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Plant Level Synchronization

Graphical Description
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• When the machine is BUSY and the warehouse is FULL,

despite that �nish is uncontrollable, the machine cannot

execute it since �nish is not executable by the warehouse.

Plant level synchronization can prevent (uncontrollable) events

from being executed. 1



Supervisor Synthesis: Work�ow
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Warning: in the parallel G‖H we need:

1. Remove non-coaccessible states (blocking)

2. Remove states such that uncontrollable events are allowed by the plant but not

by the requirement.
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Machine-Warehouse example

Requirement 1: The warehouse stores at most one workpiece
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Example 1: Synthesis Algorithm - Tentative Supervisor
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Example 1: Synthesis Algorithm - Removal of states

Plant Automaton G
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We remove {B,H,H} since
{B,H} (plant) enables �nish,

whereas {H} (requirement) does

not.
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Parallel composition G‖R1
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Can we modify the approach to model the executions of G

that are forbidden by R as blocking problems?

5



Supervisor Synthesis: Forbidden Executions as Blocking
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Supervisor synthesis can be seen as a modi�ed version of trim that also

takes into consideration the removal of uncontrollable events from G ′.

This way, we only need to reason on G ′.
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Forbidden Plant Executions as Blocking Problems

Problem:

• Input: A plant G and a requirement R .

• Output: A requirement R ′ that models the �forbidden�

executions of G in a way that such executions will appear as

blocking problems in G‖R ′.

Requirement R1

Estart H

�nish

remove

 ???
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Forbidden Plant Executions

Start with a copy of R1.
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�nish

remove

 
Requirement R′

1

Estart H

�nish

remove
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Forbidden Plant Executions as Blocking Problems

Add a forbidden state φ. Leave the state unmarked.
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove
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φ

�nish

remove
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

 
Requirement R′

1

Estart H

φ

�nish

remove

What about state E?
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove
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φ
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remove

remove

Add a transition E → φ labeled by remove.
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

 
Requirement R′

1

Estart H

φ
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remove

remove

What about state H?
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

 
Requirement R′

1

Estart H

φ
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remove �nish

Add a transition H → φ labeled by �nish.
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove

 
Requirement R′

1

Estart H

φ

�nish

remove

remove �nish

What about φ itself?
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Forbidden Plant Executions as Blocking Problems

For each state s of R ′1 and each event e of R ′1, if e cannot be

executed from s add a transition from s to φ labeled by e.

Requirement R1

Estart H

�nish

remove
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Estart H

φ

�nish

remove

remove �nish

remove,�nish

Add self-loops transitions for all events of R ′1 (special cases of the

statement above: �for each state� = φ included).
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The parallel composition G‖R ′1

Plant G
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1
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What next? Can you think about a straightforward algorithm to

synthesize a supervisor (or prove than none exists)?
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Forbidden states

Some states are more equal than others.

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1
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Forbidden(G‖R ′1) := {(g , r) ∈ States(G‖R ′1) | r = φ}
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Borderline forbidden states

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

A forbidden state (g , φ) is called border forbidden if there exists a

non-forbidden state (g ′, r ′) from which we can reach (g , φ) by

executing some transition.

What is/are the border forbidden state/s in this example?
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Borderline forbidden states

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1
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{I ,F , φ} is border forbidden.
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Considerations on forbidden states

Executions of G allowed by R ′1 (i.e., G‖R ′1)
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• Once we enter a forbidden state, we remain in forbidden states

(why?).

• What about keeping only the border forbidden ones?
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1
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Step 1: remove all forbidden states that are not border forbidden.
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start
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{I ,F , φ}
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Step 1: remove all forbidden states that are not border forbidden.
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

Step 2: S := Trim′(G‖R ′1).

Trim′ is an extension of the classic trim such that every time a

transition with an uncontrollable event is removed, the trim

removes also the source state of that transition (even if that state

is both accessible and coaccessible).
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

• {I ,F , φ} is non-coaccessible, thus we need to remove it.

