
ROBDD’s

Reduced Ordered Binary Decision Diagrams

• represents a logic function by a graph. (many logic
functions can be represented compactly - usually
better than SOP’s)

• canonical form (important) (only canonical if an
ordering of the variables is given)

• Many logic operations can be performed efficiently
on BDD’s (usually linear in size of result - tautology
and complement are constant time)

• size of BDD critically dependent on variable or-
dering.

1

ROBDD’s

• directed acyclic graph (DAG)

• one root node, two terminals 0,1

• each node, two children, and a variable

• Shannon co-factoring tree, except reduced and or-
dered

Reduced:

1. any node with identical children is removed

2. two nodes with isomorphic BDD’s are merged

Ordered: Co-factoring variables (splitting variables) al-
ways follow the same order

xi1 < xi2 < xi3 < . . . < xin

2

Example

a

b

0 1

f = ab + ac + bcd

bc + bd b

c c

d

c c + d

d

root
node

_ _
a

c

d

b

10

f

f a
_

f a

f

Two different orderings, same function.

3

Efficient Implementation of BDD’s

(Reference: Brace, Rudell, Bryant - DAC 1990)

Hash-Table: hash-fcn(key) = value

.

.

.

.

.

collision
chainhash value

of key

Strong canonical form: A ”unique-id” is associated
(through a hash table) uniquely with each element in
set.

With BDD’s the set is the set of all logic functions.
A BDD node is a function. Thus each function has a
unique-id in memory.

BDD is compressed Shannon co-factoring tree.

0 1

v

f
v
_ fv

f

4

ROBDD

Ordered BDD (OBDD) Input variables are ordered -
each path from root to sink visits nodes with labels
(variables) in ascending order.

a

c c

b

0 1

ordered
order = a,c,b a

b c

c b

0 1

not
ordered

Reduced Ordered BDD - reduction rules:

1. if the two children of a node are the same, the node
is eliminated - f = cf + cf .

2. if two nodes have isomorphic graphs, they are re-
placed by one of them.

These two rules make it so that each node represents a
distinct logic function.

Theorem 1 (Bryant - 1986) ROBDD’s are canonical

Thus two functions are the same iff their ROBDD’s
are equivalent graphs (isomorphic). Of course must use
same order for variables.

5

Function is Given by Tracing All Paths to 1

f = b + ac = ab + acb + ac all paths to the 1 node

a

c

b

0 1

f

fa =b
_

fa
_ = cb + c

_ _
10

1
0

0 1

Notes:

• By tracing paths to the 1 node, we get a cover of
pairwise disjoint cubes.

• The power of the BDD representation is that it
does not explicitly enumerate all paths; rather it
represents paths by a graph whose size is measured
by its nodes and not paths.

• A DAG can represent an exponential number of
paths with a linear number of nodes.

• Each node is given by its Shannon representation:
f = afa + afa.

6

Implementation

Variables are totally ordered: If v < w then v occurs
”higher” up in the ROBDD (call it BDD from now on).

Definition 1 Top variable of a function f is a variable
associated with its root node.

Example: f = ab + abc + abc. Order is (a, b, c).

fa = b fa = b

a

10

b
reduced

10

b

f
f

b is top variable of f

f does not depend on a, since fa = fa.

Each node is written as a triple: f = (v, g, h) where
g = fv and h = fv. We read this triple as

f = if v then g else h = ite(v, g, h) = vg + vh

f

v is top variable of f

v

gh
v

g h

f

1 0 mux 0 1

7

ITE Operator

ite(f, g, h) = fg + fh

ite operator can implement any two variable logic func-
tion. There are 16 such functions corresponding to all
subsets of vertices of B2: fg, fg, fg, fg

Table Subset Expression Equivalent Form
0000 0 0 0
0001 AND(f, g) fg ite(f, g,0)
0010 f > g fg ite(f, g,0)
0011 f f f

0100 f < g fg ite(f,0, g)
0101 g g g

0110 XOR(f, g) f ⊕ g ite(f, g, g)
0111 OR(f, g) f + g ite(f,1, g)

1000 NOR(f, g) f + g ite(f,0, g)
1001 XNOR(f, g) f⊕g ite(f, g, g)
1010 NOT(g g ite(g,0,1)
1011 f ≥ g f + g ite(f,1, g)

1100 NOT(f) f ite(f,0,1)

1101 f ≤ g f + g ite(f, g,1)

1110 NAND(f, g) fg ite(f, g,1)
1111 1 1 1

8

Unique Table - Hash Table

.

.

.

.

.

collision
chainhash value

of key

Before a node (v, g, h) is added to BDD data base, it
is looked up in the ”unique-table”. If it is there, then
existing pointer to node is used to represent the logic
function. Otherwise, a new node is added to the unique-
table and the new pointer returned.

Thus a strong canonical form is maintained. The node
for f = (v, g, h) exists iff (v, g, h) is in the unique-table.
There is only one pointer for (v, g, h) and that is the
address to the unique-table entry.

9

Unique-table allows single multi-rooted DAG to repre-
sent all users’ functions:

sharing of
co−factors

f 1 f 2 . . . fn

0 1

Recursive Formulation of ITE

v = top-most variable among the three BDD’s f, g, h

ite(f, g, h) = fg + fh

= v(fg + fh)v + v(fg + fh)v

= v(fvgv + fvhv) + v(fvgv + fvhv)

= ite(v, ite(fv, gv, hv), ite(fv, gv, hv))

= (v, ite(fv, gv, hv), ite(fv, gv, hv))

= (v, f̃ , g̃) = R

Terminal cases:
(0, g, f) = (1, f, g) = f

ite(f, g, g) = g

ite(f, g, h)
if(terminal case){

return result;
} else if (computed-table has entry (f, g, h){

return result;
}else{

let v be the top variable of (f, g, h);

f̃ ← ite(fv, gv, hv);
g̃ ← ite(fv, gv, hv);

if (f̃ equals g̃) return g̃;

R←find or add unique table(v, f̃ , g̃);
insert computed table({f, g, h}, R);
return R; } }

The ”computed table” is a cache table where ite results
are cached.

10

Example

1 0

1

1 01

1 0

1 0

1 01
1 0

1

1 0

1 0

F G I

JCB
a

b
1

1 0

1 01
1 0

H

D

b

d

a

c

a

b

F,G,H,I,J,B,C,D
 are pointers

0
C

D0

I = ite(F, G, H)

= (a, ite(Fa, Ga, Ha), ite(Fa, Ga, Ha))

= (a, ite(1, C, H), ite(B,0, H))

= (a, C, (b, ite(Bb,0b, Hb), ite(Bb
,0

b
, H

b
)))

= (a, C, (b, ite(1,0,1), ite(0,0, D)))

= (a, C, (b,0, D))

= (a, C, J)

Check:

F = a + b

G = ac

H = b + d

ite(F, G, H) = (a + b)(ac) + ab(b + d)

= ac + abd

11

Computed Table

Keep a record of (F, G, H) triplets already computed by
the ite operator in a hash-based cache (”cache” ta-
ble). This means that the collision chain is not used (if
collision, old entry thrown away).

index
then
else
data
next

index
then
else
data
next

index
then
else

index
then
else

index
then
else

index
then
else
data
next

collision chain

BDD nodes
cache
tableunique

table

However, this is wasteful since the BDD nodes and col-
lision chain can be merged.

12

Better Implementation

index
then
else
data
next

index
then
else

index
then
else
next

collision chain

cache
tableunique

table

next

index
then
else
next

and
BDD dag ite(F,G,H)

(F,G,H)

Here the BDD nodes and the collision chain are merged.
On average, only 4 pointers per BDD node.

13

Extension - Complement Edges

0 1 0 1

G G
_

two different
 dags

Can combine by making complement edges:

0 1

G G
_

only one dag
using complement
pointer

14

To maintain strong canonical form, need to resolve 4
equivalences:

v v v v

v v v v

Solution: Always choose one on left, i.e. the ”then”
leg must have no complement edge.

