
' $

UNIVERSITY OF MICHIGAN
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
LECTURE NOTES FOR EECS 661

CHAPTER 4: PETRI NETS

Stéphane Lafortune

November 2004

& %

' $

4.1: MODELING DES USING PETRI NETS

& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

Motivation:

• Petri nets are a popular modeling formalism. Their graphical representation is intuitive

and convenient for small systems.

• The modeling power of Petri nets is larger than that of finite-state automata, if the

number of tokens is not bounded.

• Sequential Function Charts (SFC), a widely-used programming language for

Programmable Logic Controllers (PLC), is inspired by Petri nets.

• Petri nets are amenable to analysis and to a certain extent to synthesis as well.

• There is a well-developed theory for a certain class of timed Petri nets (leading to the

max-plus algebra - cf. Chapter 5).

Historical Remarks: Introduced by Carl Petri in his 1962 Ph.D. thesis (Germany).

Mostly studied in Europe. Some work at MIT in the early 70’s and more recently on their

control (CMU, Kentucky, Notre-Dame) and use in manufacturing (RPI, NJIT, UM).

S. Lafortune - Last Revision: November 2004 2& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

4.1: Modeling DES Using Petri Nets

Basic Definitions

• A Petri net structure (or graph), denoted by C, is a weighted bipartite graph

C = (P, T, A, w)

where

– P is the finite set of places (one type of node in the graph)

– T is the finite set of transitions (the other type of node in the graph)

– A ⊆ (P × T) ∪ (T × P) is the set of arcs from places to transitions and from

transitions to places in the graph

– w : A→ {1, 2, 3, . . .} is the weight function on the arcs.

We assume that C has no isolated places or transitions.

S. Lafortune - Last Revision: November 2004 3& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

• A labeled Petri net (or simply Petri net) is an eight-tuple

N = (P, T, A, w, E, ℓ, x0, Xm)

where

– C = (P, T, A, w) is a Petri net graph

– E is the event set (or alphabet) for transition labeling;

– ℓ : T → E is the transition labeling function; in general, ℓ is not injective

– x0 ∈ N
|P | is the initial state or marking of the net, i.e., the initial number of tokens in

each place

– Xm ⊆ N
|P | is the set of “marked states” or “final markings” of the net.

The above definition does not explictly specify the state space and state transition

function as these are implictly defined by C.

S. Lafortune - Last Revision: November 2004 4& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

• The state of a net, denoted x, is a vector in N
|P | that corresponds to the number of tokens

in each place; the number of tokens in place p is denoted by x(p).

The literature uses the term marking instead of state.

• The state space, X , is thus a subset of N
|P |.

• The state transition function of the net,

f : N
|P | × T → N

|P | ,

corresponds to the admissible firings of the net; “firing” is the term used in the literature

for execution of an event.

• In order to describe f , it is convenient to define the four following functions.

1. I(t) := {p : (p, t) ∈ A}

2. O(t) := {p : (t, p) ∈ A}

3. Inp(p) := {t : (t, p) ∈ A}

4. Outp(p) := {t : (p, t) ∈ A}.

S. Lafortune - Last Revision: November 2004 5& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

• The dynamics of the net are now described as follows:

f(x, t) is defined if x(p) ≥ w(p, t) ∀p ∈ I(t)

in which case f(x, t) = x′ where x′(p) =

x(p) if p 6∈ I(t) ∧ p 6∈ O(t)

x(p)− w(p, t) if p ∈ I(t) ∧ p 6∈ O(t)

x(p)− w(p, t) + w(t, p) if p ∈ I(t) ∧ p ∈ O(t)

x(p) + w(t, p) if p 6∈ I(t) ∧ p ∈ O(t)

The above can be written simply as

x′(p) = x(p)− w(p, t) + w(t, p)

if we assign w(p, t) [w(t, p)] to zero when (p, t) 6∈ A [(t, p) 6∈ A].