• Watch out! The removal of {I ,F , φ} causes the removal of

�nish which is uncontrollable. Thus, {B,H,H} must be

removed too.
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

• {B,H,H} is both accessible and non-coaccessible but needs to

be removed because of the removal of a blocking state.

• Notice that a controllability problem is cast as a blocking

problem.

• We no longer need to reason on the original G !
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}start �nish

remove

Final supervisor! Looks familiar?
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Supervisor Synthesis

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish

Can we improve R ′1 so as to generate directly this G‖R ′1?
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Current R ′1

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove
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start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

remove,�nish

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish
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Improvement 1: Add self-loops for all missing events

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

remove,�nish,start

start start

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,E , φ} {B,E , φ} {I ,H, φ}

{B,F , φ} {I ,F , φ} {B,H, φ}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

�nish

31



Remove all self-loops at φ

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

remove �nish

start start

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish
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Remove all controllable transition leading to φ

Plant G

{I ,E}

start

{B,E} {I ,H}

{B,F} {I ,F} {B,H}

start �nish

remove

start

�nish

rem
ove

remove

start

remove

Requirement R′
1

Estart H

φ

�nish

remove

�nish

start start

Executions of G allowed by R ′1 (i.e., G‖R ′1)

Executions of G allowed by R1 Executions of G forbidden by R1

{I ,E ,E}

start

{B,E ,E} {I ,H,H}

{B,H,H}

start �nish

remove

start

rem
ove

{I ,F , φ}

�nish
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Extended Finite Automata: Locations and marking

L0start L1

The nodes of the graph representation.
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Extended Finite Automata: (Un)Controllable events

L0start L1

e1

e2

Events still label transitions.
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Extended Finite Automata: Variables

L0start L1

e1

e2

There is an underlying layer of discrete variables.

• Each variable x has a �nite domain D(x).

• Each variable x has an initialization value I (x) ∈ D(x).

Here, x ∈ D(x) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and I (x) := 0.

We show x in a minute.
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CIF basics: Discrete variables with �nite domain

L0start L1

e1

e2

controllable e1;

uncontrollable e2;

plant G:

disc int [0..9] x = 0;

location L0: initial; marked;

...

location L1:

...

end

• A discrete variable is speci�ed by the

keyword �disc� followed by:

• its type;

• its range of values (if we want its

domain to be �nite);

• its initialization (default 0 for

integers).

More on initialization and types: https://www.eclipse.org/escet/

cif/language-tutorial/data/discvar-init.html
37

https://www.eclipse.org/escet/cif/language-tutorial/data/discvar-init.html
https://www.eclipse.org/escet/cif/language-tutorial/data/discvar-init.html


CIF basics: Transition guards

Transition guards are predicates over the variables.

L0start L1

e1; x < 8

e2; x ≤ 9

controllable e1;

uncontrollable e2;

plant G:

disc int [0..9] x = 0;

location L0: initial; marked;

edge e1 when x < 8 goto L1;

location L1:

edge e2 when x <= 9 goto L0;

end

• A guard is speci�ed by

the keyword �when�.
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Extended Finite Automata: Transition updates

L0start L1

e1; x < 8;

f1(x)︷ ︸︸ ︷
x := x + 2

e2; x ≤ 9; x := x + 1︸ ︷︷ ︸
f2(x)

• Transition updates are functions of the variables guaranteeing that

the new value of each variable x remains in D(x).

• E.g., assuming that the current value of x ∈ D(x) := {0, . . . , 9}

f1(x) := (x + 2) mod 10

f2(x) := (x + 1) mod 10

guarantee that the new value of x remains in D(x) := {0, . . . , 9}
(similar to the over�ow semantics of unsigned integers in C/C++).
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Extended Finite Automata: Transition updates

L0start L1

e; true;

x := y + 1, y := x + 1

Suppose D(x) = D(y) = {0, . . . , 9} and I (x) = I (y) = 1.

Question: what are the values of x and y after executing the

transition?

1) x = 2 and y = 3

2) x = 3 and y = 2

3) x = 2 and y = 2
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Extended Finite Automata: Transition updates

L0start L1

e; true;

x := y + 1, y := x + 1

Suppose D(x) = D(y) = {0, . . . , 9} and I (x) = I (y) = 1.

