Embedded Systems Design: A Unified

Hardware/Software Introduction
L

Chapter 3 General-Purpose Processors:
Software

Introduction

» (General-Purpose Processor
— Processor designed for a variety of computation tasks
— Low unit cost, in part because manufacturer spreads NRE
over large numbers of units
» Motorola sold half a billion 68HCO05 microcontrollers in 1996 alone

— Carefully designed since higher NRE is acceptable
» Can yield good performance, size and power

— Low NRE cost, short time-to-market/prototype, high
flexibility
o User just writes software; no processor design

— a.k.a. “microprocessor” — “micro” used when they were
Implemented on one or a few chips rather than entire rooms

Embedded Systems Design: A Unified 2
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Basic Architecture
L

 Control unit and ——
da'[apath Control unit Datapath
— Note similarity to ALU
single-purpose Controller Control
/Status
processor) !
« Key differences T Redes
— Datapath is general 3
— Control unit doesn’t S oC LR S
store the algorithm —)
the algorithm is v i
“programmed” into the v Vo i
memory Memory
R EEE————..
Embedded Systems Design: A Unified 3

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Datapath Operations

e |oad
— Read memory location
Into register
e ALU operation

— Input certain registers
through ALU, store
back in register

e Store

— Write register to
memory location

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Processor
Control unit Datapath
ALU
Controller Control ﬂ-l
/Status
A EA\
<+ E/egister
v ? >11
> PC ~ IR
A
R/
o ||y
h 4
Memory

Control Unit

1]
e Control unit: configures the datapath
operations Processor

— Sequence of desired operations Control unit Datapath
(“Iinstructions”) stored in memory —

“program”
. . Controller Control
 Instruction cycle — broken into IStatus
several sub-operations, each one «» ¢

clock cycle, e.g.: <« [Registers
— Fetch: Get next instruction into IR

— Decode: Determine what the
instruction means y T > >

— Fetch operands: Move data from > PC > IR RO R1
memory to datapath register 4

— Execute: Move data through the v 1
ALU 10 !

— Store results: Write data from 100 |load RO, M[500]| Memory
register to memory 101| incR1, RO

102 |store M[501], R1
|

Embedded Systems Design: A Unified 5
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

ALU

> >

500 | 10
501

Control Unit Sub-Operations

° FetCh Processor
_ Get next inStrUCtiOn Control unit Datapath
- ALU
|nt0 IR Controller Control
— PC: program e 3
counter, always > [Registers
points to next | > | B
instruction >DC" B”f; S | B
10 RAM[500 RO R1
— IR: holds the (@ a#//A T
fetched Instruction v
PN\) .
100 | load RO, Mf500] | Memory . o
101 inc R1, RO 501
102 |store M[501], R1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

 Decode Processor
. C luni h
— Determine what the ontrotunit Patapat
- - ALU
instruction means — .
/Status
<« > v
<+——TP Registers
A
> >
Y ? | > >
>PC 100 R RO, M[500 RO R1
I 1
i Y
100 | load RO, M[500] | Memory ... 10
101 inc R1, RO 501
102 |store M[501], R1

Embedded Systems Design: A Unified 7
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

e Fetch operands

— Move data from
memory to datapath
register

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Processor
Control unit Datapath
ALU
Controller Contr0|
/Status
—
<+ Registers
> >
Y ? > >
>PC 100 344 RO, M[500 RO R1
‘ [
A\
I o | 4
100 [load RO, M[500] | Memory ¢ 1‘6
101 inc R1, RO 501

102 |store M[501], R1

Control Unit Sub-Operations
- ___0_______0_0000__"]

® EXECUte Processor
— Move data through Controlunit Datapath
ALU
the ALU Controller Control
— This particular Stats x
Instruction does > [Registers
nothing during this | > 1B
sub-operation Y 1 10| B
>PC 100 R RO, M[500 RO R1
I 1
! /o i
100 | load RO, M[500] | Memory 500 10
101 inc R1, RO 501
102 |store M[501], R1
|

Embedded Systems Design: A Unified 9
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations
- ___0_______0_0000__"]

e Store results —
_ Write data from Control unit Datapath
. ALU
register to memory p— ot
— This particular Stats x
Instruction does > [Registers
nothing during this | > | b
sub-operation Y 1 10| B
>PC 100 R RO, M[500 RO R1
I 1
! /o i
100 | load RO, M[500] | Memory ... 10
101 inc R1, RO 501
102 |store M[501], R1
I —

