
1

Embedded Systems Design: A Unified
Hardware/Software Introduction

Chapter 3 General-Purpose Processors:
Software

2Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Introduction

• General-Purpose Processor
– Processor designed for a variety of computation tasks
– Low unit cost, in part because manufacturer spreads NRE

over large numbers of units
• Motorola sold half a billion 68HC05 microcontrollers in 1996 alone

– Carefully designed since higher NRE is acceptable
• Can yield good performance, size and power

– Low NRE cost, short time-to-market/prototype, high
flexibility

• User just writes software; no processor design
– a.k.a. “microprocessor” – “micro” used when they were

implemented on one or a few chips rather than entire rooms

3Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Basic Architecture

• Control unit and
datapath
– Note similarity to

single-purpose
processor

• Key differences
– Datapath is general
– Control unit doesn’t

store the algorithm –
the algorithm is
“programmed” into the
memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

4Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Datapath Operations

• Load
– Read memory location

into register
• ALU operation

– Input certain registers
through ALU, store
back in register

• Store
– Write register to

memory location

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

10

+1

11

11

5Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit

• Control unit: configures the datapath
operations

– Sequence of desired operations
(“instructions”) stored in memory –
“program”

• Instruction cycle – broken into
several sub-operations, each one
clock cycle, e.g.:

– Fetch: Get next instruction into IR
– Decode: Determine what the

instruction means
– Fetch operands: Move data from

memory to datapath register
– Execute: Move data through the

ALU
– Store results: Write data from

register to memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1

6Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Fetch
– Get next instruction

into IR
– PC: program

counter, always
points to next
instruction

– IR: holds the
fetched instruction

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

7Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Decode
– Determine what the

instruction means

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

8Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Fetch operands
– Move data from

memory to datapath
register

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

9Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Execute
– Move data through

the ALU
– This particular

instruction does
nothing during this
sub-operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

10Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Store results
– Write data from

register to memory
– This particular

instruction does
nothing during this
sub-operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

11Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1

PC=100

10

Fetch
ops

Exec. Store
results

clk

Fetch

load R0, M[500]

Decode

100

12Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1
10

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101

inc R1, R0

Fetch Fetch
ops

+1

11

Exec. Store
results

clk

101

Decode

13Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1
1110

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=102
store M[501], R1

Fetch Fetch
ops

Exec.

11

Store
results

clk

Decode

102

14Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architectural Considerations

• N-bit processor
– N-bit ALU, registers,

buses, memory data
interface

– Embedded: 8-bit, 16-
bit, 32-bit common

– Desktop/servers: 32-
bit, even 64

• PC size determines
address space

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

15Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architectural Considerations

• Clock frequency
– Inverse of clock

period
– Must be longer than

longest register to
register delay in
entire processor

– Memory access is
often the longest

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

16Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Pipelining: Increasing Instruction
Throughput

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch-instr.

Decode

Fetch ops.

Execute

Store res.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Wash

Dry

Time

Non-pipelined Pipelined

Time

Time

Pipelined

pipelined instruction execution

non-pipelined dish cleaning pipelined dish cleaning

Instruction 1

17Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Superscalar and VLIW Architectures

• Performance can be improved by:
– Faster clock (but there’s a limit)
– Pipelining: slice up instruction into stages, overlap stages
– Multiple ALUs to support more than one instruction stream

• Superscalar
– Scalar: non-vector operations
– Fetches instructions in batches, executes as many as possible

• May require extensive hardware to detect independent instructions
– VLIW: each word in memory has multiple independent instructions

• Relies on the compiler to detect and schedule instructions
• Currently growing in popularity

18Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Two Memory Architectures

Processor

Program
memory

Data memory

Processor

Memory
(program and data)

Harvard Princeton

• Princeton
– Fewer memory

wires

• Harvard
– Simultaneous

program and data
memory access

19Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Cache Memory

• Memory access may be slow
• Cache is small but fast

memory close to processor
– Holds copy of part of memory
– Hits and misses

Processor

Memory

Cache

Fast/expensive technology, usually on
the same chip

Slower/cheaper technology, usually on
a different chip

20Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer’s View

• Programmer doesn’t need detailed understanding of architecture
– Instead, needs to know what instructions can be executed

• Two levels of instructions:
– Assembly level
– Structured languages (C, C++, Java, etc.)