Question: what are the values of x and y after executing the

transition?

1) x = 2 and y = 3

2) x = 3 and y = 2

3) x = 2 and y = 2

• Updates are not sensitive to the order in

which we execute the statements.

• x := y + 1, y := x + 1 is equivalent to

y := x + 1, x := y + 1

• What really happens is x := y ′ + 1 and

y := x ′ + 1, where x ′ and y ′ are the values of

x and y before executing the transition. 41



CIF basics: Transition updates

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

controllable e1;

uncontrollable e2;

plant G:

disc int [0..9] x = 0;

location L0: initial; marked;

edge e1 when x < 8 do x := x + 2 goto L1;

location L1:

edge e2 when x <= 9 do x := x + 1 goto L0;

end

• An update is speci�ed

by the keyword �do�.
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Extended Finite Automata: Transition execution

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

• Transition guards are predicates over the variables

• A transition (no matter if the labeling event is controllable or

uncontrollable) can be executed from a location L if:

1. the current location is L;

2. the current value of the variables satis�es the guard.

For example, if in L1 we have that x = 10, then the uncontrollable

transition labeled by e2 cannot be executed.
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Extended Finite Automata: Non-determinism

. . . L

. . .

. . .

. . .
e; x

< 8

e; x > 3

In general, two transitions are non deterministic if:

1. they are labeled by the same event;

2. the intersection of their guards is non empty.

Note that non determinism might not actually exist if the values of the

variables exclude it. Suppose D(x) := {0, . . . , 9} and that the current

location is L. We have three cases:

1. if x ≤ 3, then only the transition above can be executed;

2. if x ≥ 8, then only the transition below can be executed;

3. if 3 < x < 8, then both transitions can be executed.
44



Extended Finite Automata: States

State = (Location, values of the variables)

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

E.g., if I (x) = 0, then at the beginning the initial state is (L0, 0).
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Extended Finite Automata: Expressiveness

State = (L, x)

L0start L1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Extended Finite Automata have the same expressive power of Finite

State Automata. Indeed, every Extended Finite Automata can be easily

encoded into a Finite State Automata. For our example:

(L0, 0)

start

(L1, 2) (L0, 3) (L1, 5) (L0, 6) (L1, 8) (L0, 9)
e1 e2 e1 e2 e1 e2

In ESCET see CIF miscellaneous tools -> Explore untimed

state space
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Parallel composition of extended �nite automata

Assumption regarding variables

Like events, a variable x may appear in di�erent automata provided

it complies with the following �local write/global read� contract.

Local write: x is written by one and only one automaton only;

Global read: x can be read by all automata.

This way, we avoid

1. mismatching domains for the same variable in di�erent automata;

2. mismatching initial values for the same variable in di�erent

automata;

3. transitions that due to synchronization write con�icting values for

the same variable.

In other words, it is a form of �concurrency safety�.
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Parallel composition of extended �nite automata

Automaton A

A0start A1

a; x < 8; x := x + 2

b; x ≤ 9; x := x + 1

Automaton B

B0start B1

a; y < 3; y := 2x

c; x + y = 6

Automaton A‖B

(A0,B0)

start

(A1,B1)

(A0,B1)

(A1,B0)

a; x < 8 ∧ y < 7;

x := x + 2, y := 2x
b; x
≤ 9; x

:= x +
1

c; x + y = 6

c; x + y = 6

b; x ≤ 9; x := x + 1

When synchronizing over the

same events, the parallel

composition:

1. conjuncts the guards

2. joins the updates
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Supervisory control of extended �nite automata

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

Suppose that D(x) := {0, . . . , 9} and I (x) = 0.