Embedded Systems Design: A Unified 10
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

PC=100 Processor
Fetch Decode FetCh Exec. Store Control unit Datapath
ops results LU
clk Controller Control
/Status
S
<+ Registers
>

>
>

0| p
>PC{\£1?0 loa BM 00] é R1

R

| T

AN o ||
100 |12 ReAM[500]] Memory 500 11"

101 inc R1, RO 501

102 |store M[501], R1

0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

PC=100
Fetch Decode FetCh Exec, Store
ops results
clk
PC=101
Fetch Decode FetCh Exec, Store
ops results
clk

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Processor
Control unit Datapath
ALU
Controller Control +1
/Status
by 3
<+ egiste
y il >10 | D11
> PCr\Efl -8 Ro RO Rl
A— ;
A\
\ Ji 10 !
v 7L
100\oad RO, f500]] Memory 50010
101 \M RO c01
102 |store M[501], R1

Instruction Cycles

PC=100
Fetch Decode FetCh Exec, Store
ops results
clk
PC=101
Fetch Decode FetCh Exec, Store
ops results
clk
PC=102
Fetch Decode FetCh Exec, Store
ops results

clk

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Processor
Control unit Datapath
ALU
Controller Contr()'
/Status
s
<+ P Registers
/J > >
y il >10 | P11 |
— /)
A\
\) o J/
v] L
106\|oad RO, MJ600]| Memory o070
101)\ inc R1/R0 501 |11
2 Mou, R1

10

Architectural Considerations

* N-Dbit processor Processor
_ N'blt ALU, regiSterS, Control unit Datapath
buses, memory data p— I B e
Interface IStatus x
— Embedded: 8'b|t, 16' <+ Registers
bit, 32-bit common
— Desktop/servers: 32- e g ,L 5
bit, even 64) :
» PC size determines l 0 |
address space Memory
Embedded Systems Design: A Unified 14

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architectural Considerations

» Clock frequency Processor
_ Inverse O.I: CIOCk Control unit Datapath
perIOd Controller Control A
/Status
— Must be Ior_1ger than | N
longest register to <« [\ Registers §
register delay In
entire processor v
] >P§ IR DI k
— Memory access IS \ 3 , \
often the longest A / v L
v _/ o |y |
Memory

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Pipelining: Increasing Instruction
Throughput

Wash 112(3[4(5|6|7]|8 112(3[4|5|6|7]|8
Non-pipelined Pipelined
TDry 1]2]3]4a]5]6]7]8 1{2[3]4]5]6|7]8
——+—+—+—t+—+—++++t+++++> ——t——t—t+—+—+—>
non-pipelined dish cleaning Time pipelined dish cleaning Time

Fetch-instr. 1\2|3|4|5|6|7]|8
N\
Decode IN2|3|4|5|6|7]|8
N\
Fetch ops. IN2|[3|4|5|6|7|8 Pipelined
N\
Execute /NN2[3]4[5]6]7]8
Instruction 1 ~
Store res. IN2|3|4|5|6|7]|8
S

N S s B B B B B B B B
pipelined instruction execution

Embedded Systems Design: A Unified 16
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Superscalar and VLIW Architectures

]
« Performance can be improved by:
— Faster clock (but there’s a limit)
— Pipelining: slice up instruction into stages, overlap stages

— Multiple ALUs to support more than one instruction stream

» Superscalar
— Scalar: non-vector operations
— Fetches instructions in batches, executes as many as possible
» May require extensive hardware to detect independent instructions
— VLIW: each word in memory has multiple independent instructions
» Relies on the compiler to detect and schedule instructions
» Currently growing in popularity

Embedded Systems Design: A Unified 17
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Two Memory Architectures

. Processor Processor
e Princeton
— Fewer memory
wires
 Harvard
. - Program Data memory Memory
Simultaneous memory (program and data)
program and data
memory access
Harvard Princeton

Embedded Systems Design: A Unified 18
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Cache Memory

. 0 00000000000000]
¢ Memory access may be SIOW Fast/expensive technology, usually on

i the same chip
o Cache i1s small but fast

memory close to processor rrocesr
— Holds copy of part of memory I

— Hits and misses Cache
f
v

Memory

Slower/cheaper technology, usually on
a different chip

Embedded Systems Design: A Unified 19
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer’s View

* Programmer doesn’t need detailed understanding of architecture
— Instead, needs to know what instructions can be executed

* Two levels of instructions:
— Assembly level
— Structured languages (C, C++, Java, etc.)

