Front End: Syntax Analysis

The Role of the Parser

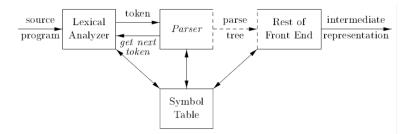


Figure 4.1: Position of parser in compiler model

The Role of the Parser

- Construct a parse tree
- Report and recover from errors
- Collect information into symbol tables

Types of Parsers

- There are three general types of parsers for grammars:
 - Universal
 - ► Top-down
 - Bottom-up
- In compilers, the methods commonly used are either top-down or bottom-up.
- One input symbol at a time, from left to right.
- Efficiency is achieved by restricting to particular grammars: LL (manually) or LR (automated tools).

Grammars for expressions

• Universal methods are suitable for general grammars, e.g.

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

(no associativity, no precedence captured)

• Bottom-up methods: LR grammars, e.g.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

(associativity and precedence captured)

• Top-down methods: LL grammars, e.g.

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

Context-free Grammars

A *Context-free grammar* (or *grammar*) systematically describes the syntax of programming language constructs.

expression	\rightarrow	expression + term
expression	\rightarrow	expression - term
expression	\rightarrow	term
term	\rightarrow	term * factor
term	\rightarrow	term / factor
term	\rightarrow	factor
factor	\rightarrow	(<i>expression</i>)
factor	\rightarrow	id

Figure 4.2: Grammar for simple arithmetic expressions

Terminal symbols: **id** + - * / () Non-terminal: *expression, term, factor.* Start symbol: *expression*

CFG: Formal Definition

G=(T,N,P,S)

- T is a finite set of terminals
- N is a finite set of non-terminals
- P is a finite subset of production rules of the form

•
$$A \rightarrow \alpha_1 \alpha_2 \dots \alpha_k$$
 with $A \in N$, $\alpha_i \in T \cup N$

• S is the start symbol

► *S* ∈ *N*

Derivations

Using notational conventions the grammar in Fig.4.2 becomes

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

A derivation of a string of terminals in this grammar is a proof that the string is an expression.

Leftmost derivation: always choose the leftmost nonterminal

$$E \Rightarrow^{lm} E + T \Rightarrow^{lm} id + T \Rightarrow^{lm} id + F \Rightarrow^{lm} id + id$$

Rightmost derivation: always choose the righttmost nonterminal

 $E \Rightarrow^{rm} E + T \Rightarrow^{rm} E + F \Rightarrow^{rm} E + \mathsf{id} \Rightarrow^{rm} T + \mathsf{id} \Rightarrow^{rm} F + \mathsf{id} \Rightarrow^{rm} \mathsf{id} + \mathsf{id}$

Parse Trees

A parse tree is a graphical representation of a derivation: an interior node represents the head of a production; its children are labelled by the symbols in the body.

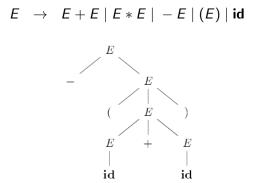


Figure 4.3: Parse tree for $-(\mathbf{id} + \mathbf{id})$

Example

 $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathbf{id}+E) \Rightarrow -(\mathbf{id}+\mathbf{id})$ (4.8)



Figure 4.4: Sequence of parse trees for derivation (4.8)

Ambiguity

A grammar that produces more than one parse tree for some sentence is called ambiguous.



Figure 4.5: Two parse trees for id+id*id

Problems: (1) Ambiguity can make parsing difficult; (2) Underlying structure is ill-defined.

Language Generated by a Grammar

A grammar G generates a language L if we can show that:

- Every string generated by G is in L, and
- Every string in *L* can be generated by *G*.

Example: Show that the grammar

$$S
ightarrow (S)S \mid arepsilon$$

generates all strings of balanced parentheses and only such strings.

Grammars vs Regular Expressions

Every regular language is a context-free language but non vice-versa.