Can you spot any problem?
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Supervisory control of extended �nite automata

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

((G0,R0), 0)

start

((G1,R1), 2) ((G0,R0), 3) ((G1,R1), 5) ((G0,R0), 6) ((G1,R1), 8)
e1 e2 e1 e2 e1

Problem: Consider the state ((G1,R1), 8) of G‖R . Then,

• the plant G is in state (G1, 8) and in that state G can actually

take the uncontrollable transition labeled by e2 since x ≤ 9;

• the requirement R is in state (R1, 8) and disables the

transition labeled by e2 since R requires that x < 7, which is

not. But e2 is uncontrollable, so R can't actually do that. 50



Supervisory control of extended �nite automata

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

In supervisory control of extended �nite automata:

1. we do not explode the original extended �nite automata into �nite

state automata;

2. we work symbolically by tightening the guards of the controllable

transitions of the initial supervisor rather than removing locations.
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Supervisory control of extended �nite automata

However, we need to keep track of all executions that are:

1. possible in the plant;

2. forbidden by the requirement.

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

Is G‖R OK for this purpose?
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Supervisory control of extended �nite automata

We need to keep track of all executions that are:

1. possible in the plant;

2. forbidden by the requirement.

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Automaton G‖R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

Is G‖R OK for this purpose?

No! It totally misses all executions of G that are forbidden by R .

However, we know how to rewrite R into an R ′ so that all forbidden

executions of the plant are kept in G‖R ′, don't we?
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Forbidden Plant Executions

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Requirement R ′

R0start R1

φ

e1; x < 8

e2; x < 7

e
1 ; x
≥
8e
2

e 1
e 2
; x
≥
7

e1,e2

Automaton G‖R ′

Executions of G allowed by R ′ (i.e., G‖R ′)

Executions of G allowed by R Executions of G forbidden by R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ) (G1, φ)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

e2; 7 ≤ x ≤ 9; x := x + 1

e1; x < 8 ∧ x ≥ 8; x := x + 2
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Essential R ′ - Keep Border Forbidden State Only

Plant G

G0start G1

e1; x < 8; x := x + 2

e2; x ≤ 9; x := x + 1

Requirement R

R0start R1

e1; x < 8

e2; x < 7

Requirement R ′

R0start R1

φ

e1; x < 8

e2; x < 7

e
2

e 2
; x
≥
7

Automaton G‖R ′

Executions of G allowed by R ′ (i.e., G‖R ′)

Executions of G allowed by R Executions of G forbidden by R

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

• Now we can work at plant level

• Controllability problems will be modeled as blocking problems
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Supervisory control of extended �nite automata
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Supervisory control of extended �nite automata - algorithm

We start from the parallel composition G‖R ′, where R ′ is
augmented to keep track of forbidden plant executions.

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

After that we repeat the following three steps until �xpoint:

1. compute the non-blocking conditions;

2. compute the bad state conditions;

3. tighten guards of transitions with controllable events only.

The resulting extended �nite automaton is the supervisor if and

only if the initial state is not bad (we'll see later).
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Before we start

In the following, we will often use this notation

P[u]

The meaning of this notation is a predicate obtained by P in which all

occurrences of the variables of P are replaced by the right-hand sides of

their updates in u.

To give some examples:

• x = 3[x := 5] becomes 5 = 3 and thus false;

• x > 7[x := y + 1] becomes y + 1 > 7 and thus to y > 6;

• x > y − 3[x := y − x , y := 2] becomes y − x > 2− 3 and thus

y − x > −1;

• x + y = z [x := y , y := x , z := x + y ] becomes y + x = x + y and

thus true.
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Non-blocking conditions

• The �rst phase of the algorithm requires to compute for each

location of G‖R ′ a predicate that states for which values of

the variables the location is nonblocking.

• This is done iteratively until such predicates no longer change.

The concrete operations are the following.

• Initialization: NL :=

true if L is a marked location

false otherwise
;

• Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u])).
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Step 1 - Non-blocking conditions - Iteration 1

Initialization: NL :=

true if L is a marked location

false otherwise

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false
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Step 1 - Non-blocking conditions - Iteration 2

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8 ; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true

N(G0,R0) := true ∨ ( x < 8 ∧ false [ x := x + 2 ])

= true ∨ (x < 8 ∧ false)
= true
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Step 1 - Non-blocking conditions - Iteration 2

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7

N(G1,R1) := false ∨ ((x < 7 ∧ true[x := x + 1]) ∨ (7 ≤ x ≤ 9 ∧ false[x := x + 1]))

= false ∨ (x < 7 ∨ false)
= false ∨ x < 7

= x < 7
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Step 1 - Non-blocking conditions - Iteration 2

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

N(G0,φ) := false
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Step 1 - Non-blocking conditions - Iteration 3

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

3 true

N(G0,R0) := true ∨ (x < 8 ∧ x < 7[x := x + 2])

= true
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Step 1 - Non-blocking conditions - Iteration 3

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

3 true x < 7

N(G1,R1) := x < 7 ∨ ((x < 7 ∧ true[x := x + 1]) ∨ (7 ≤ x ≤ 9 ∧ false[x := x + 1]))

= x < 7 ∨ (x < 7 ∨ false)
= x < 7
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Step 1 - Non-blocking conditions - Iteration 3

Update: NL := NL ∨ (
∨
L

e;g ;u−−−→L′
(g ∧ NL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

1 true false false

2 true x < 7 false

3 true x < 7 false

N(G0,φ) := false

We reached a �xpoint so we are done with this step for the

moment.
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Bad state conditions

• The synthesis algorithm must not restrict uncontrollable events

• Restrictions on uncontrollable events are propagated backwards

until an edge with a controllable event is encountered.

• This is achieved by the bad state condition computation.

• We compute a bad state condition for each location.

• This is done iteratively until such predicates no longer change.

The concrete operations are the following.

• Initialization: BL := ¬NL

• Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u])) where e is

an uncontrollable event.
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Step 2 - Bad state conditions - Iteration 1

Initialization: BL := ¬NL

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration N(G0,R0) N(G1,R1) N(G0,φ)

. . . . . . . . . . . .

3 true x < 7 false

↓

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true
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Step 2 - Bad state conditions - Iteration 2

Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

2 false

B(G0,R0) := false
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Step 2 - Bad state conditions - Iteration 2

Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7 ; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9 ; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

2 false x ≥ 7

B(G1,R1) := x ≥ 7 ∨ (( x < 7 ∧ false [ x := x + 1 ]) ∨ ( 7 ≤ x ≤ 9 ∧ true [ x := x + 1 ]))

= x ≥ 7 ∨ (false ∨ 7 ≤ x ≤ 9)

= x ≥ 7 ∨ (7 ≤ x ≤ 9)

= x ≥ 7
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Step 2 - Bad state conditions - Iteration 2

Update: BL := BL ∨ (
∨
L

e;g ;u−−−→L′,e∈Eu
(g ∧ BL′ [u]))

(G0,R0)start (G1,R1)

e1; x < 8; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

1 false x ≥ 7 true

2 false x ≥ 7 true

B(G0,φ) := true
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Tightening of controllable guards

• Bad state conditions express which combinations of values of

variables need to be avoided in a speci�c location, considering

that guards of uncontrollable events can't be touched.

• The guards of the edges with a controllable event are updated

by adding as a conjunct the expression ¬BL[u] where BL[u] is
the bad state condition of the target location L.

The concrete operation is the following.

• L
e;g ;u−−−→ L′ with e ∈ Ec is tightened to L

e;g∧¬BL′ [u];u−−−−−−−−→ L′

72



Step 3 - Tightening of guards labeled by controllable events

Tightening the transition labeled by e1.

(G0,R0)start (G1,R1)

e1; x < 8 ; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

. . . . . . . . . . . .

2 false x ≥ 7 true

x < 8 ∧

¬B(G1,R1)
[x :=x+2]︷ ︸︸ ︷

¬( x ≥ 7 [ x := x + 2 ])

= x < 8 ∧ ¬(x + 2 ≥ 7)

= x < 8 ∧ ¬(x ≥ 5)

= x < 8 ∧ x < 5

= x < 5

(G0,R0)start (G1,R1)

e1; x < 5 ; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1
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Are we ready to go?

• If we iterate all three steps again (on the tightened G‖R ′)
nothing changes.

• This resulting automaton is our tentative supervisor.