* Most development today done using structured languages
— But, some assembly level programming may still be necessary
— Drivers: portion of program that communicates with and/or controls
(drives) another device
« Often have detailed timing considerations, extensive bit manipulation
o Assembly level may be best for these

Embedded Systems Design: A Unified 20
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Assembly-Level Instructions

Instruction 1 | opcode operandl | operand?2

Instruction 2 | opcode operandl | operand2

Instruction 3| opcode operandl | operand?2

Instruction 4 | opcode operandl | operand?2

e Instruction Set

— Defines the legal set of instructions for that processor
» Data transfer: memory/register, register/register, 1/0, etc.
 Arithmetic/logical: move register through ALU and back
» Branches: determine next PC value when not just PC+1

Embedded Systems Design: A Unified 21
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Simple (Trivial) Instruction Set

Assembly instruct. First byte Second byte Operation

MOV Rn, direct 0000 Rn direct Rn = M(direct)

MOV direct, Rn 0001 Rn direct M(direct) = Rn

MOV @Rn, Rm 0010 Rn Rm M(Rn) = Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

ADD Rn, Rm 0100 Rn Rm Rn=Rn+Rm

SUB Rn, Rm 0101 Rn Rm Rn=Rn-Rm

JZ Rn, relative 0110 Rn relative PC = PC+ relative
(only if Rn is 0)

H_J NG —— _/
opcode operands

Embedded Systems Design: A Unified 29
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Addressing Modes

Addressing _ Register-file Memory
mode Operand field contents contents
Immediate Data
Register-direct -
J Register address I Data
Register Register add M dd Dat
indirect egister address - emory address Y ata
Direct Memory address > Data
Indirect Memory address > Memory address

L » Data

Embedded Systems Design: A Unified 23
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Sample Programs
- ___0_______0_0000__"]

C program Equivalent assembly program
0 MOV RO, #0; // total =0
1 MOV R1, #10; /[i=10
2 MOV R2, #1, // constant 1
3 MOV R3, #0; /Il constant 0
Loop: JZ R1, Next; // Done if i=0
int total = 0; 5 ADD RO, R1; /] total +=i
for (int i=10; i'=0; i--) 6 SUB R1, R2: /] i--
total +=1; 7 JZ R3, Loop; /I Jump always

/I next instructions...
Next: // next instructions...

e Try some others

— Handshake: Wait until the value of M[254] is not 0, set M[255] to 1, walt
until M[254] is 0, set M[255] to 0 (assume those locations are ports).

— (Harder) Count the occurrences of zero in an array stored in memory
locations 100 through 199.

Embedded Systems Design: A Unified 24
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer Considerations

- 0000000000001
* Program and data memory space

— Embedded processors often very limited
e e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

* Registers: How many are there?
— Only a direct concern for assembly-level programmers

e 1/O

— How communicate with external signals?
e |nterrupts

Embedded Systems Design: A Unified 25
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Microprocessor Architecture Overview

 |f you are using a particular microprocessor, now Is a
good time to review its architecture

Embedded Systems Design: A Unified 26
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Example: parallel port driver

LPT Connection Pin I/0O Direction Register Address Bin13
1 Output 0™ bit of register #2 " Snitch
2-9 Output 0™ bit of register #2 PC Parallel m‘t
10,11,12,13,15 Input 6,7,5,4,3™ bit of register #1 An
14,16,17 Output 1,2,3™ bit of register #2

e Using assembly language programming we can configure a PC
parallel port to perform digital 1/0

— write and read to three special registers to accomplish this table provides
list of parallel port connector pins and corresponding register location

— Example : parallel port monitors the input switch and turns the LED
on/off accordingly

Embedded Systems Design: A Unified 27
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Parallel Port Example
- ___0_______0_0000__"]

