
MODELING LANGUAGES

AND

ABSTRACT MODELS

c�Giovanni De Micheli

Stanford University

Outline

c� GDM

� Hardware modeling issues�

� Representations and models�

� Issues in hardware languages�

� Abstract hardware models�

� Data�ow and sequencing graphs�

Circuit modeling

c� GDM

� Formal methods�

� Models in hardware languages�

� Flow and state diagrams�

� Schematics�

� Informal methods�

� Principles of operations�

� Natural�language descriptions�

Hardware Description Languages

c� GDM

� Specialized languages with hardware design

support�

� Multi�level abstraction�

� Behavior� RTL� structural�

� Support for simulation�

� Try to model hardware as designer likes to

think of it�

Software programming languages

c� GDM

� Software programming languages �C� can model

functional behavior�

� Example� processor models�

� Software language models support marginally

design and synthesis�

� Di�erent paradigms for hardware and software�

� Strong trend in bridging the gap between software

programming languages and HDLs�

Hardware versus software models

c� GDM

� Hardware�

� Parallel execution�

� I	O ports� building blocks�

� Exact event timing is very important�

� Software�

� Sequential execution �usually��

� Structural information less important�

� Exact event timing is not important�

Language analysis

c� GDM

� Syntax�

� External look of a language�

� Speci
ed by a grammar�

� Semantics�

� Meaning of a language�

� Di�erent ways of specifying it�

� Pragmatics�

� Other aspects of the language�

� Implementation issues�

Language analysis

c� GDM

� Procedural languages�

� Specify the action by a sequence of steps�

� Examples� C� Pascal� VHDL� Verilog�

� Declarative languages�

� Specify the problem by a set of declarations�

� Example� Prolog�

Language analysis

c� GDM

� Imperative semantics�

� Dependence between the assignments

and the values that variables can take�

� Examples C� Pascal�

� Applicative semantics�

� Based on function invocation�

� Examples� Lisp� Silage�

Hardware languages and views

c� GDM

� Physical view�

� Physical layout languages�

� Declarative or procedural�

� Structural view�

� Structural languages�

� Declarative �with some procedural features��

� Behavioral view�

� Behavioral languages�

� Mainly procedural�

Structural view

c� GDM

� Composition of blocks�

� Encoding of a schematic�

� Incidence structure�

� Hierarchy and instantiation�

� HDL examples�

� VHDL� Verilog HDL� ���

Example

�half adder�

c� GDM

a
b

sum

carry
x

y
o

x

y
o

G1

G2

HALF_ADDER

VHDL example

structural representation

c� GDM

architecture STRUCTURE of HALF�ADDER is

component AND�

port �x� y� in bit� o� out bit��

component EXOR�

port �x� y� in bit� o� out bit��

begin

G�� AND�

port map � a � b � carry��

G�� EXOR�

port map � a � b � sum ��

end STRUCTURE

Behavioral view

procedural languages

c� GDM

� Set of tasks with partial order�

� Logic�level�

� Tasks� logic functions�

� Architectural�level�

� Tasks� generic operations�

� Independent of implementation choices�

� HDL examples�

� VHDL� Verilog HDL� ���

VHDL example

Behavior of combinational logic circuit

c� GDM

architecture BEHAVIOR of HALF�ADDER is

process

begin

carry 	
 � a and b � �

sum 	
 � a xor b � �

end process

end BEHAVIOR

VHDL example

behavior of sequential logic circuit

c� GDM

architecture BEHAVIOR of REC is
process
begin
wait until CLOCK�event and CLOCK�����
if � in� ��� � then