• Most development today done using structured languages
– But, some assembly level programming may still be necessary
– Drivers: portion of program that communicates with and/or controls

(drives) another device
• Often have detailed timing considerations, extensive bit manipulation
• Assembly level may be best for these

21Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Assembly-Level Instructions

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

...

Instruction 1

Instruction 2

Instruction 3

Instruction 4

• Instruction Set
– Defines the legal set of instructions for that processor

• Data transfer: memory/register, register/register, I/O, etc.
• Arithmetic/logical: move register through ALU and back
• Branches: determine next PC value when not just PC+1

22Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Simple (Trivial) Instruction Set

opcode operands

MOV Rn, direct

MOV @Rn, Rm

ADD Rn, Rm

0000 Rn direct

0010 Rn

0100 RmRn

Rn = M(direct)

Rn = Rn + Rm

SUB Rn, Rm 0101 Rm Rn = Rn - Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

Assembly instruct. First byte Second byte Operation

JZ Rn, relative 0110 Rn relative PC = PC+ relative
(only if Rn is 0)

Rn

MOV direct, Rn 0001 Rn direct M(direct) = Rn

Rm M(Rn) = Rm

23Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Addressing Modes

Data

Immediate

Register-direct

Register
indirect

Direct

Indirect

Data

Operand field

Register address

Register address

Memory address

Memory address

Memory address Data

Data

Memory address

Data

Addressing
mode

Register-file
contents

Memory
contents

24Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Sample Programs

int total = 0;
for (int i=10; i!=0; i--)

total += i;
// next instructions...

C program

MOV R0, #0; // total = 0
MOV R1, #10; // i = 10

JZ R1, Next; // Done if i=0
ADD R0, R1; // total += i

MOV R2, #1; // constant 1

JZ R3, Loop; // Jump always

Loop:

Next: // next instructions...

SUB R1, R2; // i--

Equivalent assembly program

MOV R3, #0; // constant 0

0
1
2
3

5
6
7

• Try some others
– Handshake: Wait until the value of M[254] is not 0, set M[255] to 1, wait

until M[254] is 0, set M[255] to 0 (assume those locations are ports).
– (Harder) Count the occurrences of zero in an array stored in memory

locations 100 through 199.

25Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer Considerations

• Program and data memory space
– Embedded processors often very limited

• e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

• Registers: How many are there?
– Only a direct concern for assembly-level programmers

• I/O
– How communicate with external signals?

• Interrupts

26Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Microprocessor Architecture Overview

• If you are using a particular microprocessor, now is a
good time to review its architecture

27Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Example: parallel port driver

• Using assembly language programming we can configure a PC
parallel port to perform digital I/O
– write and read to three special registers to accomplish this table provides

list of parallel port connector pins and corresponding register location
– Example : parallel port monitors the input switch and turns the LED

on/off accordingly

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT Connection Pin I/O Direction Register Address

1 Output 0th bit of register #2

2-9 Output 0th bit of register #2

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register #1

28Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Parallel Port Example

; This program consists of a sub-routine that reads
; the state of the input pin, determining the on/off state
; of our switch and asserts the output pin, turning the LED
; on/off accordingly

.386

CheckPort proc
push ax ; save the content

push dx ; save the content
mov dx, 3BCh + 1 ; base + 1 for register #1
in al, dx ; read register #1
and al, 10h ; mask out all but bit # 4
cmp al, 0 ; is it 0?
jne SwitchOn ; if not, we need to turn the LED on

SwitchOff:
mov dx, 3BCh + 0 ; base + 0 for register #0
in al, dx ; read the current state of the port
and al, f7h ; clear first bit (masking)
out dx, al ; write it out to the port
jmp Done ; we are done

SwitchOn:
mov dx, 3BCh + 0 ; base + 0 for register #0
in al, dx ; read the current state of the port
or al, 01h ; set first bit (masking)
out dx, al ; write it out to the port

