the corner of each image.

the y-axis, that is to apply a scaling transformation Sy(cos θ). In that case, the affine image
transformation due to the Euler angle transformations (7.1) and to distance scaling is:

M =
f

Zc
Rz(φ)Sy(cos θ)Rz(ψ).

The algorithm given above is simply a decomposition of this sequence, using the fact that

MMT =
(
f

Zc

)2

Rz(φ)Sy(cos2 θ)Rz(−φ)

which is in diagonal form.

146 Chapter 7

Figure 7.4: Ambiguity of pose recovery. A hand in two alternative positions with equal
and opposite slant (top row) gives rise to almost identical outline contours when viewed from
above (bottom row).

Pose recovery 147

Weak Perspective projection

The pose-recovery method for orthographic projection can be simply extended for the
case of weak perspective projection, when the field of view may be large but the object
is still small. The most straightforward approach is to introduce a virtual orthographic
image as in figure 7.5. The pose-recovery algorithm extended for weak perspective is

camera plane

object

real image

virtual orthographic image

z

x

y

α

Figure 7.5: Pose correction for weak perspective. Under weak perspective, pose recovery
proceeds as in the orthographic case, on a virtual orthographic image as shown.

148 Chapter 7

1. Compute u and M from
X = (u1, u2,M11 − 1,M22 − 1,M21,M12)T .

2. Compute polar angles α, β:
α = arctan(|u|/f), β = arctan(u).

3.

M ′ = Sx(secα)R(−β)M where Sx(µ) ≡

 µ 0

0 1

(R(−β) is represented here as a 2 × 2 matrix.)

4. Apply steps 2–7 of the orthographic algorithm of figure 7.1 to M ′ (in
place of M), giving R′, Z ′

c (in place of R,Zc).

5.
R = Rz(β)Ry(α) R′.

(These rotation matrices are now all 3 × 3)

6. Translation:
Rc = (Xc, Yc, Zc)T where Zc = Z ′

c cosα, Xc = u1Zc/f, Yc = u2Zc/f.

Figure 7.6: Recovery of pose of a plane under weak perspective.

outlined in figure 7.6. First, express the image-translation vector u in terms of polar
angles

α, − π

2
≤ α ≤ π

2
and β, − π ≤ β ≤ π,

that is, so that

u = f tanα

 cosβ

sinβ

 . (7.2)

Pose recovery 149

The next step 3 is to replace the affine matrix M by the affine matrix M ′ on the virtual
orthographic plane. Then the orthographic pose-recovery algorithm is applied to M ′

in place of M , to give a three-dimensional rotation matrix R′ (subject, of course, to
reversal ambiguity) and translation in depth Z ′

c, both in a virtual orthographic frame.
Finally, these parameters are transformed back into the camera coordinate frame in
steps 5 and 6.

7.2 Pose recovery for three-dimensional objects

The planar affine space survives intact as a subspace in the three-dimensional affine
case (see (4.17) on page 89), so the pose-recovery method for the planar case continues
to be usable, in principle, for the three-dimensional problem. Coefficients of the first
6 elements of the configuration vector X could be used to obtain u,M as before and
the planar pose-recovery algorithm would compute pose Rc, R correctly, subject to
the usual ambiguities. However, the planar algorithm does not make optimal use
of the information now available. The additional pair of shape parameters contain
valuable parallax information which is complementary to the information available in
the planar case. The planar algorithm is at its least accurate close to the standard
pose. The extreme case is the singularity at the standard pose itself, which gives rise
to the ambiguity in orientation discussed earlier. In contrast, the additional parallax
information is at its most useful precisely at the singularity, improving accuracy of
recovered pose, and removing ambiguity, as figure 7.7 shows.

Once Qz
0 has been estimated for a given object (see below), the recovery of pose

from some outline X in an image of the object is relatively straightforward — the
algorithm is given in figure 7.8. Step 1 computes planar affine parameters u,M and
parallax parameter v from the shape-vector. Recovery of R,Zc in steps 2 and 3 is
based on solving (4.16) on page 89, expressing R in terms of its rows R1, R2, R3, which
must be unit vectors, and mutually orthogonal. The matrix R̂ resulting from step 3
need not be precisely orthogonal so step 4 finds the closest orthogonal matrix by
“singular value decomposition” (appendix A.1) of R̂. Finally, translation is calculated
as in the planar affine case.