• When f(x, t) is defined, we say that t is enabled at state x.

S. Lafortune - Last Revision: November 2004 6& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

• The state transition function is extended to f : N
|P | × T ∗ → N

|P | in the usual manner.

• Observe that the number of tokens in the net need not be constant; in fact, it can grow

unboundedly.

• The set of reachable states of a net is:

R(N) := {y ∈ N
|P | : ∃s ∈ T ∗(f(x0, s) = y)} .

• With the above definitions, we can characterize the languages generated and marked by a

net N .

– We start by extending the labeling function to ℓ : T ∗ → E∗ in the usual manner.

– Then we define:

L(N) = {ℓ(s) ∈ E∗ : (s ∈ T ∗) ∧ (f(x0, s) is defined)}

Lm(N) = {ℓ(s) ∈ L(N) : (s ∈ T ∗) ∧ (f(x0, s) ∈ Xm)} .

S. Lafortune - Last Revision: November 2004 7& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

• The class of languages that can be represented by Petri nets is

PNL := {K ⊆ E∗ : ∃N(K = Lm(N))} .

– This is a general definition and the properties of PNL depend heavily on the specific

properties of ℓ and Xm (more later).

– In any case, R ⊂ PNL: inclusion is easily seen as any finite-state automaton can be

“redrawn” as a net; strict inclusion is illustrated by an example.

S. Lafortune - Last Revision: November 2004 8& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

Some Remarks on Modeling

• Various situations that can be modeled by Petri nets are: conflict (as for automata),

concurrency (not “directly” modeled by automata - cf. interleaving), and confusion.

(Note that in our discussion of PNL above, we assumed no concurrent events. Doing so

would require defining so-called “concurrent Petri net languages”.)

• The fact that places can contain an arbitrarily large number of tokens does not prevent

modeling situations where places represent entities that have bounded capacities (e.g.,

buffers).

– In these cases, the transition rule needs to be changed to account for these bounds.

– However, we can avoid changing the transition rule if we use in the construction of the

net so-called complementary places. Note that this transformation does not affect the

language the net in the sense that it does not introduce new transitions (events). (See

Problem 4.14...)

– In conclusion, we can restrict our discussion to infinite-capacity places WLOG

(without loss of generality).

S. Lafortune - Last Revision: November 2004 9& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

Classification of Nets: Some Terminology

• Ordinary nets: when w : A→ {1}, i.e., all arcs have weight one.

• State graphs: nets that

1. are ordinary;

2. |I(t)| = |O(t)| = 1 ∀t ∈ T ; and

3. ||x0||1 = 1 (only one token in initial state).

Thus the number of tokens remains constant and equal to one.

Sometimes these are called “finite-state-machine nets”; this is bad terminology in the sense

that these are not the only kinds of nets that can be represented as FSM (or automaton);

any net with a finite state space can be transformed to an equivalent FSM (automaton),

i.e., a FSM that generates and marks the same languages. Take X = R(N), etc. (Of

course, the representation is unlikely to be as compact.)

S. Lafortune - Last Revision: November 2004 10& %

' $
EECS 661 - Chapter 4 4.1: Modeling DES Using Petri Nets

• Marked graphs: nets that

1. are ordinary, and

2. |Inp(p)| = |Outp(p)| = 1 ∀p ∈ P .

Thus there is never any conflict.

This is dual to the preceding subclass.

Marked graphs are also called event graphs and decision-free nets.

This class of nets has nice properties and has been extensively studied. In particular, for

timed nets, it leads to dynamics that can be represented linearly in the (max,+) algebra.

• Nets with inhibitor arcs: the transition can only fire if the input place coresponding to the

inhibitor arc is empty.

• Colored nets: when there are multiple classes of tokens in places and corresponding

multiple firing rules for a transition.

S. Lafortune - Last Revision: November 2004 11& %

' $

4.2: ANALYSIS OF PETRI NETS

& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

4.2: Analysis of Petri Nets

Behavioral Properties of Interest

Behavioral properties are those properties that depend on all of N , i.e, not only on its

structure but also on its initial state.