Done: pop dx ; restore the content
pop ax ; restore the content

CheckPort endp

extern “C” CheckPort(void); // defined in
// assembly

void main(void) {
while(1) {

CheckPort();
}

}

LPT Connection Pin I/O Direction Register Address

1 Output 0th bit of register #2

2-9 Output 0th bit of register #2

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register
#1

PC Parallel port

Pin 13

Pin 2

Switch

LED

29Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Operating System

• Optional software layer
providing low-level services to
a program (application).
– File management, disk access
– Keyboard/display interfacing
– Scheduling multiple programs for

execution
• Or even just multiple threads from

one program
– Program makes system calls to

the OS

DB file_name “out.txt” -- store file name

MOV R0, 1324 -- system call “open” id
MOV R1, file_name -- address of file-name
INT 34 -- cause a system call
JZ R0, L1 -- if zero -> error

. . . read the file
JMP L2 -- bypass error cond.
L1:

. . . handle the error

L2:

30Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Development Environment

• Development processor
– The processor on which we write and debug our programs

• Usually a PC

• Target processor
– The processor that the program will run on in our embedded

system
• Often different from the development processor

Development processor Target processor

31Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software Development Process

Compiler

Linker

C File C File Asm.
File

Binary
File

Binary
File

Binary
File

Exec.
File

Assembler

Library

Implementation Phase

Debugger

Profiler

Verification Phase

• Compilers
– Cross compiler

• Runs on one
processor, but
generates code for
another

• Assemblers
• Linkers
• Debuggers
• Profilers

32Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Running a Program

• If development processor is different than target, how
can we run our compiled code? Two options:
– Download to target processor
– Simulate

• Simulation
– One method: Hardware description language

• But slow, not always available

– Another method: Instruction set simulator (ISS)
• Runs on development processor, but executes instructions of target

processor

33Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Set Simulator For A Simple
Processor

#include <stdio.h>
typedef struct {

unsigned char first_byte, second_byte;
} instruction;

instruction program[1024]; //instruction memory
unsigned char memory[256]; //data memory

void run_program(int num_bytes) {

int pc = -1;
unsigned char reg[16], fb, sb;

while(++pc < (num_bytes / 2)) {
fb = program[pc].first_byte;
sb = program[pc].second_byte;
switch(fb >> 4) {

case 0: reg[fb & 0x0f] = memory[sb]; break;
case 1: memory[sb] = reg[fb & 0x0f]; break;
case 2: memory[reg[fb & 0x0f]] =

reg[sb >> 4]; break;
case 3: reg[fb & 0x0f] = sb; break;
case 4: reg[fb & 0x0f] += reg[sb >> 4]; break;
case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break;
case 6: pc += sb; break;
default: return –1;

}
}
return 0;

}

int main(int argc, char *argv[]) {

FILE* ifs;

If(argc != 2 ||
(ifs = fopen(argv[1], “rb”) == NULL) {

return –1;
}
if (run_program(fread(program,

sizeof(program) == 0) {
print_memory_contents();
return(0);

}
else return(-1);

}

34Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Testing and Debugging

Implementation
Phase

Implementation
Phase

Verification
Phase

Verification
Phase

Emulator

Debugger
/ ISS

Programmer

Development processor

(a) (b)

External tools

• ISS
– Gives us control over time –

set breakpoints, look at
register values, set values,
step-by-step execution, ...

– But, doesn’t interact with real
environment

• Download to board
– Use device programmer
– Runs in real environment, but

not controllable
• Compromise: emulator

– Runs in real environment, at
speed or near

– Supports some controllability
from the PC

35Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Application-Specific Instruction-Set
Processors (ASIPs)

• General-purpose processors
– Sometimes too general to be effective in demanding

application
• e.g., video processing – requires huge video buffers and operations

on large arrays of data, inefficient on a GPP
– But single-purpose processor has high NRE, not

programmable
• ASIPs – targeted to a particular domain

– Contain architectural features specific to that domain
• e.g., embedded control, digital signal processing, video processing,

network processing, telecommunications, etc.
– Still programmable

36Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Common ASIP: Microcontroller

• For embedded control applications
– Reading sensors, setting actuators
– Mostly dealing with events (bits): data is present, but not in huge

amounts
– e.g., VCR, disk drive, digital camera (assuming SPP for image

compression), washing machine, microwave oven
• Microcontroller features

– On-chip peripherals
• Timers, analog-digital converters, serial communication, etc.
• Tightly integrated for programmer, typically part of register space

– On-chip program and data memory
– Direct programmer access to many of the chip’s pins
– Specialized instructions for bit-manipulation and other low-level

operations

37Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Another Common ASIP: Digital Signal
Processors (DSP)

• For signal processing applications
– Large amounts of digitized data, often streaming
– Data transformations must be applied fast
– e.g., cell-phone voice filter, digital TV, music synthesizer

• DSP features
– Several instruction execution units
– Multiple-accumulate single-cycle instruction, other instrs.
– Efficient vector operations – e.g., add two arrays

• Vector ALUs, loop buffers, etc.

38Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Trend: Even More Customized ASIPs

• In the past, microprocessors were acquired as chips
• Today, we increasingly acquire a processor as Intellectual

Property (IP)
– e.g., synthesizable VHDL model

• Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions
– Can have significant performance, power and size impacts
– Problem: need compiler/debugger for customized ASIP

• Remember, most development uses structured languages
• One solution: automatic compiler/debugger generation

– e.g., www.tensillica.com
• Another solution: retargettable compilers

– e.g., www.improvsys.com (customized VLIW architectures)

39Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Selecting a Microprocessor

• Issues
– Technical: speed, power, size, cost
– Other: development environment, prior expertise, licensing, etc.

• Speed: how evaluate a processor’s speed?
– Clock speed – but instructions per cycle may differ
– Instructions per second – but work per instr. may differ
– Dhrystone: Synthetic benchmark, developed in 1984. Dhrystones/sec.

• MIPS: 1 MIPS = 1757 Dhrystones per second (based on Digital’s VAX
11/780). A.k.a. Dhrystone MIPS. Commonly used today.

– So, 750 MIPS = 750*1757 = 1,317,750 Dhrystones per second
– SPEC: set of more realistic benchmarks, but oriented to desktops
– EEMBC – EDN Embedded Benchmark Consortium, www.eembc.org

• Suites of benchmarks: automotive, consumer electronics, networking, office
automation, telecommunications

40Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

General Purpose Processors

Processor Clock speed Periph. Bus Width MIPS Power Trans. Price
General Purpose Processors

Intel PIII 1GHz 2x16 K
L1, 256K
L2, MMX

32 ~900 97W ~7M $900

IBM
PowerPC
750X

550 MHz 2x32 K
L1, 256K
L2

32/64 ~1300 5W ~7M $900

MIPS
R5000

250 MHz 2x32 K
2 way set assoc.

32/64 NA NA 3.6M NA

StrongARM
SA-110

233 MHz None 32 268 1W 2.1M NA

Microcontroller
Intel
8051

12 MHz 4K ROM, 128 RAM,
32 I/O, Timer, UART

8 ~1 ~0.2W ~10K $7

Motorola
68HC811

3 MHz 4K ROM, 192 RAM,
32 I/O, Timer, WDT,
SPI

8 ~.5 ~0.1W ~10K $5

Digital Signal Processors
TI C5416 160 MHz 128K, SRAM, 3 T1

Ports, DMA, 13
ADC, 9 DAC

16/32 ~600 NA NA $34

Lucent
DSP32C

80 MHz 16K Inst., 2K Data,
Serial Ports, DMA

32 40 NA NA $75

Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Programming, Nov. 1998

41Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designing a General Purpose Processor

• Not something an embedded
system designer normally
would do
– But instructive to see how

simply we can build one top
down

– Remember that real processors
aren’t usually built this way

• Much more optimized, much
more bottom-up design

Declarations:
bit PC[16], IR[16];
bit M[64k][16], RF[16][16];

