
Systems Design Laboratory

Extended Finite (State) Automata

1Department of Mathematics, University of Padova, ITALY

2Department of Computer Science, University of Verona, ITALY

Plant Level Synchronization

Graphical Description

MACHINE

(IDLE)

WAREHOUSE

(EMPTY)

WAREHOUSE

(EMPTY)

MACHINE

(BUSY)

Machine starts
processing a
workpiece

WAREHOUSE

(HALF)

MACHINE

(IDLE)

Warehouse removes a workpiece

MACHINE

(BUSY)

WAREHOUSE

(HALF)

Machine finishes
processing a
workpiece

MACHINE

(IDLE)

WAREHOUSE

(FULL)

WAREHOUSE

(FULL)

MACHINE

(BUSY)

(Initial, Marked)

Warehouse removes a workpiece

W
arehouse rem

oves a workpiece

Warehouse removes a workpiece

Machine finishes
processing a
workpiece

Machine starts
processing a
workpiece

Machine starts
processing a
workpiece

Parallel composition

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

• When the machine is BUSY and the warehouse is FULL,

despite that �nish is uncontrollable, the machine cannot

execute it since �nish is not executable by the warehouse.

Plant level synchronization can prevent (uncontrollable) events

from being executed. 1

Supervisor Synthesis: Work�ow

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT 1

...

ESSENTIAL
REQUIREMENT
AUTOMATON R1

...
ESSENTIAL

REQUIREMENT
AUTOMATON R2

ESSENTIAL
REQUIREMENT
AUTOMATON RM

PARALLEL COMPOSITION

R := R1 || R2 || ... || RM

(REQUIREMENT AUTOMATON R)

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT 2

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT M

NATURAL LANGUAGE
DEFINITION OF
PLANT MODULE 1

...

PLANT
AUTOMATON G1

...PLANT
AUTOMATON G2

PLANT
AUTOMATON GN

PARALLEL COMPOSITION

G := G1 || G2 || ... || GN

(PLANT AUTOMATON G)

NATURAL LANGUAGE
DEFINITION OF
PLANT MODULE 2

NATURAL LANGUAGE
DEFINITION OF

PLANT MODULE N

FORMALIZATION OF PLANT MODULES FORMALIZATION OF REQUIREMENTS

SUPERVISOR SYNTHESIS

ALGORITHM RUNS ON (G,R)

SUPERVISOR SYNTHESIS

UNCONTROLLABLE
(EMPTY SUPERVISOR)

SUPERVISOR
(AUTOMATON S)

Warning: in the parallel G‖H we need:

1. Remove non-coaccessible states (blocking)

2. Remove states such that uncontrollable events are allowed by the plant but not

by the requirement.
2

Machine-Warehouse example

Requirement 1: The warehouse stores at most one workpiece

MACHINE

(IDLE)

WAREHOUSE

(EMPTY)

WAREHOUSE

(EMPTY)

MACHINE

(BUSY)

Machine starts
processing a
workpiece

WAREHOUSE

(HALF)

MACHINE

(IDLE)

Warehouse removes a workpiece

MACHINE

(BUSY)

WAREHOUSE

(HALF)

Machine finishes
processing a
workpiece

MACHINE

(IDLE)

WAREHOUSE

(FULL)

WAREHOUSE

(FULL)

MACHINE

(BUSY)

(Initial, Marked)

Warehouse removes a workpiece

W
arehouse rem

oves a workpiece

Warehouse removes a workpiece

Machine finishes
processing a
workpiece

Machine starts
processing a
workpiece

Machine starts
processing a
workpiece

LEGAL BEHAVIOR

ILLEGAL BEHAVIOR

3

Example 1: Synthesis Algorithm - Tentative Supervisor

Plant Automaton G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R1

Estart H

�nish

remove

Parallel composition G‖R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

4

Example 1: Synthesis Algorithm - Removal of states

Plant Automaton G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

We remove {B,H,H} since
{B,H} (plant) enables �nish,

whereas {H} (requirement) does

not.

Requirement R1

Estart H

�nish

remove

Parallel composition G‖R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

Can we modify the approach to model the executions of G

that are forbidden by R as blocking problems?

5

Supervisor Synthesis: Forbidden Executions as Blocking

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT 1

...

ESSENTIAL
REQUIREMENT
AUTOMATON R1

...
ESSENTIAL

REQUIREMENT
AUTOMATON R2

ESSENTIAL
REQUIREMENT
AUTOMATON RM

PARALLEL COMPOSITION

R := R1 || R2 || ... || RM

(REQUIREMENT AUTOMATON R)

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT 2

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT M

NATURAL LANGUAGE
DEFINITION OF
PLANT MODULE 1

...

PLANT
AUTOMATON G1

...PLANT
AUTOMATON G2

PLANT
AUTOMATON GN

PARALLEL COMPOSITION

G := G1 || G2 || ... || GN || R'

(PLANT AUTOMATON G')

NATURAL LANGUAGE
DEFINITION OF
PLANT MODULE 2

NATURAL LANGUAGE
DEFINITION OF

PLANT MODULE N

FORMALIZATION OF PLANT MODULES FORMALIZATION OF REQUIREMENTS

SUPERVISOR SYNTHESIS

ALGORITHM RUNS ON G'

SUPERVISOR SYNTHESIS

UNCONTROLLABLE
(EMPTY SUPERVISOR)

SUPERVISOR
(AUTOMATON S)

TRANSLATION

INTO PLANT

AUTOMATON R'

Supervisor synthesis can be seen as a modi�ed version of trim that also

takes into consideration the removal of uncontrollable events from G ′.

This way, we only need to reason on G ′.
6

Forbidden Plant Executions as Blocking Problems

Problem:

• Input: A plant G and a requirement R .

• Output: A requirement R ′ that models the �forbidden�

executions of G in a way that such executions will appear as

blocking problems in G‖R ′.

Requirement R1

Estart H

�nish

remove

 ???

7

Forbidden Plant Executions

Start with a copy of R1.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

�nish

remove

8

Forbidden Plant Executions as Blocking Problems

Add a forbidden state φ. Leave the state unmarked.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

9

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

10

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

What about state E?

11

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

remove

Add a transition E → φ labeled by remove.

12

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

remove

What about state H?

13

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

remove �nish

Add a transition H → φ labeled by �nish.

14

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

remove �nish

What about φ itself?

15

Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

Requirement R′

1

Estart H

φ

�nish

remove

remove �nish

remove,�nish

Add self-loops transitions for all events of R ′1 (special cases of the

statement above: �for each state� = φ included).

16

The parallel composition G‖R ′1

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

remove,�nish

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

17

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

What next? Can you think about a straightforward algorithm to

synthesize a supervisor (or prove than none exists)?

18

Forbidden states

Some states are more equal than others.

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

Forbidden(G‖R ′1) := {(g , r) ∈ States(G‖R ′1) | r = φ}

19

Borderline forbidden states

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

A forbidden state (g , φ) is called border forbidden if there exists a

non-forbidden state (g ′, r ′) from which we can reach (g , φ) by

executing some transition.

What is/are the border forbidden state/s in this example?

20

Borderline forbidden states

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

{I ,F , φ} is border forbidden.

21

Considerations on forbidden states

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

• Once we enter a forbidden state, we remain in forbidden states

(why?).

• What about keeping only the border forbidden ones?

22

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

Step 1: remove all forbidden states that are not border forbidden.

23

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

Step 1: remove all forbidden states that are not border forbidden.

24

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

Step 2: S := Trim′(G‖R ′1).

Trim′ is an extension of the classic trim such that every time a

transition with an uncontrollable event is removed, the trim

removes also the source state of that transition (even if that state

is both accessible and coaccessible).
25

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

• {I ,F , φ} is non-coaccessible, thus we need to remove it.

• Watch out! The removal of {I ,F , φ} causes the removal of

�nish which is uncontrollable. Thus, {B,H,H} must be

removed too.

26

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

• {B,H,H} is both accessible and non-coaccessible but needs to

be removed because of the removal of a blocking state.

• Notice that a controllability problem is cast as a blocking

problem.

• We no longer need to reason on the original G !
27

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}start �nish

remove

Final supervisor! Looks familiar?

28

Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

Can we improve R ′1 so as to generate directly this G‖R ′1?

29

Current R ′1

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

remove,�nish

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

30

Improvement 1: Add self-loops for all missing events

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

remove,�nish,start

start start

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

31

Remove all self-loops at φ

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

start start

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

32

Remove all controllable transition leading to φ

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

�nish

start start

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

33

Extended Finite Automata: Locations and marking

L0start L1

The nodes of the graph representation.

34

Extended Finite Automata: (Un)Controllable events

L0start L1

e1

e2

Events still label transitions.

35

Extended Finite Automata: Variables

L0start L1

e1

e2

There is an underlying layer of discrete variables.

• Each variable x has a �nite domain D(x).

• Each variable x has an initialization value I (x) ∈ D(x).

Here, x ∈ D(x) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and I (x) := 0.

We show x in a minute.

36

CIF basics: Discrete variables with �nite domain

L0start L1

e1

e2

controllable e1;

uncontrollable e2;

plant G:

disc int [0..9] x = 0;

location L0: initial; marked;

...

location L1:

...

end

• A discrete variable is speci�ed by the

keyword �disc� followed by:

• its type;

• its range of values (if we want its

domain to be �nite);

• its initialization (default 0 for

integers).

More on initialization and types: https://www.eclipse.org/escet/

cif/language-tutorial/data/discvar-init.html
37

https://www.eclipse.org/escet/cif/language-tutorial/data/discvar-init.html
https://www.eclipse.org/escet/cif/language-tutorial/data/discvar-init.html

CIF basics: Transition guards

Transition guards are predicates over the variables.

L0start L1

e1; x < 8

e2; x ≤ 9

controllable e1;

uncontrollable e2;

plant G:

disc int [0..9] x = 0;

location L0: initial; marked;

edge e1 when x < 8 goto L1;

location L1:

edge e2 when x <= 9 goto L0;

end

• A guard is speci�ed by

the keyword �when�.

38

Extended Finite Automata: Transition updates

L0start L1

e1; x < 8;

f1(x)︷ ︸︸ ︷
x := x + 2

e2; x ≤ 9; x := x + 1︸ ︷︷ ︸
f2(x)

• Transition updates are functions of the variables guaranteeing that

the new value of each variable x remains in D(x).

• E.g., assuming that the current value of x ∈ D(x) := {0, . . . , 9}

f1(x) := (x + 2) mod 10

f2(x) := (x + 1) mod 10

guarantee that the new value of x remains in D(x) := {0, . . . , 9}
(similar to the over�ow semantics of unsigned integers in C/C++).

39

Extended Finite Automata: Transition updates

L0start L1

e; true;

x := y + 1, y := x + 1

Suppose D(x) = D(y) = {0, . . . , 9} and I (x) = I (y) = 1.

Question: what are the values of x and y after executing the

transition?

1) x = 2 and y = 3

2) x = 3 and y = 2

3) x = 2 and y = 2

40

Extended Finite Automata: Transition updates

L0start L1

e; true;

x := y + 1, y := x + 1

Suppose D(x) = D(y) = {0, . . . , 9} and I (x) = I (y) = 1.

Question: what are the values of x and y after executing the

transition?

1) x = 2 and y = 3

2) x = 3 and y = 2

3) x = 2 and y = 2

• Updates are not sensitive to the order in

which we execute the statements.

• x := y + 1, y := x + 1 is equivalent to

y := x + 1, x := y + 1

• What really happens is x := y ′ + 1 and

y := x ′ + 1, where x ′ and y ′ are the values of

x and y before executing the transition. 41

CIF basics: Transition updates

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

controllable e1;

uncontrollable e2;

plant G:

disc int [0..9] x = 0;

location L0: initial; marked;

edge e1 when x < 8 do x := x + 2 goto L1;

location L1:

edge e2 when x <= 9 do x := x + 1 goto L0;

end

• An update is speci�ed

by the keyword �do�.

42

Extended Finite Automata: Transition execution

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

• Transition guards are predicates over the variables

• A transition (no matter if the labeling event is controllable or

uncontrollable) can be executed from a location L if:

1. the current location is L;

2. the current value of the variables satis�es the guard.

For example, if in L1 we have that x = 10, then the uncontrollable

transition labeled by e2 cannot be executed.

43

Extended Finite Automata: Non-determinism

. . . L

. . .

. . .

. . .
e; x

< 8

e; x > 3

In general, two transitions are non deterministic if:

1. they are labeled by the same event;

2. the intersection of their guards is non empty.

Note that non determinism might not actually exist if the values of the

variables exclude it. Suppose D(x) := {0, . . . , 9} and that the current

location is L. We have three cases:

1. if x ≤ 3, then only the transition above can be executed;

2. if x ≥ 8, then only the transition below can be executed;

3. if 3 < x < 8, then both transitions can be executed.
44

Extended Finite Automata: States

State = (Location, values of the variables)

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

E.g., if I (x) = 0, then at the beginning the initial state is (L0, 0).

45

Extended Finite Automata: Expressiveness

State = (L, x)

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Extended Finite Automata have the same expressive power of Finite

State Automata. Indeed, every Extended Finite Automata can be easily

encoded into a Finite State Automata. For our example:

(L0, 0)

start

(L1, 2) (L0, 3) (L1, 5) (L0, 6) (L1, 8) (L0, 9)
e1 e2 e1 e2 e1 e2

In ESCET see CIF miscellaneous tools -> Explore untimed

state space
46

Parallel composition of extended �nite automata

Assumption regarding variables

Like events, a variable x may appear in di�erent automata provided

it complies with the following �local write/global read� contract.

Local write: x is written by one and only one automaton only;

Global read: x can be read by all automata.

This way, we avoid

1. mismatching domains for the same variable in di�erent automata;

2. mismatching initial values for the same variable in di�erent

automata;

3. transitions that due to synchronization write con�icting values for

the same variable.

In other words, it is a form of �concurrency safety�.
47

Parallel composition of extended �nite automata

Automaton A

A0start A1

a; x < 8; x := x + 2

b; x ≤ 9; x := x + 1

Automaton B

B0start B1

a; y < 3; y := 2x

c; x + y = 6

Automaton A‖B

(A0,B0)

start

(A1,B1)

(A0,B1)

(A1,B0)

a; x < 8 ∧ y < 7;

x := x + 2, y := 2x
b; x
≤ 9; x

:= x +
1

c; x + y = 6

c; x + y = 6

b; x ≤ 9; x := x + 1

When synchronizing over the

same events, the parallel

composition:

1. conjuncts the guards

2. joins the updates

48

Supervisory control of extended �nite automata

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

Suppose that D(x) := {0, . . . , 9} and I (x) = 0.

Can you spot any problem?

49

Supervisory control of extended �nite automata

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

((G0,R0), 0)

start

((G1,R1), 2) ((G0,R0), 3) ((G1,R1), 5) ((G0,R0), 6) ((G1,R1), 8)
e1 e2 e1 e2 e1

Problem: Consider the state ((G1,R1), 8) of G‖R . Then,

• the plant G is in state (G1, 8) and in that state G can actually

take the uncontrollable transition labeled by e2 since x ≤ 9;

• the requirement R is in state (R1, 8) and disables the

transition labeled by e2 since R requires that x < 7, which is

not. But e2 is uncontrollable, so R can't actually do that. 50

Supervisory control of extended �nite automata

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

In supervisory control of extended �nite automata:

1. we do not explode the original extended �nite automata into �nite

state automata;

2. we work symbolically by tightening the guards of the controllable

transitions of the initial supervisor rather than removing locations.

51

Supervisory control of extended �nite automata

However, we need to keep track of all executions that are:

1. possible in the plant;

2. forbidden by the requirement.

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

Is G‖R OK for this purpose?

52

Supervisory control of extended �nite automata

We need to keep track of all executions that are:

1. possible in the plant;

2. forbidden by the requirement.

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

Is G‖R OK for this purpose?

No! It totally misses all executions of G that are forbidden by R .

However, we know how to rewrite R into an R ′ so that all forbidden

executions of the plant are kept in G‖R ′, don't we?

53

Forbidden Plant Executions

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Requirement R ′

R0start R1

φ

e1; x < 8

e2; x < 7

e
1 ; x
≥
8e
2

e 1
e 2
; x
≥
7

e1,e2

Automaton G‖R ′

Executions of G allowed by R ′ (i.e., G‖R ′)

Executions of G allowed by R Executions of G forbidden by R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ) (G1, φ)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

e2; 7 ≤ x ≤ 9; x := x + 1

e1; x < 8 ∧ x ≥ 8; x := x + 2

54

Essential R ′ - Keep Border Forbidden State Only

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Requirement R ′

R0start R1

φ

e1; x < 8

e2; x < 7

e
2

e 2
; x
≥
7

Automaton G‖R ′

Executions of G allowed by R ′ (i.e., G‖R ′)

Executions of G allowed by R Executions of G forbidden by R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

• Now we can work at plant level

• Controllability problems will be modeled as blocking problems
55

Supervisory control of extended �nite automata

56

Supervisory control of extended �nite automata - algorithm

We start from the parallel composition G‖R ′, where R ′ is
augmented to keep track of forbidden plant executions.

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

After that we repeat the following three steps until �xpoint:

1. compute the non-blocking conditions;

2. compute the bad state conditions;

3. tighten guards of transitions with controllable events only.

The resulting extended �nite automaton is the supervisor if and

only if the initial state is not bad (we'll see later).

57

Before we start

In the following, we will often use this notation

P[u]

The meaning of this notation is a predicate obtained by P in which all

occurrences of the variables of P are replaced by the right-hand sides of

their updates in u.

To give some examples:

• x = 3[x := 5] becomes 5 = 3 and thus false;

• x > 7[x := y + 1] becomes y + 1 > 7 and thus to y > 6;

• x > y − 3[x := y − x , y := 2] becomes y − x > 2− 3 and thus

y − x > −1;

• x + y = z [x := y , y := x , z := x + y] becomes y + x = x + y and

thus true.

58

Non-blocking conditions

• The �rst phase of the algorithm requires to compute for each

location of G‖R ′ a predicate that states for which values of

the variables the location is nonblocking.

• This is done iteratively until such predicates no longer change.

The concrete operations are the following.

• Initialization: NL :=

true if L is a marked location

false otherwise
;

• Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u])).

59

Step 1 - Non-blocking conditions - Iteration 1

Initialization: NL :=

true if L is a marked location

false otherwise

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

60

Step 1 - Non-blocking conditions - Iteration 2

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8 ; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true

N(G0,R0) := true ∨ (x < 8 ∧ false [x := x + 2])

= true ∨ (x < 8 ∧ false)
= true

61

Step 1 - Non-blocking conditions - Iteration 2

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7

N(G1,R1) := false ∨ ((x < 7 ∧ true[x := x + 1]) ∨ (7 ≤ x ≤ 9 ∧ false[x := x + 1]))

= false ∨ (x < 7 ∨ false)
= false ∨ x < 7

= x < 7
62

Step 1 - Non-blocking conditions - Iteration 2

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

N(G0,φ) := false

63

Step 1 - Non-blocking conditions - Iteration 3

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

3 true

N(G0,R0) := true ∨ (x < 8 ∧ x < 7[x := x + 2])

= true

64

Step 1 - Non-blocking conditions - Iteration 3

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

3 true x < 7

N(G1,R1) := x < 7 ∨ ((x < 7 ∧ true[x := x + 1]) ∨ (7 ≤ x ≤ 9 ∧ false[x := x + 1]))

= x < 7 ∨ (x < 7 ∨ false)
= x < 7

65

Step 1 - Non-blocking conditions - Iteration 3

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

3 true x < 7 false

N(G0,φ) := false

We reached a �xpoint so we are done with this step for the

moment.
66

Bad state conditions

• The synthesis algorithm must not restrict uncontrollable events

• Restrictions on uncontrollable events are propagated backwards

until an edge with a controllable event is encountered.

• This is achieved by the bad state condition computation.

• We compute a bad state condition for each location.

• This is done iteratively until such predicates no longer change.

The concrete operations are the following.

• Initialization: BL := ¬NL

• Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u])) where e is

an uncontrollable event.

67

Step 2 - Bad state conditions - Iteration 1

Initialization: BL := ¬NL

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

.

3 true x < 7 false

↓

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

68

Step 2 - Bad state conditions - Iteration 2

Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

2 false

B(G0,R0) := false

69

Step 2 - Bad state conditions - Iteration 2

Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7 ; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9 ; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

2 false x ≥ 7

B(G1,R1) := x ≥ 7 ∨ ((x < 7 ∧ false [x := x + 1]) ∨ (7 ≤ x ≤ 9 ∧ true [x := x + 1]))

= x ≥ 7 ∨ (false ∨ 7 ≤ x ≤ 9)

= x ≥ 7 ∨ (7 ≤ x ≤ 9)

= x ≥ 7

70

Step 2 - Bad state conditions - Iteration 2

Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

2 false x ≥ 7 true

B(G0,φ) := true

71

Tightening of controllable guards

• Bad state conditions express which combinations of values of

variables need to be avoided in a speci�c location, considering

that guards of uncontrollable events can't be touched.

• The guards of the edges with a controllable event are updated

by adding as a conjunct the expression ¬BL[u] where BL[u] is
the bad state condition of the target location L.

The concrete operation is the following.

• L
e;g ;u−−−→ L′ with e ∈ Ec is tightened to L

e;g∧¬BL′ [u];u−−−−−−−−→ L′

72

Step 3 - Tightening of guards labeled by controllable events

Tightening the transition labeled by e1.

(G0,R0)start (G1,R1)

e1; x < 8 ; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

.

2 false x ≥ 7 true

x < 8 ∧

¬B(G1,R1)
[x :=x+2]︷ ︸︸ ︷

¬(x ≥ 7 [x := x + 2])

= x < 8 ∧ ¬(x + 2 ≥ 7)

= x < 8 ∧ ¬(x ≥ 5)

= x < 8 ∧ x < 5

= x < 5

(G0,R0)start (G1,R1)

e1; x < 5 ; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

73

Are we ready to go?

• If we iterate all three steps again (on the tightened G‖R ′)
nothing changes.

• This resulting automaton is our tentative supervisor.

(G0,R0)start (G1,R1)

e1; x < 5; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Control exists if the initial conditions on the variables do not satisfy

the bad location predicate of the initial location.

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

.

2 false x ≥ 7 true

x = 0 6|= B(G0,R0)

x = 0 6|= false

true

We have control!
74

State-based requirements

• When looking at case studies, we often observe that system

requirements are naturally expressed in terms of conditions

over states.

• Designers can express requirements more easily by using such

state-based speci�cations because they naturally follow from

informal, intuitive requirements

Two kinds of state-based requirements:

1. Event conditions;

2. Invariants.

75

State-based requirements: event conditions

Let E := {e1, . . . , en} be a set of events. An event condition is an

expression of the form:

E ⇒ Pred

meaning that the events in E can only be executed if Pred is

satis�ed.

L

start

e1;Pred

e...;Pred

en;Pred

requirement R:

location:

initial;

marked;

edge e1 ,...,en when Pred;

end

More compactly: requirement R: {e1,...,en} needs Pred;

76

State-based requirements: event conditions

Let x be a discrete variable with

domain D(x) := {0, . . . , 10} and
initial value I (x) := 5

Consider the following extended

�nite automaton

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Event condition requirements:

Increment is possible only if x ≤ 8

{inc} ⇒ x ≤ 8

L

start

inc; x ≤ 8

Decrement is possible only if x ≥ 2

{dec} ⇒ x ≥ 2

Lstart dec; x ≥ 2

77

State-based requirements: event conditions

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

controllable inc , dec;

plant G:

disc int [0..10] x = 5;

location: initial; marked;

edge inc when x < 10 do x := x+1;

edge dec when x > 0 do x := x-1;

end

Requirement R1: {inc} ⇒ x ≤ 8

Lstart inc; x ≤ 8
requirement R1:

location: initial; marked;

edge inc when G.x <= 8;

end

Requirement R2: {dec} ⇒ x ≥ 2

Lstart dec; x ≥ 2
requirement R2:

location: initial; marked;

edge dec when G.x >= 2;

end

78

State-based requirements: event conditions

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

controllable inc , dec;

plant G:

disc int [0..10] x = 5;

location: initial; marked;

edge inc when x < 10 do x := x+1;

edge dec when x > 0 do x := x-1;

end

Requirement R1: {inc} ⇒ x ≤ 8

Lstart inc; x ≤ 8 requirement R1: inc needs G.x <= 8;

Requirement R2: {dec} ⇒ x ≥ 2

Lstart dec; x ≥ 2 requirement R2: dec needs G.x >= 2;

79

State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x must always be between 2 and 8.

L

start

dec; x ≥ 2 ∧ x ≤ 8inc; x ≥ 2 ∧ x ≤ 8

Can we use the same idea discussed before and add self-loop

transitions for all edges enforcing Pred?
80

State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x must always be between 2 and 8.