• Reachability: Concerns R(N), L(N) and Lm(N).

The related property of coverability is also very useful. The coverability problem is: given

N and x, does there exist x′ ∈ R(N) such that x′ ≥ x (where ≥ is component-wise)?

• Boundedness: A net is said to be k-bounded if x(p) ≤ k for all p ∈ P and all

x ∈ R(N).

If this is true for k = 1, the net is said to be safe. For example, a state graph is necessarily

safe.

If a net is k-bounded, then its state space is contained in {0, 1, . . . , k}|P | and thus the net

is language-equivalent to a finite-state automaton.

S. Lafortune - Last Revision: November 2004 13& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

• Liveness:

– A transition t is said to be potentially firable in state x if there exists x′ reachable

from x (i.e., there exists s ∈ T ∗ such that f(x, s) = x′) such that t is enabled in x′; if

not, then t is said to be dead in x.

– A transition t is live in state x if it is potentially firable in every state reachable from

x.

– A net is live if every transition is live in x0. Thus no matter what state x has been

reached from x0, it is always possible to ultimately fire any transition in the future.

This is a very strong condition. In particular, it means that the net does not deadlock.

Many weaker notions of liveness have been studied in the literature.

S. Lafortune - Last Revision: November 2004 14& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

• Non-interruptedness (or persistence): For any two enabled transitions, the firing

of one does not disable the other. This is also called persistence.

• Conservation: Petri net N with initial state x0 is said to be conservative with respect

to γ = [γ1, γ2, . . . , γn] if
n∑

i=1

γix(pi) = constant (1)

for all states x ∈ R(N).

The motivation for this definition is that often, tokens model resources that are being

allocated, in which case their number should remain constant.

If a net is conservative with all γi > 0, then that net is equivalent to a finite-state

automaton since its state space is necessarily finite.

S. Lafortune - Last Revision: November 2004 15& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

The Coverability Tree Approach

• The coverability tree of a net N is a finite tree that is built to represent R(N).

This tree is denoted CT (N) and it can used to study some of the behavioral properties of

N .

• Since CT (N) is finite by definition, the use of a special symbol is necessary when N is not

bounded, i.e., when R(N) has infinite cardinality.

– We will write ω when the number of tokens in a place can become arbitrarily large.

– The symbol ω is to be treated as ∞, i.e., for any nonnegative integer k, we have:

ω ± k = ω, k < ω, ω ≤ ω .

S. Lafortune - Last Revision: November 2004 16& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

Algorithm to Construct CT :

Step 1: Initialize x = x0 (initial state).

Step 2: For each new node, x, evaluate the transition function f(x, tj) for all tj ∈ T :

Step 2.1: If f(x, tj) is undefined for all tj ∈ T (i.e., no transition is enabled at state x),

then x is a terminal node.

Step 2.2: If f(x, tj) is defined for some tj ∈ T , create a new node x′ = f(x, tj). If

necessary, adjust the marking of that node as follows:

Step 2.2.1: If x(pi) = ω for some pi, set x′(pi) = ω.

Step 2.2.2: If there exists a node y in the path from the root node x0 (included) to

x such that x′ >d y, set x′(pi) = ω for all pi such that x′(pi) > y(pi).

Step 2.2.3: Otherwise, x′(pi) is as obtained in f(x, tj).

Step 3: If all new nodes are either terminal or duplicate nodes, stop.

It is not difficult to prove that by construction, CT is guaranteed to be finite (this is due to

the use of ω).

S. Lafortune - Last Revision: November 2004 17& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

Using CT :

• Clearly, N is bounded iff ω does not appear in the nodes of CT (N).

In this case the coverability tree becomes the reachability tree.

• N is safe iff only 0’s and 1’s appear in the nodes of CT (N).