Figure 7.9 illustrates that the pose of a three-dimensional object can be recovered
effectively over a wide range of views, using parallax as in the algorithm above.

150 Chapter 7

Figure 7.7: Parallax in pose recovery. The poses of the top row of wheels, complete with
axles, are easily discriminable. When parallax information is omitted by removing the axles, as
on the bottom row, the orientations of the first two wheels are discriminable with difficulty and
the last two actually appear identical because of the planar orientation ambiguity phenomenon.

Estimating Qz
0

In principle, it would be possible to rotate the object, from its standard view, through
90o about the y-axis, and the new view would be

Qx
0

Qz
0

from which Qz
0 could be obtained. This would be possible with a bent wire object,

but with a solid object such as the leaves above only a modest angle of rotation is
possible without alterations in hidden line structure. Therefore, practically, a method

Pose recovery 151

1. Compute u, M and v from the shape-vector X, using:
X = (u1, u2,M11 − 1,M22 − 1,M21,M12, v1, v2).

2.
Zc = 2f [|(M11,M12, v1)| + |(M21,M22, v2)|]−1

3.

R̂3 = R̂1 × R̂2 where

 R̂1

R̂2

 =

Zc

f
(M | v) .

4. Enforce orthogonality:
R = UV where R̂ = UDV

(in which D should be approximately the identity I3).

5.
Translation: Rc = (Xc, Yc, Zc)T where Xc = u1Zc/f, Yc = u2Zc/f.

Figure 7.8: Recovery of pose using parallax.

is required for estimating Qz
0 from a rotation R through a modest angle θ about an

axis lying approximately parallel to the image plane. It is assumed that the object
does not translate significantly in depth (Z) during the rotation.

The rotated view r1(s) = U(s)Q1 is a transformed version of standard views:

r1(s) =
f

Zc

u1 +R2×3

X0(s)

Y0(s)

Z0(s)

 ,

in which Z0(s) is as yet unknown. The translation fu1/Zc can be calculated simply

152 Chapter 7

Figure 7.9: Pose recovery using the three-dimensional affine algorithm. The pose
can be accurately recovered over a wide range of transformations, including those near the
planar affine degeneracy at the standard pose.

as the centroid

f

Zc
u1 = r1 =

Qx

1 · 1

Qy
1 · 1

 .

Then Z0(s) can be estimated from

(aTa)Z0(s) = aT

[(
Zc

f
r1(s) − u1

)
−R2×2r0(s)

]

Pose recovery 153

in which a = (R13, R23)T . The resulting Z0(s) is a spline that can be expressed in
terms of its control points as

Qz
0 =

1
aTa

(aT ⊗ I)
[(

Zc

f
Q1 − u1 ⊗ 1

)
− (R2×2 ⊗ I)Q0

]
(7.3)

where I is the NB ×NB identity matrix and ⊗ is the “Kronecker product” operation
(see appendix A.1).

A more accurate method

If the rotation matrix R in (7.3) is not accurately known, Qz
0 will be imperfectly estimated.

The quality of the estimate can be improved by using more views and a more sophisticated
algorithm. Suppose the views are (Qx

n,Q
y
n), n = 1, . . . , N , then the following simultaneous

equations hold:
 Qx

n

Qy
n

− f

zn

 xn1

yn1

+ Tn

Qx
0

Qy
0

Qz
0

= 0 (7.4)

where (xn, yn, zn, Tn), n = 1, . . . , N and Qz
0 are unknown. Here (xn, yn, zn) is the object

translation in view n and Tn is the 2 × 3 rotation matrix. If f is only known approximately,
it can also be treated as an unknown in the system. The unknowns can be estimated using
any non-linear minimisation method, for example conjugate gradient descent. Convergence is
quick, and likely to find the correct local minimum, if the unknowns are initialised approx-
imately. An alternative linear algorithm which does not rely on careful initialisation, is the
“image-stream factorisation” algorithm of Tomasi and Kanade. This works by approximating
the image stream, laid out as a matrix(

Qx
1 Qy

1 Qx
2 Qy

2 . . .
)

to have its theoretical rank (4 in this case), using singular value decomposition. Once this
is done, Qz

0 could be calculated from the approximated image stream, subject to a certain
fundamental affine indeterminacy.