Example: The language generated by the regular expression

 $(a|b)^*abb$

is equivalent to the grammar

From the NFA for the regular expression,

- For each state i of the NFA, create a nonterminal A_i
- Add production $A_i \rightarrow aA_j$ for each transition from *i* to *j* on *a*
- If *i* is accepting then add $A_i \rightarrow \varepsilon$
- If *i* is the starting state, make *A_i* the start symbol of the grammar.

Grammar with no Corresponding Regular Expression

The language

$$L = \{a^n b^n \mid n \ge 1\}$$

can be described by a grammar but not by a regular expression. Why?

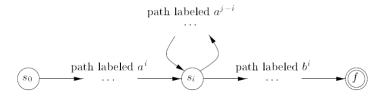


Figure 4.6: DFA D accepting both $a^i b^i$ and $a^j b^i$.

Non-Context-Free Grammars

Grammars alone can be not sufficient to specify some programming language construct.

This happens for constructs that are *context-dependent*. The language

 $L_1 = \{wcw \mid w \text{ in } (\mathbf{a}|\mathbf{b})^*\}$

is non-context-free. L_1 abstracts the requirements that identifiers are defined before their use (as in *C* and Java).

$$L_2 = \{a^n b^m c^n d^m \mid n \ge 0, m \ge 0\}$$

is non-context-free. L_2 abstracts the requirements that the number of formal parameters in a function declaration is the same as the number of actual parameters in a use of the function.

Common Grammars Problems (CGP)

A grammar may have some 'bad' styles or ambiguity. Some CGP are:

- Ambiguity
- Left-recursion
- Left factors

We need to transform a grammar G_1 into a grammar G_2 with no CGP and such that G_1 and G_2 are equivalent, i.e. they define the same language.

Eliminating Ambiguity

Consider the grammar:

 $\begin{array}{rrr} \textit{stmt} & \rightarrow & \textit{if expr then stmt} \\ & | & \textit{if expr then stmt else stmt} \\ & | & \textit{other} \end{array}$

The sentence

if E1 then if E2 then S1 else S2

is ambiguous (cf. Figure 4.9).

stmt	\rightarrow	$matched_stmt$
		$open_stmt$
$matched_stmt$	\rightarrow	$ {\bf if} \ expr \ {\bf then} \ \ matched_stmt \ {\bf else} \ \ matched_stmt \\$
		other
$open_stmt$	\rightarrow	if expr then stmt
		${\bf if} \ expr \ {\bf then} \ \ matched_stmt \ {\bf else} \ \ open_stmt$

Figure 4.10: Unambiguous grammar for if-then-else statements

Example

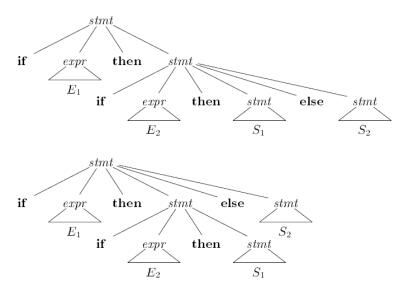


Figure 4.9: Two parse trees for an ambiguous sentence

CGP: Left Recursion

Definition

A grammar G is recursive if it contains a nonterminal X such that $X \Rightarrow^+ \alpha X \beta$. G is left-recursive if $X \Rightarrow^+ X \beta$. G is immediately left-recursive if $X \Rightarrow X \beta$.

Top-down parsing cannot handle left-recursive grammars.

We need to eliminate left recursion.

Eliminating Left Recursion

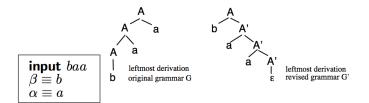
Consider a grammar G with a production

 $A \to A\alpha \mid \beta$,

where β does not start with A. Transform G in G' by replacing it by

 $\begin{array}{rcl} A & \to & \beta A' \\ A' & \to & \alpha A' \mid \varepsilon. \end{array}$

G and G' are equivalent: L(G) = L(G').



The Grammar Expression Example

The non-left-recursive expression grammar

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

is obtained by eliminating immediate left recursion from the expression grammar

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

by applying the above transformation.

Algorithm for Eliminating Left Recursion

Input: A grammar *G* with no cycles and no ε -productions. **Output**: An equivalent grammar with no left recursion.

 $\begin{array}{ll} 1) & \operatorname{arrange the nonterminals in some order } A_1, A_2, \ldots, A_n. \\ 2) & \operatorname{for} (\operatorname{each} i \operatorname{from} 1 \operatorname{to} n) \\ 3) & & \operatorname{for} (\operatorname{each} j \operatorname{from} 1 \operatorname{to} i - 1) \\ 4) & & \operatorname{replace each production of the form } A_i \to A_j \gamma \text{ by the} \\ & & & & \\ productions & A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, \text{ where} \\ & & & & \\ A_j \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k \text{ are all current } A_j \text{-productions} \\ 5) & & \\ 6) & & & \\ 6) & & & \\ 7) & \\ \end{array}$

Figure 4.11: Algorithm to eliminate left recursion from a grammar

Applying the Algorithm

for i = 1 to n do for *j* = 1 to *i* − 1 do $\triangleright \text{ replace } A_i \to A_j \gamma$ with $A_i \to \delta_1 \gamma \mid \cdots \mid \delta_k \gamma$ where $A_i \rightarrow \delta_1 \mid \cdots \mid \delta_k$ are all the current A_i -productions. • Eliminate immediate left-recursion for A_i \triangleright New nonterminals generated above are numbered A_{i+n} Original Grammar: • (1) $S \rightarrow Aa \mid b$ • (2) $A \rightarrow Ac \mid Sd \mid e$ • Ordering of nonterminals: $S \equiv A_1$ and $A \equiv A_2$. i = 1 do nothing as there is no immediate left-recursion for S i = 2• replace $A \to Sd$ by $A \to Aad \mid bd$ • hence (2) becomes $A \rightarrow Ac \mid Aad \mid bd \mid e$ after removing immediate left-recursion: $\triangleright A \rightarrow bdA' \mid eA'$ $\triangleright A' \rightarrow cA' \mid adA' \mid \epsilon$ Resulting grammar: \triangleright $S \rightarrow Aa \mid b$ $\triangleright A \rightarrow bdA' \mid eA'$ $\triangleright A' \rightarrow cA' \mid adA' \mid \epsilon$

CGP: Left Factor

The *left factor* problem occurs when for some nonterminal *A* there are *A*- productions whose bodies have a common prefix. **Example**

 $stmt \rightarrow if expr$ then stmt else stmt| if expr then stmt

On input if, we have no way to decide which production to choose.

Idea: Expand with the full common factor!

Eliminating Left Factors

The algorithm below produces on input G an equivalent left-factored G'.

Input: context free grammar G

Output: equivalent left-factored context-free grammar G'

for each nonterminal A do

- find the longest non- ϵ prefix α that is common to right-hand sides of two or more productions;

replace

 $\triangleright \ A \to \alpha \beta_1 \mid \cdots \mid \alpha \beta_n \mid \gamma_1 \mid \cdots \mid \gamma_m$

with

 $\triangleright A \to \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$ $\triangleright A' \to \beta_1 \mid \dots \mid \beta_n$

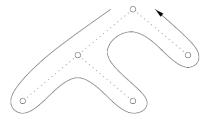
 repeat the above step until the grammar has no two productions with a common prefix;

Top-down Parsing

Constructing a parse tree for the input string starting from the root in a depth-first manner (leftmost derivation).

```
procedure visit(node N) {
    for ( each child C of N, from left to right ) {
        visit(C);
    }
    evaluate semantic rules at node N;
}
```

Figure 2.11: A depth-first traversal of a tree



Example

Given the grammar

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' | \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \varepsilon$$

$$F \rightarrow (E) | id$$

the sequence of trees given in the next slide corresponds to a leftmost derivation of the input string id + id * id.