case STATE is
when �� STATE�ZERO

STATE 	� STATE�ONE�
out 	� �
��

when �� STATE�ONE
STATE 	� STATE�ONE�
out 	� ����

end case�
else

STATE 	� STATE�ZERO�
out 	� �
��

end if�
end process�
end BEHAVIOR�

Behavioral view

declarative languages

c� GDM

� Combinational circuits�

� Set of untimed assignments�

� Each assignment represents a virtual logic

gate�

� Very similar to procedural models�

� Sequential circuits�

� Use timing annotation for delayed signals�

� Set of assignments over �delayed� variables�

Silage example

c� GDM

+

+

+

+

a1 a2

b1 b2

x mid y

*

*

*

*

Silage example

c� GDM

function IIR � a�� a� � b�� b�� x
 num�
�� returns �� y
 num �

begin
y � mid � a� � mid�� � b� � mid���
mid � x � a� � mid�� � b� � mid���

end

Issues in hardware languages

c� GDM

� Mixing behavior and structure�

� Controlling some implementation details�

� Primitive elements and variable semantics�

� Multiple�assignment problem�

� Timing semantics�

� Synthesis policies�

Timing semantics

�event�driven semantics�

c� GDM

� Digital synchronous implementation�

� An operation is triggered by some event�

� If the inputs to an operation change

� the operation is re�evaluated�

� Used by simulators for e�ciency reasons�

Synthesis policy

for VHDL and Verilog

c� GDM

� Operations are synchronized to a clock

by using a wait command�

� Wait statements delimit clock boundaries�

� Clock is a parameter of the model�

� model is updated at each clock cycle�

VHDL example

behavior of sequential logic circuit�

c� GDM

architecture BEHAVIOR of REC is
process
begin
wait until CLOCK�event and CLOCK�����
if � in� ��� � then

case STATE is
when �� STATE�ZERO

STATE 	� STATE�ONE�
out 	� �
��

when �� STATE�ONE
STATE 	� STATE�ONE�
out 	� ����

end case�
else

STATE 	� STATE�ZERO�
out 	� �
��

end if�
end process�
end BEHAVIOR�

Abstract models

c� GDM

� Models based on graphs�

� Useful for�

� Machine�level processing�

� Reasoning about properties�

� Derived from language models by compilation�

Abstract models

Examples

c� GDM

� Netlists�

� Structural views�

� Logic networks

� Mixed structural	behavioral views�

� State diagrams

� Behavioral views of sequential logic models�

� Data�ow and sequencing graphs�

� Abstraction of behavioral models�

Data�ow graphs

c� GDM

� Behavioral views of architectural models�

� Useful to represent data�paths�

� Graph�

� Vertices � operations�

� Edges � dependencies�

Example

c� GDM

xl � x
 dx

ul � u� �� � x � u � dx�� �� � y � dx�

yl � y
 u � dx

c � xl � a

Example

c� GDM

* * * * +

<+**

−

1 2

3

4

5

6

7

8

9

10

11

u dx3 x 3 y u dx x dx

dx y a

u

ul

yl c

xl

−

Sequencing graphs

c� GDM

� Behavioral views of architectural models�

� Useful to represent data�path and control�

� Extended data�ow graphs�

� Operation serialization�

� Hierarchy�

� Control��ow commands�

� branching and iteration�

� Polar� source and sink�

Example

c� GDM

* * * * +

<+**

−

−

1 2

3

4

5

6

7

8

9

10

11

0
NOP

NOP

n

Example of hierarchy

c� GDM

+

*

*

*+

CALL

NOP

NOP

NOP

NOP

a.0

a.1 a.2

a.3 a.4

a.n

b.0

b.1 b.2

b.n

Example of branching

c� GDM

+

*

*

*+

NOP

NOP

NOP

NOP

NOP

NOP

NOP

a.0

a.1 a.2

a.3

a.n

b.0

b.1 b.2

b.n

a.4
c.0

c.n

c.1

BR

Example of iteration

c� GDM

di�eq f

read �x� y� u� dx� a��

repeat f

xl � x
 dx�

ul � u� �� � x � u � dx�� �� � y � dx��

yl � y
 u � dx�

c � x � a�

x � xl�u� ul� y � yl�

g

until � c � �

write �y��

g

Example of iteration

c� GDM

READ

NOP

NOP

LOOP

WRITE

LOOP BODY

a.0

a.1

a.2

a.3

a.n

Semantics of sequencing graphs

c� GDM

� Marking of vertices�

� Waiting for execution�

� Executing�

� Have completed execution�

� Execution semantics�

� An operation can be �red as soon as all its

immediate predecessors have completed execution

Vertex attributes

c� GDM

� Area cost�

� Delay cost�

� Propagation delay�

� Execution delay�

� Data�dependent execution delays�

� Bounded �e�g� branching��

� Unbounded �e�g� iteration� synchronization��

Properties of sequencing graphs

c� GDM

� Computed by visiting hierarchy bottom�up�

� Area estimate�

� Sum of the area attributes of all vertices�

� Worst�case � no sharing�

� Delay estimate �latency��

� Bounded�latency graphs�

� Length of longest path�

Summary

c� GDM

� Hardware synthesis still requires specialized
languages�

� VHDL and Verilog HDL are mainly used today�

� Similar features�

� Simulation�oriented�

� Synthesis from programming languages is still
being researched�

� Hardware and software models of computation are

di�erent�

� Abstract models�

� Capture essential information�

� Derivable from HDL models�

� Useful to prove properties�

