MODELING LANGUAGES

AND
ABSTRACT MODELS

© Giovanni De Micheli

Stanford University

Outline

© GDM

e Hardware modeling issues:

— Representations and models.

e Issues in hardware languages.

e Abstract hardware models:

— Dataflow and sequencing graphs.

Circuit modeling

© GDM

e Formal methods:
— Models in hardware languages.
— Flow and state diagrams.

— Schematics.

e Informal methods:
— Principles of operations.

— Natural-language descriptions.

Hardware Description Languages

© GDM =

Specialized languages with hardware design
support.

Multi-level abstraction:

— Behavior, RTL, structural.

Support for simulation.

Try to model hardware as designer likes to
think of it.

Software programming languages
© GDM ==

Software programming languages (C) can model
functional behavior.

— Example: processor models.

Software language models support marginally
design and synthesis.

Different paradigms for hardware and software.

Strong trend in bridging the gap between software
programming languages and HDLSs.

Hardware versus software models
© GDM

e Hardware:
— Parallel execution.
— I/O ports, building blocks.

— Exact event timing is very important.

e Software:
— Sequential execution (usually).
— Structural information less important.

— Exact event timing is not important.

Language analysis

© GDM =

e Syntax:
— External look of a language.

— Specified by a grammar.

e Semantics:
— Meaning of a language.

— Different ways of specifying it.

e Pragmatics:
— Other aspects of the language.

— Implementation issues.

Language analysis

© GDM =

e Procedural languages:
— Specify the action by a sequence of steps.

— Examples: C, Pascal, VHDL, Verilog.

e Declarative languages:
— Specify the problem by a set of declarations.

— Example: Prolog.

Language analysis

© GDM =

e Imperative semantics:

— Dependence between the assignments
and the values that variables can take.

— Examples C, Pascal.

e Applicative semantics:
— Based on function invocation.

— Examples: Lisp, Silage.

Hardware languages and views
© GDM m—m

e Physical view:
— Physical layout languages.

— Declarative or procedural.

e Structural view:
— Structural languages.

— Declarative (with some procedural features).

e Behavioral view:
— Behavioral languages.

— Mainly procedural.

Structural view

Composition of blocks.

Encoding of a schematic.

Incidence structure.

Hierarchy and instantiation.

HDL examples:

— VHDL, Verilog HDL, ...

© GDM =

Example
(half adder)

© GDM

jab)

HALF_ADDER

X

' Gl ‘> carry

y

Yoy
/

VHDL example
structural representation
© GDM =

architecture STRUCTURE of HALF_ADDER is
component AND2
port (x, y: in bit; o: out bit);
component EXOR2
port (x, y: in bit; o: out bit);
begin
G1: AND2
port map (a , b , carry);
G2: EXOR2
port map (a , b, sum);
end STRUCTURE

Behavioral view
procedural languages

© GDM

e Set of tasks with partial order.

— Logic-level:

x Tasks: logic functions.

— Architectural-level:

x [asksS: generic operations.

e Independent of implementation choices.

e HDL examples:

— VHDL, Verilog HDL, ...

VHDL example
Behavior of combinational logic circuit

© GDM

architecture BEHAVIOR of HALF_ADDER is
process
begin
carry <= (a and b) ;
sum <= (axor b) ;
end process
end BEHAVIOR

VHDL example
behavior of sequential logic circuit
© GDM ==

architecture BEHAVIOR of REC is
process
begin
wait until CLOCK’event and CLOCK=’1’;
if (in= 1’) then
case STATE is
when => STATE_ZERO
STATE <= STATE_ONE;
out <= ’07;
when => STATE_ONE
STATE <= STATE_ONE;

out <= ’17;
end case;
else
STATE <= STATE_ZERO;
out <= ’07;
end if;

end process;
end BEHAVIOR;

Behavioral view

declarative languages
© GDM ==

e Combinational circuits:
— Set of untimed assignments.

— Each assignment represents a virtual logic
gate.

— Very similar to procedural models.

e Sequential circuits:
— Use timing annotation for delayed signals.

— Set of assignments over (delayed) variables.