• CT (N) allows to check if N is conservative, since there is only finite number of nodes

(states) to test.

– This results in having to solve a system of linear equations.

– If ω is present, its weight must be 0.

• Due to the “loss of information” that the use of ω entails, reachability, liveness, and

language issues cannot in general be completely answered from CT (N).

For instance, if x ∈ R(N), then there exists node y ∈ CT (N) such that x ≤ y, but the

converse need not be true.

S. Lafortune - Last Revision: November 2004 18& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

The Linear-Algebraic Approach

Linear Discrete-Time State Equation

• Some analytical results can be derived by taking advantage of the numerical structure of

the state space of a net.

• For this purpose, define the |T | × |P | matrix A where each entry is given by

aj,i = w(tj, pi)− w(pi, tj)

i.e., aj,i is the net change in the number of tokens in place pi when transition tj fires.

Clearly,

tj is enabled iff x(pi) ≥ w(pi, tj) for all pi ∈ I(tj).

• If we denote by xk the state of the net immediately after the k-th firing of an enabled

transition, with x0 as the initial state, and by uk a |T | × 1 column vector with zero entries

except for component l if tl is the k-th transition to fire, then the following linear equation

describes the evolution of the state:

xk = xk−1 + ATuk, k = 1, 2, . . .

Clearly, we should always have that xk ≥ 0, since only enabled transitions can fire.

S. Lafortune - Last Revision: November 2004 19& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

• If we consider a firing sequence of k transitions and form the sum

u1,k =
k∑

l=1

ul

then we can write

xk = x0 + ATu1,k .

u1,k is called the firing count vector.

• Is is important to observe that the sequencing information on the order of firing of the

transitions from x0 to xk is lost in u1,k.

Thus, in general, only necessary conditions can be obtained from the state equation.

There are basically two reasons why this happens:

1. The state xk is required to be a nonnegative integer.

2. The equation ATu = (x− x0) might have an integer solution u for given x and x0,

yet none of the transitions fired by u could be enabled in x0.

Thus if u is found, one may have to exhaustively try all possible orderings of transition

firings in order to make sure a given x is indeed reachable.

S. Lafortune - Last Revision: November 2004 20& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

P- and T-invariants

• A |P | × 1 non-zero integer solution y of Ay = 0 is called a P-invariant of the net

structure.

• A |T | × 1 non-zero integer solution u of ATu = 0 is called a T-invariant of the net

structure.

• Invariants are used for the study of structural properties of Petri nets, i.e., properties that

depend only on the Petri net structure and therefore must hold for any initial state.

We state some results.

S. Lafortune - Last Revision: November 2004 21& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

• Definition: A net structure is said to be conservative if there exists y ∈ N
|P |, y > 0,

such that for all choices of x0 in N and for all x ∈ R(N),

yTx = yTx0 .

If the above does not hold for y > 0 but does hold for some y ≥ 0, then C is said to be

partially conservative.

Result: A net structure is (partially) conservative iff there exists a P-invariant y of

positive (nonnegative) integers.

A net structure is strictly conservative iff y = [1 · · · 1]T is a P-invariant.

• Definition: A net structure is said to be bounded if, for any choice of x0, the resulting

net is bounded.

Result: A net structure is bounded iff there exists a |P | × 1 vector y of positive integers

such that Ay ≤ 0.

S. Lafortune - Last Revision: November 2004 22& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

• Definition: A net structure is consistent if there exists x0 and a firing sequence s ∈ T ∗

such that:

1. f(x0, s) = x0; and

2. every transition in T occurs at least once in s.

Result: A net structure is consistent iff there exists a T-invariant u of positive integers.

S. Lafortune - Last Revision: November 2004 23& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

Analysis of Marked Graphs

Because of their special structure, several analytical resutls are available about marked

graphs. We briefly discuss some frequently cited results.

• By the defining property of a marked graph, it can be redrawn as a directed graph where

nodes correspond to transitions, arcs to places, and tokens are placed on arcs.

In this new digraph, a node fires by removing a token from each incoming arc and placing

a token on each outgoing arc (recall that a marked graph is an ordinary net, i.e., all its arc

weights are equal to one).

• A cycle (or circuit) in a marked graph is a closed path from a transition back to the same

transition.

Thus a cycle in a marked graph is a directed cycle in the digraph representation of the

marked graph. But if a node (transition) of the digraph is on a directed cycle, then it has

exactly one incoming arc and one outgoing arc that also belong to the cycle.

These observations lead to the following results.

S. Lafortune - Last Revision: November 2004 24& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

1. In a marked graph N , the number of tokens in a cycle is invariant under any firing, i.e.,

x(Cycle) = x0(Cycle) ∀x ∈ R(N)

where x(Cycle) :=
∑

p∈Cycle x(p).

2. An autonomous marked graph is live iff x0 places at least one token in each cycle.

(Autonomous means no source or sink transitions.)

3. A live marked graph is safe iff every place belongs to a cycle with x0(Cycle) = 1.

S. Lafortune - Last Revision: November 2004 25& %

' $
EECS 661 - Chapter 4 4.2: Analysis of Petri Nets

Comments about Decidability

While all the problems of interest for finite-state automaton models are decidable (e.g.,

reachability, language equivalence, etc.), the same is not true for Petri net models of discrete

event systems.

[A problem is undecidable if there does not exist a general algorithm for its solution, i.e.,

there does not exist a computer program to solve this problem for any input.]

• The reachability problem (Is x ∈ R(N)?) and the liveness problem (Is N live?) are

equivalent (i.e, each one can be reduced to the other) and decidable (albeit with

exponential complexity).

• The equality problem (Is R(N1) = R(N2)?, or equivalently, Is Lm(N1) = Lm(N2)?) is

undecidable!

S. Lafortune - Last Revision: November 2004 26& %

' $

4.3: PETRI NET LANGUAGES

& %

' $
EECS 661 - Chapter 4 4.3: Petri Net Languages

4.3: Petri Net Languages

• The main class of Petri net languages of interest is the class PNL defined in section 4.1.

• Recall that PNL is strictly larger than the class of regular languages.

PNL is closed under union, intersection, shuffle, and concatenation. However, it is not

closed under Kleene-closure (*).

The proof of this fact involves manipulations of Petri net structures.

We discuss two useful manipulations.

S. Lafortune - Last Revision: November 2004 28& %

' $
EECS 661 - Chapter 4 4.3: Petri Net Languages

Nets with Starting Places

• This manipulation consists of transforming any net N to a language-equivalent net N ′,

where the structure of N ′ has a specific place identified as starting place and denoted pS,

such that:

1. pS has no input transitions, i.e., Inp(pS) = ∅;

2. the initial state x′0 has one token in pS and no tokens elsewhere.

• The construction procedure of N ′ from N is as follows:

1. Start with C ′ = C, then add new place pS to P ′.

2. T ′ ← T ′ ∪ {t′′j : tj is enabled at x0 in N}.

3. For each t′′j :

ℓ(t′′j) = ℓ(tj)

I(t′′j) = {pS} and w′(pS, t′′j) = 1.

Now define w′(t′′j , p) = x0(p)− w(p, tj) + w(tj, p) and set

O(t′′j) = {p : w′(t′′j , p) > 0}.

The purpose here is that the firing of t′′j should result in the same state as if tj had

been fired in N .

S. Lafortune - Last Revision: November 2004 29& %

' $
EECS 661 - Chapter 4 4.3: Petri Net Languages

• This transformation clearly preserves language-equivalence.

Moreover, it makes it easy to “merge” two nets:

– in the case of union, overlap the two starting places;

– in the case of shuffle, places the two nets “side-by-side”.

S. Lafortune - Last Revision: November 2004 30& %

' $
EECS 661 - Chapter 4 4.3: Petri Net Languages

Product of Two Nets

• The product of two Petri nets N1 and N2 is defined to be the net N = N1 ×N2 that

generates L(N1) ∩ L(N2) and marks Lm(N1) ∩ Lm(N2).

• To contruct N1 ×N2, proceed as follows:

1. WLOG, start with N1 and N2 with unique starting places pS1 and pS2.

Set P = P1 ∪ P2.

2. For each pair of transitions tj ∈ T1 and tk ∈ T2 for which ℓ(tj) = ℓ(tk), create a new

transition tjk which fires iff tj and tk fire:

I(tjk) = I(tj) ∪ I(tk) and w(p, tjk) = w(p, tj) + w(p, tk);

O(tjk) = O(tj) ∪ O(tk) and w(tjk, p) = w(tj, p) + w(tk, p).

T of N is the set of all such tjk.

3. Remove all isolated places from P .

4. Set x0(pS1) = x0(pS2) = 1 and x(p) = 0 for all other places in P .

5. Set Xm to be the set of states of N for which the components from P1 correspond to a

marked state in N1 and the components from P2 correspond to a marked state in N2.

• PNL is closed under parallel composition; modify the above procedure by including (in

addition to step 2) the transitions (and the places attached to them) of N1 and N2 whose

event labels are in E1\E2 (for N1) and E2\E1 (for N2)

S. Lafortune - Last Revision: November 2004 31& %

' $
EECS 661 - Chapter 4 4.3: Petri Net Languages

The Problem with Trimming in PNL

• Trimming a finite-state automaton to render it nonblocking is essentially “trivial”: do a

reachability search to identify the states that are not coaccessible and delete them.

• Trimming a blocking Petri net is not “trivial.”

– First, the trimming of a net may require the introduction of new places and transitions

to its structure.

– Second, the trimming of a net may lead to a more fundamental problem: the

prefix-closure of a Petri net language need not be a Petri net language!

To see this, consider the Petri net language

Lm(N) = {ambamb : m ≥ 0}

marked by (blocking) net N . It can be verified that Lm(N) 6∈ PNL.

S. Lafortune - Last Revision: November 2004 32& %

' $

4.4: CONTROL OF PETRI NETS

& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

4.4: Control of Petri Nets

Supervisory Control and Petri Nets

• The theory of supervisory control that we presented in Chapter 3 is event- and

language-based, thus it is (to some extent) independent of the particular formalism used to

represent the languages of interest.

Automata models and the corresponding class of regular languages were discussed

extensively because of the nice closure properties of the class of regular languages with

respect to the operations that arise in solving supervisory control problems and also

because of the amenability of automaton models for performing the required synthesis

operations.

• Clearly, one could also consider supervisory control problems where Petri nets are used to

model the uncontrolled system behavior, i.e., G is a Petri net, and/or the controller S is

realized by a Petri net N (as opposed to being realized by an automaton R). The

feedback control loop would proceed exactly as before.

S. Lafortune - Last Revision: November 2004 34& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

• An important motivation for using Petri net models is to extend the applicability of the

synthesis results of supervisory control theory beyond the class of regular languages.

It turns out that several difficulties arise in this endeavor. For this reason, no

comprehensive set of results has been developed yet. Some of these difficulties are

highlighted in the textbook.

• If Lm(G) and Lam are both regular languages, then it is not necessary to use Petri net

models, even if these languages are specified in terms of Petri net recognizers.

These Petri nets will necessarily be bounded and thus we can always build equivalent

automata and then apply the algorithms of Chapter 3 to solve the supervisory control

problems.

However, it may still be useful to work with the Petri net representations for

computational complexity reasons.

This is the motivation for the large amount of work on state feedback control of Petri nets.

S. Lafortune - Last Revision: November 2004 35& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

Remark on Infinite-State Systems or Specifications

• It should be noted that if Lm(G) is not regular (say, G is an unbounded Petri net) but

Lam is regular and controllable (w.r.t. L(G) and Euc), then the non-regularity of Lm(G)

is of no consequence since the desired controller S can be realized by an automaton (as

was done in Chapter 3).