; This program consists of a sub-routine that reads extern “C” CheckPort(void); // defined in
; the state of the input pin, determining the on/off state // assembly
; of our switch and asserts the output pin, turning the LED void main(void) {
; on/off accordingly while(1) {
-386 CheckPort();
CheckPort proc 3} ¥
push ax ; save the content
push dx ; save the content
mov dx, 3BCh + 1 ; base + 1 for register #1
in al, dx ; read register #1

and al, 10h : mask out all but bit # 4 Pin

cmp al, O ; Is 1t 0? -
jne SwitchOn ; If not, we need to turn the LED on F{: "Eﬂ SNVUj]

SwitchOff:
mov dx, 3BCh + 0 ; bsse + 0 for register #0 Fin
in al, dx ; the current state of the port
and al, f7h
out dx, al ;

Jjmp Done ;

Switchon: LPT Connection Pin 1/0 Direction Register Address
mov dx, 3BCh + 0 egister #0 1 / Output 0" bit of register #2
in al, dx ; read the curre state of the port
or al, 01h ; set first bit (masking) 2-9 !/ Output Ot bit of register #2
out dx, al ; write it out to the\port

10,11,12,13,15 Input 6,7,5,4,3! bit of register

Done: pop dx ; restore the content E— —f:j' —H—

pop ax ; restore the Content 14,16,17 W ,2,3th blt Ole’egISter #2

CheckPort endp

Embedded Systems Design: A Unified 28
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Operating System

- ___0_______0_0000__"]
» Optional software layer
providing low-level services to
a program (application).
— File management, disk access
— Keyboard/display interfacing

— Scheduling multiple programs for [os fire nane “out.ext" — store fite nane
execution o e Sien el e i
« Or even just multiple threads from 2 Ro. U i sero Lerror
One program . . . read the file . 4
JMP L2 -- bypass error cond.
— Program makes system calls to . handte the error
the OS
Embedded Systems Design: A Unified 29

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Development Environment

. 0 00000000000000]
« Development processor

— The processor on which we write and debug our programs
e Usually a PC

 Target processor

— The processor that the program will run on in our embedded
system
» Often different from the development processor

[m]

£

Development processor Target processor

Embedded Systems Design: A Unified 30
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software Development Process

Compilers
C File CFlleJ As_m. J — CrOSS COmp”GI’
i « Runs on one

w processor, but
ssembler
generates code for
Blnary Blnary J Binary J another

File
e Assemblers

-
— e Linkers
Exec. @
File
« Debuggers
Implementation Phase Verification Phase -
o Profilers
Embedded Systems Design: A Unified 31

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Running a Program

- ___0_______0_0000__"]
 |f development processor Is different than target, how
can we run our compiled code? Two options:
— Download to target processor
— Simulate

e Simulation
— One method: Hardware description language
» But slow, not always available

— Another method: Instruction set simulator (1SS)

* Runs on development processor, but executes instructions of target
processor

Embedded Systems Design: A Unified 32
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Set Simulator For A Simple
Processor

#include <stdio.h> 3
typedef struct { }
unsigned char first byte, second _byte; return O;
} instruction; }
instruction program[1024]; //instruction memory int main(int argc, char *argv[]) {

unsigned char memory[256]; //data memory
FILE* ifs;

void run_program(int num_bytes) {
ITC argc '= 2 ||

int pc = -1; (ifs = fopen(argv[1l], “rb”) == NULL) {
unsigned char reg[16], fb, sb; Y return —1;
while(++pc < (num_bytes 7 2)) { if (run_program(fread(program,
fb = program[pc].first_byte; sizeof(program) == 0) {
sb = program[pc].second_byte; print_memory_contents();
switch(fb >> 4) { return(0);
case 0: reg[fb & OxOF] = memory[sb]; break; 3
case 1: memory[sb] = reg[fb & 0x0f]; break; else return(-1);
case 2: memory[reg[fb & OxOf]] = 3

reg[sb >> 4]; break;

case 3: reg[fb & OxO0F] = sb; break;

case 4: reg[fb & OxO0F] += reg[sb >> 4]; break;
case 5: reg[fb & OxOF] -= reg[sb >> 4]; break;
case 6: pc += sb; break;

default: return -1;

Embedded Systems Design: A Unified 33
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Testing and Debugging

() (b) e |SS
.) | | /‘ : - -
Implementatlon — |mp|ementati0n - GIVGS US COﬂthl OVGI' tlme -
Phase Phase | set breakpoints, look at
v register values, set values,
Veril;:cation step-by-step execution, ...
P . .
e 1) — But, doesn’t interact with real
environment
- /155~ 0« Download to board
Gy — Use device programmer
E_ — Runs in real environment, but
External tools < | not controllable
o Compromise: emulator