(G0,R0)start (G1,R1)

e1; x < 5; x := x + 2

e2; x < 7; x := x + 1

(G0, φ)
e2; 7 ≤ x ≤ 9; x := x + 1

Control exists if the initial conditions on the variables do not satisfy

the bad location predicate of the initial location.

Iteration B(G0,R0) B(G1,R1) B(G0,φ)

. . . . . . . . . . . .

2 false x ≥ 7 true

x = 0 6|= B(G0,R0)

x = 0 6|= false

true

We have control!
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State-based requirements

• When looking at case studies, we often observe that system

requirements are naturally expressed in terms of conditions

over states.

• Designers can express requirements more easily by using such

state-based speci�cations because they naturally follow from

informal, intuitive requirements

Two kinds of state-based requirements:

1. Event conditions;

2. Invariants.
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State-based requirements: event conditions

Let E := {e1, . . . , en} be a set of events. An event condition is an

expression of the form:

E ⇒ Pred

meaning that the events in E can only be executed if Pred is

satis�ed.

L

start

e1;Pred

e...;Pred

en;Pred

requirement R:

location:

initial;

marked;

edge e1 ,...,en when Pred;

end

More compactly: requirement R: {e1,...,en} needs Pred;
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State-based requirements: event conditions

Let x be a discrete variable with

domain D(x) := {0, . . . , 10} and
initial value I (x) := 5

Consider the following extended

�nite automaton

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Event condition requirements:

Increment is possible only if x ≤ 8

{inc} ⇒ x ≤ 8

L

start

inc; x ≤ 8

Decrement is possible only if x ≥ 2

{dec} ⇒ x ≥ 2

Lstart dec; x ≥ 2
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State-based requirements: event conditions

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

controllable inc , dec;

plant G:

disc int [0..10] x = 5;

location: initial; marked;

edge inc when x < 10 do x := x+1;

edge dec when x > 0 do x := x-1;

end

Requirement R1: {inc} ⇒ x ≤ 8

Lstart inc; x ≤ 8
requirement R1:

location: initial; marked;

edge inc when G.x <= 8;

end

Requirement R2: {dec} ⇒ x ≥ 2

Lstart dec; x ≥ 2
requirement R2:

location: initial; marked;

edge dec when G.x >= 2;

end
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State-based requirements: event conditions

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

controllable inc , dec;

plant G:

disc int [0..10] x = 5;

location: initial; marked;

edge inc when x < 10 do x := x+1;

edge dec when x > 0 do x := x-1;

end

Requirement R1: {inc} ⇒ x ≤ 8

Lstart inc; x ≤ 8 requirement R1: inc needs G.x <= 8;

Requirement R2: {dec} ⇒ x ≥ 2

Lstart dec; x ≥ 2 requirement R2: dec needs G.x >= 2;
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State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x must always be between 2 and 8.

L

start

dec; x ≥ 2 ∧ x ≤ 8inc; x ≥ 2 ∧ x ≤ 8

Can we use the same idea discussed before and add self-loop

transitions for all edges enforcing Pred?
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State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x must always be between 2 and 8.

L

start

dec; x ≥ 2 ∧ x ≤ 8inc; x ≥ 2 ∧ x ≤ 8

No! As well as holding before taking any transition, Pred must also hold

after taking any transition. In this case,

• (L, 5)
dec−−→ (L, 4)

dec−−→ (L, 3)
dec−−→ (L, 2)

dec−−→ (L, 1)

• (L, 5)
inc−−→ (L, 6)

inc−−→ (L, 7)
inc−−→ (L, 8)

inc−−→ (L, 9) 81



State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x must always be between 2 and 8.

• For each plant automaton writing a variable in Pred we create

a copy of that automaton.