– The “catch” here is the verification of the controllability properties of Lam, which in

general requires manipulating G.

– However, it should be observed that if it can be verified that Lam is controllable w.r.t a

superset of L(G), then it is necessarily controllable w.r.t. L(G). Thus if one “suspects”

that Lam is controllable, then one can attempt to formally verify that conjecture by

proving the controllability of Lam w.r.t. a regular superlanguage of L(G).

• On the other hand, if Lm(G) is regular but Lam is not regular but controllable, then S

cannot be realized by an automaton. (The regularity of Lm(G) is of no help.) But one

may be able to realize S by a Petri net!

S. Lafortune - Last Revision: November 2004 36& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

State Feedback Control of Petri Nets

• In this approach, the control of Petri nets is considered from a “state viewpoint” as

opposed to a “language viewpoint”.

– The uncontrolled system model G is a Petri net whose transition labeling function is

injective. (Equivalently, E = T .)

– The set of controllable events (i.e., transitions) of G is dynamically controlled by

control policy

ϕ : R(G)→ 2E

i.e., the control action ϕ(x) is a function of the current state x of the net and not of

the whole past behavior.

– Let us denote the controlled system by ϕ/G.

• The goal is to synthesize a control policy ϕ such that the set of reachable states under the

control of ϕ, R(ϕ/G), is disjoint from a given set of forbidden states (or forbidden

markings) and is maximally permissive (in some sense).

This is called the forbidden state problem of controlled Petri nets, denoted FSPN

hereafter.

S. Lafortune - Last Revision: November 2004 37& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

• Clearly, FSPN is equivalent to BSCP if the legal language La is defined to be L(G) minus

all traces that go through illegal states and if we assume that no two enabled transitions

can fire simultaneoulsly.

• The point here though is to exploit the structure of the net G in order to synthesize the

control policy ϕ.

In particular, in the case of bounded nets, the structure should be exploited in order to

solve FSPN in a more computationally efficient manner than if the net had been

transformed to an automaton and FSPN had been solved using the synthesis algorithms of

Chapter 3.

• For further details, see the survey paper by Holloway, Krogh, & Giua in Discrete Event

Systems: Theory and Applications, 1997.

S. Lafortune - Last Revision: November 2004 38& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

Control of Petri Nets Using P-Invariants

• Another approach for posing the control problem for Petri nets is to look only at the Petri

net graph and consider specifications given in terms of linear inequalities on the state

(marking) of the net that must hold for all initial states:

lTx = xT l ≤ b1

for all x ∈ R(N), and for all x0.

• The key here is to connect such specifications with the property of conservation and

P-invariants:

xTy = xT
0 y + uTAy

Ay = 0

⇒ xTy = xT
0 y = constant(x0)

S. Lafortune - Last Revision: November 2004 39& %

' $
EECS 661 - Chapter 4 4.4: Control of Petri Nets

• Rewrite the above specification as an equality by introducing a “slack place”, denoted by

pc:

xT l + x(pc) = b1

The introduction of this new place means that the new incidence matrix for the Petri net

graph is of the form:

Anew = [A Ac]

where Ac is a row describing the connectivity of new place pc.

• We can see now that if we can find a P-invariant for Anew, we will get:

Anewydes = 0 where yT
des = [lT 1]

⇒ xT
newydes = constant

⇒ xT l + x(pc) = constant

• The initial marking in place pc is chosen to force the “constant” to be equal to b1:

x0(pc) = b1 − xT
0 l

If this results in negative entries for x0(pc), then no solution exists to the original problem.

• So the essence of the problem is to solve the matrix equality:

Ac = −Al

• For further details, see the book by Moody & Antsaklis on “Supervisory Control of Petri

Nets”.

S. Lafortune - Last Revision: November 2004 40& %