\4 _ . .
Runs in real environment, at
speed or near

~— verheation — Supports some controllability

from the PC

Embedded Systems Design: A Unified 34
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Application-Specific Instruction-Set
Processors (ASIPs)

o (eneral-purpose processors
— Sometimes too general to be effective in demanding
application

* e.g., video processing — requires huge video buffers and operations
on large arrays of data, inefficient on a GPP

— But single-purpose processor has high NRE, not
programmable

o ASIPs - targeted to a particular domain

— Contain architectural features specific to that domain

* e.¢., embedded control, digital signal processing, video processing,
network processing, telecommunications, etc.

— Still programmable

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

35

A Common ASIP: Microcontroller

» For embedded control applications
— Reading sensors, setting actuators
— Mostly dealing with events (bits): data is present, but not in huge
amounts

— e.g., VCR, disk drive, digital camera (assuming SPP for image
compression), washing machine, microwave oven

* Microcontroller features
— On-chip peripherals
» Timers, analog-digital converters, serial communication, etc.
» Tightly integrated for programmer, typically part of register space
— On-chip program and data memory
— Direct programmer access to many of the chip’s pins

— Specialized instructions for bit-manipulation and other low-level

operations
R EEE————..

Embedded Systems Design: A Unified 36
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Another Common ASIP: Digital Signal
Processors (DSP)

 For signal processing applications
— Large amounts of digitized data, often streaming
— Data transformations must be applied fast
— e.g., cell-phone voice filter, digital TV, music synthesizer

o DSP features
— Several instruction execution units
— Multiple-accumulate single-cycle instruction, other instrs.

— Efficient vector operations — e.g., add two arrays
* Vector ALUs, loop buffers, etc.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

37

Trend: Even More Customized ASIPs

]
 In the past, microprocessors were acquired as chips

« Today, we increasingly acquire a processor as Intellectual

Property (IP)
— e.g., synthesizable VHDL model

o Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions
— Can have significant performance, power and size impacts

— Problem: need compiler/debugger for customized ASIP
* Remember, most development uses structured languages
» One solution: automatic compiler/debugger generation
— e.g., www.tensillica.com

» Another solution: retargettable compilers
— e.g., www.improvsys.com (customized VLIW architectures)

Embedded Systems Design: A Unified 38
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Selecting a Microprocessor

e |Issues
— Technical: speed, power, size, cost
— Other: development environment, prior expertise, licensing, etc.

« Speed: how evaluate a processor’s speed?
— Clock speed — but instructions per cycle may differ
— Instructions per second — but work per instr. may differ

— Dhrystone: Synthetic benchmark, developed in 1984. Dhrystones/sec.
 MIPS: 1 MIPS = 1757 Dhrystones per second (based on Digital’s VAX
11/780). A.k.a. Dhrystone MIPS. Commonly used today.
— S0, 750 MIPS = 750*1757 = 1,317,750 Dhrystones per second

— SPEC: set of more realistic benchmarks, but oriented to desktops

— EEMBC — EDN Embedded Benchmark Consortium, www.eembc.org

 Suites of benchmarks: automotive, consumer electronics, networking, office

automation, telecommunications
s |

Embedded Systems Design: A Unified 39
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

General Purpose Processors

Processor | Clock speed | Periph. | BusWwidth | MIPS | Power Trans. Price
General Purpose Processors

Intel P1II 1GHz 2x16 K 32 ~900 97W ~7M $900

L1, 256K

L2, MMX
IBM 550 MHz 2x32 K 32/64 ~1300 5w ~7M $900
PowerPC L1, 256K
750X L2
MIPS 250 MHz 2x32 K 32/64 NA NA 3.6M NA
R5000 2 way set assoc.
StrongARM 233 MHz None 32 268 1w 2.1M NA
SA-110

Microcontroller

Intel 12 MHz 4K ROM, 128 RAM, | 8 ~1 ~0.2W ~10K $7
8051 32 1/0, Timer, UART
Motorola 3 MHz 4K ROM, 192 RAM, | 8 ~5 ~0.1W ~10K $5
68HC811 32 1/0, Timer, WDT,