• Each transition of that automaton L
e;g ;u−−−→ L′ is tightened to

L
e;g∧Pred [u];u−−−−−−−−→ L′

This way, if a transition is taken its guard already guarantees that

Pred will hold after taking the transition.
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State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x ≥ 2 ∧ x ≤ 8

L

start

dec ;

x > 0 ∧ (x ≥ 2 ∧ x ≤ 8) [ x := x − 1 ];

x := x − 1

inc;

x < 10 ∧ (x ≥ 2 ∧ x ≤ 8) [ x := x + 1 ];

x := x + 1

• (x ≥ 2 ∧ x ≤ 8) [ x := x − 1 ] is equivalent to (x ≥ 3 ∧ x ≤ 9)

• (x ≥ 2 ∧ x ≤ 8) [ x := x + 1 ] is equivalent to (x ≥ 1 ∧ x ≤ 7)

L

start

dec;

x > 0 ∧ x ≥ 3 ∧ x ≤ 9 ;

x := x − 1

inc;

x < 10 ∧ x ≥ 1 ∧ x ≤ 7 ;

x := x + 1
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State-based requirements: invariants

Plant:

L

start

dec;

x > 0;

x := x − 1

inc;

x < 10;

x := x + 1

Invariant requirement: x ≥ 2 ∧ x ≤ 8

L

start

dec;

x ≥ 3 ∧ x ≤ 9 ;

x := x − 1

inc;

x ≥ 1 ∧ x ≤ 7 ;

x := x + 1

requirement invariant R: G.x >= 2 and G.x <= 8;

• (L, 5)
dec−−→ (L, 4)

dec−−→ (L, 3)
dec−−→ (L, 2) (dec is disabled now)

• (L, 5)
inc−−→ (L, 6)

inc−−→ (L, 7)
inc−−→ (L, 8) (inc is disabled now)
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Locations vs Variables

(ACTIVE)

Machine i starts 
processing a workpiece

Machine i finishes 
processing a workpiece

(DOWN)

Machine i 
breaks down

Machine i
Is repaired

(the workpiece
is discarded)

(IDLE) Machine i

IDLE istart ACTIVE i

DOWN i

start i

�nishi

break i
repair i

(FULL)(EMPTY)

Machine 1 finishes 
processing a workpiece

Machine 2 starts 
processing a workpiece

EMPTYstart FULL

�nish1

start2

Can we encode locations as variables?
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Locations encoded as Variables: Machines

Machine i

IDLE istart ACTIVE i

DOWN i

start i

�nishi

break i
repair i

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

• Variables idle i , active i , downi ;

• Domains D(idle i ) = D(active i ) = D(downi ) = {true, false};

• Initialization I (idle i ) = true, I (active i ) = I (downi ) = false;

Yes! Just add one Boolean variable li for each location L such that:

1. li is set true upon entering L;

2. li is set false upon leaving L. 86



Locations encoded as Variables: Bu�er

EMPTYstart FULL

�nish1

start2
EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

• Variables empty , full ;

• Domains D(empty) = D(full) = {true, false};

• Initialization I (empty) = true, I (full) = false;

• Now we can use event and invariant conditions by using location

names (internally they will be replaced by the corresponding

Boolean variables).

• For example, E ⇒ A.L says that the events in E can be executed

only if the automaton A is in location L.
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Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R1: Machine 1 can start processing a workpiece only if the Bu�er

is empty

Event condition

{start1} ⇒ B.empty

CIF code

requirement R1: start1 needs B.EMPTY;
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Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R2: Machine 2 can start processing a workpiece only if the Bu�er

is full

Event condition

{start2} ⇒ B.full

CIF code

requirement R2: start2 needs B.FULL;
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Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R3: Machine 1 cannot start processing a workpiece if Machine 2 is

down.

Event condition

{start1} ⇒ ¬M2.down

CIF code

requirement R3: start1 needs not M2.DOWN;
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Manufacturing process requirements

Machine i

IDLE istart ACTIVE i

DOWN i

start i ;

idle i := false,

active i := true,

downi := false

�nishi ;

idle i := true,

active i := false,

downi := false

break i ;

idle i := false,

active i := false,

downi := true

repair i ;

idle i := true,

active i := false,

downi := false

EMPTYstart FULL

�nish1;

empty := false,

full := true

start2;

empty := true,

full := false

R4: If both Machines are down, then Machine 2 is repaired before

Machine 1.

Event condition

{repair
1
} ⇒ ¬M2.down

CIF code

requirement R4: repair1 needs not M2.DOWN;
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