7.3 Separation of rigid and non-rigid motion

In chapter 4 shape-spaces for combined rigid and non-rigid motion were constructed
using key-frames. Such spaces are often too big for efficient or robust shape-fitting;

154 Chapter 7

they prove still to be useful for interpretation of shape, decomposing displacements
into rigid and non-rigid components. This is done by projecting a fitted shape Q onto
the shape-space and applying “Singular Value Decomposition” (SVD).

The decomposition algorithm is given in figure 7.10 (and justified below). The

Algorithm:

Given a fitted spline curve Q:

1. Express Q in the key-frame basis:(
u1, u2, {Ŷ j

i , i = 0, 1, . . . , j = 1, 2, . . .}
)

= W+Q,

where W is as defined in (4.21) on page 92.

2. Treating Ŷ j
i as components of a rectangular matrix Ŷ , apply SVD:

Ŷ = UDV.

3. Approximate Y as a rank 1 matrix
Y = UD∗V

where D∗ is D with all but the largest singular value set to 0.

4. Recovered pose is given by the shape-vector
X = (u1, u2, Y0

1, Y0
2, . . .)T .

5. Recovered non-rigid deformation is expressed as a contour in standard
pose:

Qd = Q0 +
∑

i

λiQi where λi =
Yi

1

Y0
1 , i = 1, 2, . . .

and Qi are key-frames as before.

Figure 7.10: Algorithm for decomposition of rigid and non-rigid displacement.

algorithm is illustrated in figure 7.11 for the problem of separating facial expression
from head pose. Rigid transformations are modelled here as 3D affine, including

Pose recovery 155

Figure 7.11: Pose-invariant transmission of facial expression. Separation of non-rigid
from rigid motion by SVD is used here to extract the facial expression of an actor. The
extracted expression is displayed on this cat caricature in a fixed pose, and can be seen to be
independent of the pose of the actor’s head. (Figure courtesy of Benedicte Bascle.)

parallax to accommodate the modest departure from co-planarity of tracked eyebrows,
mouth and facial creases. Expression is represented in three-dimensional coordinates
whose axes are defined by key-frames for smile, surprise and disgust, relative to a
neutral expression.

156 Chapter 7

Derivation of decomposition algorithm. Shape parameters Yi
j , i = 0, . . . , Nk, j =

1, . . . , Nr are highly interdependent, in principle, because, given the structure of shape-space
in (4.21) on page 92, Y is a product of two vectors:

Yi
j = λiXj+2,

where λ0 = 1 is the weight of the template Q0 and λi is the weight of key-frame Qi for
i = 1, . . . , Nk. (The index j+2 is an offset to allow for two image-translation parameters.)
Thus Y should have rank 1, and this is enforced by approximating Ŷ to rank 1 in the SVD
step. Note that one should expect D to contain one dominant singular value, indicating that
Y is a good approximation to Y ∗.

Bibliographic notes

Recovery of the pose of an object from its shape-space vector is based on an eigenvalue
method for recovery of the pose of a textured surface in (Blake and Marinos, 1990).
The “image-stream factorisation” algorithm (Tomasi and Kanade, 1991) uses singular
value decomposition (SVD) (Barnett, 1990) of the image stream for motion analysis.
Here, an adaptation of the algorithm was suggested for calibration of pose recovery
using parallax. The algorithm for decomposition of rigid and non-rigid displacement
is yet another application of SVD to bilinear decomposition problems in vision, oth-
ers being structure and motion (Tomasi and Kanade, 1991), and shape and shading
(Freeman and Tenenbaum, 1997).