SPI

Digital Signal Processors

T1C5416 160 MHz 128K, SRAM, 3 T1 16/32 ~600 NA NA $34

Ports, DMA, 13

ADC, 9 DAC
Lucent 80 MHz 16K Inst., 2K Data, 32 40 NA NA $75
DSP32C Serial Ports, DMA

Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Programming, Nov. 1998
|

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

40

Designing a General Purpose Processor

FSMD
Declarations:

 Not SomEthing an embedded bit PC[16], IR[16]; PC=0;

bit M[64k][16], RF[16][16];

system designer normally R-MIpC
would do (o) o
Decode Leolo\; ates

— But instructive to see how
RF[rn] = M[dir]
oto Fetch

simply we can build one top
down

— Remember that real processors n] = RE[rm
P L e

aren’t usually built this way

.- . Mov4 | RF[m]=imm
« Much more optimized, much e Gl N

more bottom-up design L »(Add) RF[mI=RFM]+RFm]

0100 to Fetch

op IR[15..12] dir IR[7..0]

to Fetch

_ Sub RF[rn] = RF[rn]-RF[rm]
Aliases: 0101 to Fetch

rm IR[11..8] imm IR[7..0])) '
m IR[7..4] rel IR[7..0] " PC=(RF[rn]=0) ?rel :PC

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architecture of a Simple Microprocessor

» Storage devices for each oucoet 1]
declared variable Control unit ol RFs : fomuox |
— register file holds each of the Sanats N ¥
I ontroller _> Wa_’ RFw
Va-“ables . (N(e:xt-;tatltla and — RFwe_>
« Functional units to carry out the ogics oo ey | o || | rerta RF (16)
FSMD operations s .
— One ALU carries out every . 16 $ o RF2a
required operation Pcig PC R Reze] RFi R”j
« Connections added among the peci AT % L
components’ ports Zl 1 o ALz |
corresponding to the operations " v Vv
required by the FSM = I [| e vwe
* Unique identifi_ers created for v w v
every control signal A Memory D
Embedded Systems Design: A Unified 42

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Simple Microprocessor

WC=PCH1

Decode

IR=M[PC];

from states

i

b

FSMD

F[f”] = M[dir]

op = 0000)
H)n]F " ;F[rm]
el
—mo"igfge?ciF[rnpRF[rm]
_Olm>'ig?:]ejcﬁF[rn]_Rp[rm]
Olloiz(sel:u[:rhn]w) 2rel :PC

PCclr=1;

MS=10;
Irld=1;
Mre=1,
PCinc=1;

RFwa=rn; RFwe=1; RFs=01;
Ms=01; Mre=1;

RFrla=rn; RFrle=1;
Ms=01; Mwe=1;

RFrla=rn; RFrle=1;
Ms=10; Mwe=1;

RFwa=rn; RFwe=1; RFs=10;

RFwa=rn; RFwe=1; RFs=00;
RFrla=rn; RFrle=1;
RFr2a=rm; RFr2e=1; ALUs=00
RFwa=rn; RFwe=1; RFs=00;
RFrla=rn; RFrle=1;
RFr2a=rm; RFr2e=1; ALUs=0
PCld= ALUz;

RFrla=rn;

RFrle=1;

FSM operations that replace the FSMD
operations after a datapath is created

You just built a simple microprocessor!

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control unit Toall Datapath 1 + T
i RFs
nput —>| 2x1 mux
contro |
|
i RFwa
Controller _qw Is :t RFw
ext-state and < REWe
control From all RF (16)
logic; state output RFrla
register) control —>
signals RFiTe
16 ? RFr2a
PCl Irld
. P IR RFr2e:t RFr1 RFr2
P@inc C
$ ALUs + +
Ccl
A 4_' ALU
ALUz
Ms 3x1 mux Mre Mwe
v \ A 4
A Memory D

43

Chapter Summary

» General-purpose processors
— Good performance, low NRE, flexible
« Controller, datapath, and memory

 Structured languages prevail
— But some assembly level programming still necessary

« Many tools available
— Including instruction-set simulators, and in-circuit emulators

 ASIPs
— Microcontrollers, DSPs, network processors, more customized ASIPs

e Choosing among processors is an important step

» Designing a general-purpose processor is conceptually the same
as designing a single-purpose processor

Embedded Systems Design: A Unified 44
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