Silage example

© GDM =

.0 SR B O

al a2
J L4
Y
L

? bl b2

Silage example

© GDM

function IIR (al, a2 , bl, b2, x: num)
/* returns */ y : num =
begin
y = mid + a2 * mid@1 + b2 * mid02;
mid = x + al * mid@1 + bl * mid@2;
end

Issues in hardware languages
© GDM ==

e Mixing behavior and structure.

— Controlling some implementation details.

e Primitive elements and variable semantics.

— Multiple-assignment problem.

e Timing semantics.

— Synthesis policies.

Timing semantics
(event-driven semantics)
© GDM

e Digital synchronous implementation.

e An operation is triggered by some event:

— If the inputs to an operation change
— the operation is re-evaluated.

e Used by simulators for efficiency reasons.

Svynthesis policy
for VHDL and Verilog

© GDM =

e Operations are synchronized to a clock
by using a wait command.

e \Wait statements delimit clock boundaries.

e Clock is a parameter of the model:

— model is updated at each clock cycle.

VHDL example
behavior of sequential logic circuit.
© GDM ==

architecture BEHAVIOR of REC is
process
begin
wait until CLOCK’event and CLOCK=’1’;
if (in= 1’) then
case STATE is
when => STATE_ZERO
STATE <= STATE_ONE;
out <= ’07;
when => STATE_ONE
STATE <= STATE_ONE;

out <= ’17;
end case;
else
STATE <= STATE_ZERO;
out <= ’07;
end if;

end process;
end BEHAVIOR;

Abstract models

e Models based on graphs.

e Useful for:
— Machine-level processing.

— Reasoning about properties.

e Derived from language models by compilation.

Abstract models
Examples

© GDM =

Netlists:

— Structural views.

Logic networks

— Mixed structural/behavioral views.

State diagrams

— Behavioral views of sequential logic models.

Dataflow and sequencing graphs.

— Abstraction of behavioral models.

Dataflow graphs

© GDM

e Behavioral views of architectural models.

e Useful to represent data-paths.

e Graph:
— Vertices = operations.

— Edges = dependencies.

Example

xl

ul

© GDM =——

r + dx
u—(3-2z-u-dr) — (3 -y-dx)
Y+ u-dx

zl < a

Example

© GDM

3 y u dx x dx
6 8 10
dx vy a
x1
7 9 11
vl c

ul

Sequencing graphs

© GDM =

e Behavioral views of architectural models.

e Useful to represent data-path and control.

e Extended dataflow graphs:
— Operation serialization.
— Hierarchy.

— Control-flow commands:

x branching and iteration.

— Polar: source and sink.

Example

© GDM

Example of hierarchy

© GDM

Example of branching

© GDM

e a0
{ NOP}

X
8 s
5 3
0. '0
sal % a.2

.....

» -
» o
. -
» -
......
ooooo
., -

Example of iteration

© GDM
diffeq {
read (x,y,u,dr,a);
repeat {
rl = x + dx;
uWl=u— (3 -2-u-dr)— (3 -y-dr);
yl =y 4+ u - dx;
c=x < a,
r=cxl,u=ul;,y = yl,
}
until (¢) ;
write (y);

}

Example of iteration

© GDM

s al
‘NOP

L NOP/ LOOP BODY

Semantics of sequencing graphs
© GDM =

e Marking of vertices:
— Waiting for execution.
— EXxecuting.

— Have completed execution.

e Execution semantics:

— An operation can be fired as soon as all its
immediate predecessors have completed executiol

Vertex attributes

© GDM =

e Area cost.

e Delay cost:
— Propagation delay.

— Execution delay.

e Data-dependent execution delays:
— Bounded (e.g. branching).

— Unbounded (e.g. iteration, synchronization).

Properties of sequencing graphs
© GDM

e Computed by visiting hierarchy bottom-up.

e Area estimate:
— Sum of the area attributes of all vertices.

— Worst-case — no sharing.

e Delay estimate (latency):
— Bounded-latency graphs.

— Length of longest path.

Summary

© GDM

e Hardware synthesis still requires specialized
languages.

— VHDL and Verilog HDL are mainly used today:
x Similar features.

* Simulation-oriented.

e Synthesis from programming languages is still
being researched.

— Hardware and software models of computation are
different.

e Abstract models:
— Capture essential information.
— Derivable from HDL models.

— Useful to prove properties.

