
Deep Networks 



From MLC to NN to Deep-NN 
 

● Multinomial Logistic Classification (MLC) 

○ fast: efficient computation due to the linear model 

○ stable: small input variations generates small output 

variations and the derivative of the model is constant 

but... 

○ trains only a “small” parameter set 

○ can’t represent non linear relations among the inputs 

● What if I concatenate multiple MLCs? 

D(s(xW+b), L) 

W1 b1 + x = 

still a linear model…! 

x1 + x2 x1 * x2 

y1 W2 b2 + = y2 W3 b3 + x = y3 



From MLC to NN to Deep-NN 

  
● GOAL: build a bigger and non linear model 

 

● IDEA: concatenate many linear systems (MLC) 

and insert a non linear function between two 

consecutive MLCs, that is, the activation 

function 

? → → 

Which function? 

W1 b1 + x = y1 W2 b2 + = y2 → s(y2) 



Choose the (non linear) activation function 

● simplest function 

● constant derivative 

 

● similar to sigmoid 

 

● A perceptron classic 
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ReLU: Rectified Linear Unit 

no more linear…! 

1 

x 

y y 

x 

derivative 
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Résumé 

hidden layer 

H 

 

H = number of “neurons” in the hidden layer 

linear model softmax linear model 

non linear model 

→ → W1 b1 + x = y1 W2 b2 + = y2 → s(y2) 



Practical example (1/2) 

1xF                   FxC                          1xC                   1xC 

→ 

s(y1) 

Image 

28x28 

pixels 3 

#classes (C) 

#features (F) 

W1 b1 + x = y1 



Practical example (2/2) 

R

e 

L 

U 

1xF                FxH                           1xH                 1xH                                                                       HxC                           1xC                 1xC 

3 

#hidden_neurons (H) 

→ → W1 b1 + x = y1 W2 b2 + = y2 → s(y2) 

x * W1 + b1 = y1 → ReLU(y1) * W2 + b2 = y2 



 

Stacking up simple operations makes the math 

easier to understand... 

Let’s do math 

→ → W1 b1 + x = y1 W2 b2 + = y2 → s(y2) 



The chain rule 

f’ 

y’ f g’ x * 

derivative 

f g x y 

function 
 

You can compute the derivative of a function by 

taking the product of the derivatives of the 

components. 

 

Pros 

● efficient data pipeline 

● lots of data reuse 

 

Cons 

● Memory usage 

core of deep-learning 



 

Algorithm that computes the derivatives of complex 

functions in a efficient way, used in the Stochastic 

Gradient Descent algorithm. 

 

 

IDEA: thanks to the chain-rule, use the prediction 

error to refine the weights W and biases b of the 

framework 

 

Back propagation 

w1 w2 x y 

y_ 

Δw1 Δw2 

forward propagation ⇒ 

⇐ backward propagation 

y_ = ground truth y-value (label) 
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Back propagation 

aj     zj ai     zi ak     zk 

wji wkj 

h() 

 

h = activation function (i.e. sigmoid, tanh, ReLU) 



Back propagation 
 

Due to simplicity, we define the loss function as a variation of the MSE: 

 

 

 

 

so that its derivative is 

 

 

 

 

 

Note that this is the customizable part of the backpropagation algorithm: according to the task, one could 

define a different type of loss function. 

 

y = prediction value; t = target value 

drop n index 



Back propagation 
 

Define the math of the neurons: 

 

 

 

 

where the derivatives are 

 

 

 

 

 

 

a = linear combination of neurons of the previous layer; z = activation value; h = activation function 



Back propagation 
 

Exploiting the chain-rule, we can write: 

 

 

 

 

 

and then define the formulation of the backprop in two steps: 

 

● base case 

● inductive case 



Back propagation: base case 
 

In the last layer there is no activation function, so aj = yj and then: 

 

 

 

 

 

 

Now, we must propagate the error through the network until we reach the input layer. 

depends on the 

loss function 



Back propagation: inductive case 
 

Thanks to the chain rule, we have: 

 

 

 
 

We substitute the equation of ak and zj to expand the previous formula: 

 

 

 
 

The inductive pass of the algorithm is now: 

 

 

 

The iteration ends when zj = xj. 



Deep Neural Networks (DNN) 

wider or deeper? 

→ → W1 
b1 

+ x = 
y1 W2 

b2 + = y2 

→ → W1 b1 + x = y1 W2 b2 + = y2 → → W3 b3 + = y3 



Deep Neural Networks (DNN) 
 

The deep choice… 

 

Pros: 

● parameter efficiency: much more 

performance 

● hierarchical structure: a lot of natural 

phenomena could be represented since 

each layer describes a specific level of 

abstraction of the input 

 

Cons: 

● needs a huge amount of data 

● needs regularization 

● In the case of fully connected 

architectures, tons of params to tune 
abstraction 



Regularization 



Prevent overfitting 

DNNs are very hard to optimize 

Train a bigger model and do 

your best to prevent overfitting 

Regularization         

early 

termination 
dropout 

ridge 

regression 

so... 

How? 



Regularization: early termination 
 

● IDEA: stop to train as soon as the network stops 

improving the performance of the validation set 

loss 

(error) 

epochs 

(training time) 



Regularization: ridge regression 
 

● IDEA: apply artificial constraints on the 

network to reduce the number of free 

parameters 

add regularization term (L2 norm) 

to the loss function 

which penalizes large weights 

new loss 

 

β = penalty factor (real number) 

 

In other words, we force the network 

to prevent big disparity among the 

(absolute) value of the weights 



Regularization: dropout 
 

● GOAL: prevent the neurons to co-adapting 

 

● IDEA: randomly switch off the neurons (set 

the weights to zero) for each learning step 

on one training input. 

 

Dropout simulates different networks that are 

trained to represent the same input data in many 

ways (redundant). 