Aliases:
op IR[15..12]
rn IR[11..8]
rm IR[7..4]

dir IR[7..0]
imm IR[7..0]
rel IR[7..0]

Reset

Fetch

Decode

IR=M[PC];
PC=PC+1

Mov1 RF[rn] = M[dir]

Mov2

Mov3

Mov4

Add

Sub

Jz
0110

0101

0100

0011

0010

0001

op = 0000

M[dir] = RF[rn]

M[rn] = RF[rm]

RF[rn]= imm

RF[rn] =RF[rn]+RF[rm]

RF[rn] = RF[rn]-RF[rm]

PC=(RF[rn]=0) ?rel :PC

to Fetch

to Fetch

to Fetch

to Fetch

to Fetch

to Fetch

to Fetch

PC=0;

from states
below

FSMD

42Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architecture of a Simple Microprocessor

• Storage devices for each
declared variable
– register file holds each of the

variables
• Functional units to carry out the

FSMD operations
– One ALU carries out every

required operation
• Connections added among the

components’ ports
corresponding to the operations
required by the FSM

• Unique identifiers created for
every control signal

Datapath

IRPC

Controller
(Next-state and

control
logic; state register)

Memory

RF (16)

RFwa

RFwe

RFr1a

RFr1e

RFr2a

RFr2e
RFr1 RFr2

RFw

ALU
ALUs

2x1 mux

ALUz

RFs

PCld

PCinc

PCclr

3x1 muxMs
MweMre

To all
input
control
signals

From all
output
control
signals

Control unit

16
Irld

2

1

0

A D

1

0

43Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Simple Microprocessor

FSM operations that replace the FSMD
operations after a datapath is created

RFwa=rn; RFwe=1; RFs=01;
Ms=01; Mre=1;

RFr1a=rn; RFr1e=1;
Ms=01; Mwe=1;

RFr1a=rn; RFr1e=1;
Ms=10; Mwe=1;

RFwa=rn; RFwe=1; RFs=10;

RFwa=rn; RFwe=1; RFs=00;
RFr1a=rn; RFr1e=1;
RFr2a=rm; RFr2e=1; ALUs=00
RFwa=rn; RFwe=1; RFs=00;
RFr1a=rn; RFr1e=1;
RFr2a=rm; RFr2e=1; ALUs=01
PCld= ALUz;
RFrla=rn;
RFrle=1;

MS=10;
Irld=1;
Mre=1;
PCinc=1;

PCclr=1;Reset

Fetch

Decode

IR=M[PC];
PC=PC+1

Mov1 RF[rn] = M[dir]

Mov2

Mov3

Mov4

Add

Sub

Jz
0110

0101

0100

0011

0010

0001

op = 0000

M[dir] = RF[rn]

M[rn] = RF[rm]

RF[rn]= imm

RF[rn] =RF[rn]+RF[rm]

RF[rn] = RF[rn]-RF[rm]

PC=(RF[rn]=0) ?rel :PC

to Fetch

to Fetch

to Fetch

to Fetch

to Fetch

to Fetch

to Fetch

PC=0;

from states
below

FSMD

Datapath

IRP
C

Controller
(Next-state and

control
logic; state

register)

Memory

RF (16)

RFwa

RFwe

RFr1a

RFr1e

RFr2a

RFr2e
RFr1 RFr2

RFw

ALU
ALUs

2x1 mux

ALUz

RFs

PCld

PCinc

PCclr

3x1 muxMs
MweMre

To all
input
contro
l
signals

From all
output
control
signals

Control unit

16
Irld

2

1

0

A D

1

0

You just built a simple microprocessor!

44Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Chapter Summary

• General-purpose processors
– Good performance, low NRE, flexible

• Controller, datapath, and memory
• Structured languages prevail

– But some assembly level programming still necessary
• Many tools available

– Including instruction-set simulators, and in-circuit emulators
• ASIPs

– Microcontrollers, DSPs, network processors, more customized ASIPs
• Choosing among processors is an important step
• Designing a general-purpose processor is conceptually the same

as designing a single-purpose processor