Ambiguities in Cache Table

Standard Triples:

ite(F, F, G) =⇒ ite(F,1, G)

ite(F, G, F) =⇒ ite(F, G,0)

ite(F, G, F) =⇒ ite(F, G,1)

ite(F, F , G) =⇒ ite(F,0, G)

To resolve equivalences:

ite(F,1, G) ≡ ite(G,1, F)

ite(F,0, G) ≡ ite(G,0, F)

ite(F, G,0) ≡ ite(G, F,0)

ite(F, G,1) ≡ ite(G, F ,1)

ite(F, G, G) ≡ ite(G, F, F)

1. first argument is chosen with smallest top variable.

2. break ties with smallest address pointer.

Triples:

ite(F, G, H) ≡ ite(F, H, G) ≡ ite(F, G, H),≡ ite(F, H, G)

Choose the one such that the first and second argument
of ite should not be complement edges (i.e. the first one
above).

15

Tautology Checking

Tautology returns 0,1, or NC (not constant).

ITE constant(F, G, H){
if (trivial case) {

return result (0,1, or NC);
} else if (cache table has entry for (F, G, H)) {

return result;
} else {

let v be the top variable of F, G, H;
R← ITE constant(Fv, Gv, Hv);
if (R = NC) {

insert cache table({F, G, H},NC);
return NC;

}
E ← ITE constant(Fv, Gv, Hv);
if (E = NC or R 6= E){ isn’t it only if

(R 6= E){
insert cache table({F, G, H},NC);
return NC;

insert cache table({F, G, H}, E);
return E;

}
}

Note, that in computing ITE constant, we set up a tem-
porary cache-table for storing results of the ITE constant
operator. When done, we can throw away this table if
we like.

16

Compose

Compose is an important operation for building the
BDD of a circuit.

compose(F, v, G) : F (v, x)→ F (G(x), x)

Means substitute v = G(x).

compose (F, v, G) { (in F replace v with G)
if(top var(F) > v) return F ;
(because F does not depend on v)
if(top var(F) = v) return ITE(G, F1, F0);
R← compose(F1, v, G);
E ← compose(F0, v, G);
return ITE(top var(F),R, E);
(note that we call ITE on this rather than)
(returning (top var(F),R, E)) }

Notes:

1. F1 is the 1-child of F , F0 the 0-child

2. G, R, E are not functions of v

3. if top var of F is v, then ite(G, R, E) does the re-
placement of v by G.

17

Multivalued Decision Diagrams (MDD’s) -
”BDD’s” for MV-functions

There is an equivalent theory (canonical etc.) for MDD’s:

0
1 2 3 4

v
P
v

= {0,1,2,3,4}

0
1 2 3

4

Typically, we encode the multi-valued variable with log2(|Pv|)
binary variables and use unused codes as ”don’t cares”
in a particular way

Sets and Graphs:
Thus we can represent and manipulate general sets and
graphs.

Set =⇒ characteristic function of set

≡ ((f(v) = 1)⇐⇒ (v ∈ S ⊆ Pv))

Graph: ((f(x, y) = 1)⇐⇒ (x, y) is an edge in graph

where x and y are multi-valued variables representing
nodes in the graph.

ZBDD’s were invented by Minato to efficiently represent
sparse sets. They have turned out to be extremely
useful in implicit methods for representing primes (which
usually are a sparse subset of all cubes).

18

Zero Suppressed BDD’s - ZBDD’s

Different reduction rules:

• BDD: eliminate all nodes where then edge and the
else edge point to the same node.

• ZBDD: eliminate all nodes where the then node
points to 0. Connect incoming edges to else node.

• For Both: share equivalent nodes.

0 1

0 1 0 1

BDD:

0
1

0 1

0

0 1

ZBDD:

19

Canonicity

Theorem 2 (Minato) ZBDD’s are canonical given a
variable ordering and the support set.

Example:

1

1 2

1

x
3

1 2 , x 3

1 0

x
1

x
2

BDD

1 0

x
1

x
2

BDD

x
3

1

1 2 , x 3

ZBDD if
support is
x , x

ZBDD if
support is
x , x

ZBDD if
support is
x , x

20