L

start

dec; x ≥ 2 ∧ x ≤ 8inc; x ≥ 2 ∧ x ≤ 8

No! As well as holding before taking any transition, Pred must also hold

after taking any transition. In this case,

• (L, 5)
dec−−→ (L, 4)

dec−−→ (L, 3)
dec−−→ (L, 2)

dec−−→ (L, 1)

• (L, 5)
inc−−→ (L, 6)

inc−−→ (L, 7)
inc−−→ (L, 8)

inc−−→ (L, 9) 81

State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x must always be between 2 and 8.

• For each plant automaton writing a variable in Pred we create

a copy of that automaton.

• Each transition of that automaton L
e;g ;u−−−→ L′ is tightened to

L
e;g∧Pred [u];u−−−−−−−−→ L′

This way, if a transition is taken its guard already guarantees that

Pred will hold after taking the transition.

82

State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x ≥ 2 ∧ x ≤ 8

L

start

dec ;

x > 0 ∧ (x ≥ 2 ∧ x ≤ 8) [x := x − 1];

x := x − 1

inc;

x < 10 ∧ (x ≥ 2 ∧ x ≤ 8) [x := x + 1];

x := x + 1

• (x ≥ 2 ∧ x ≤ 8) [x := x − 1] is equivalent to (x ≥ 3 ∧ x ≤ 9)

• (x ≥ 2 ∧ x ≤ 8) [x := x + 1] is equivalent to (x ≥ 1 ∧ x ≤ 7)

L

start

dec;

x > 0 ∧ x ≥ 3 ∧ x ≤ 9 ;

x := x − 1

inc;

x < 10 ∧ x ≥ 1 ∧ x ≤ 7 ;

x := x + 1

83

State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x ≥ 2 ∧ x ≤ 8

L

start

dec;

x ≥ 3 ∧ x ≤ 9 ;

x := x − 1

inc;

x ≥ 1 ∧ x ≤ 7 ;

x := x + 1

requirement invariant R: G.x >= 2 and G.x <= 8;

• (L, 5)
dec−−→ (L, 4)

dec−−→ (L, 3)
dec−−→ (L, 2) (dec is disabled now)

• (L, 5)
inc−−→ (L, 6)

inc−−→ (L, 7)
inc−−→ (L, 8) (inc is disabled now)

84

Locations vs Variables

(ACTIVE)

Machine i starts
processing a workpiece

Machine i finishes
processing a workpiece

(DOWN)

Machine i
breaks down

Machine i
Is repaired

(the workpiece
is discarded)

(IDLE) Machine i

IDLE istart ACTIVE i

DOWN i

start i

�nishi

break i
repair i

(FULL)(EMPTY)

Machine 1 finishes
processing a workpiece

Machine 2 starts
processing a workpiece

EMPTYstart FULL

�nish1

start2

Can we encode locations as variables?

85

Locations encoded as Variables: Machines

Machine i

IDLE istart ACTIVE i

DOWN i

start i

�nishi

break i
repair i

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

• Variables idle i , active i , downi ;

• Domains D(idle i) = D(active i) = D(downi) = {true, false};

• Initialization I (idle i) = true, I (active i) = I (downi) = false;

Yes! Just add one Boolean variable li for each location L such that:

1. li is set true upon entering L;

2. li is set false upon leaving L. 86

Locations encoded as Variables: Bu�er

EMPTYstart FULL

�nish1

start2
EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

• Variables empty , full ;

• Domains D(empty) = D(full) = {true, false};

• Initialization I (empty) = true, I (full) = false;

• Now we can use event and invariant conditions by using location

names (internally they will be replaced by the corresponding

Boolean variables).

• For example, E ⇒ A.L says that the events in E can be executed

only if the automaton A is in location L.
87

Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R1: Machine 1 can start processing a workpiece only if the Bu�er

is empty

Event condition

{start1} ⇒ B.empty

CIF code

requirement R1: start1 needs B.EMPTY;

88

Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R2: Machine 2 can start processing a workpiece only if the Bu�er

is full

Event condition

{start2} ⇒ B.full

CIF code

requirement R2: start2 needs B.FULL;

89

Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R3: Machine 1 cannot start processing a workpiece if Machine 2 is

down.

Event condition

{start1} ⇒ ¬M2.down

CIF code

requirement R3: start1 needs not M2.DOWN;

90

Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R4: If both Machines are down, then Machine 2 is repaired before

Machine 1.

Event condition

{repair
1
} ⇒ ¬M2.down

CIF code

requirement R4: repair1 needs not M2.DOWN;

91