Example (ctdn.)

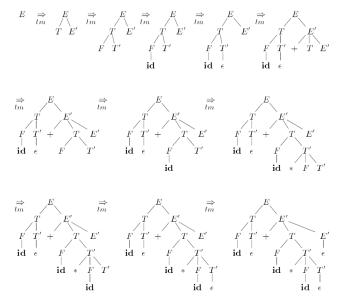


Figure 4.12: Top-down parse for id + id * id

Recursive-descent Parsing

A recursive-descent parsing program is a set of procedures, one for each nonterminal, of the form:

```
 \begin{array}{c} \text{void } A() \ \{ \\ 1) & \text{Choose an } A\text{-production, } A \to X_1 X_2 \cdots X_k; \\ 2) & \text{for } (i = 1 \text{ to } k) \ \{ \\ 3) & \text{if } (X_i \text{ is a nonterminal }) \\ 4) & \text{call procedure } X_i(); \\ 5) & \text{else if } (X_i \text{ equals the current input symbol } a) \\ 6) & \text{advance the input to the next symbol;} \\ 7) & \text{else } /^* \text{ an error has occurred } */; \\ & \\ & \\ \end{array} \right\}
```

Figure 4.13: A typical procedure for a nonterminal in a top-down parser

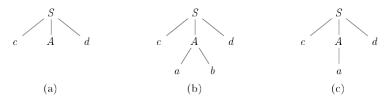
Backtracking

Top-down parsing may require repeated scans over the input: if an *A*-production leads to a failure, we must *backtrack* and try with another one.

Example

 $egin{array}{ccc} S &
ightarrow & cAd \ A &
ightarrow & ab \mid a \end{array}$

On input w = cad we apply recursive-descent parsing. Since the choice of the first production leads to failure, we backtrack and try the second.



Predictive Parsing

The previous approach may be very inefficient due to backtracking. A predictive parser is a recursive-descent parser needing no backtracking.

A predictive parser can choose one of the available productions for a nonterminal A by looking at the next input symbol(s).

The class of **LL(1)** grammars [Lewis&Stearns 1968] can be parsed by a predictive parsers in O(n) time.

We first need to introduce two important functions:

FIRST and FOLLOW.

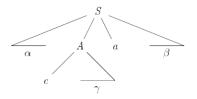


Figure 4.15: Terminal c is in FIRST(A) and a is in FOLLOW(A)

FIRST

Definition

Let G be a grammar and let α be a string on $T \cup N$.

 $FIRST(\alpha)$ is the set of terminal symbols that may occur at the beginning of a string derived from α :

```
a \in T, a \in \text{First}(\alpha) if and only if \alpha \Rightarrow^* a\beta for some \beta \in (T \cup N)^*.
```

If $\alpha \Rightarrow^* \epsilon$, then $\epsilon \in \text{FIRST}(\alpha)$.

FOLLOW

Definition

Let G be a grammar and let A be a non-terminal of G.

FOLLOW(A) is the set of terminal symbols that may occur on the right hand side immediately after A in a sentential form:

 $a \in T$, $a \in FOLLOW(A)$ if and only if $S \Rightarrow^* \alpha Aa\beta$ for some $\alpha, \beta \in (T \cup N)^*$.

If $S \Rightarrow^* \alpha A$, then $\{ \in Follow(A) \}$.

Computing FIRST

To compute FIRST((X) for any symbol X, apply the rules:

1. If X is a terminal, then FIRST(X) = {X}. 2. if X $\rightarrow \epsilon$ is a production then place ϵ in FIRST(X) 3. If X is a nonterminal and X $\rightarrow Y_1 Y_2 \dots Y_k$ is a production for some $k \ge 1$, then place a in FIRST(X) if for some i, a is in FIRST(Y_i), and ϵ is in all of FIRST(Y_i), ..., FIRST(Y_{i-1}); that is, Y₁...Y_{i-1} $\Rightarrow^* \epsilon$. If ϵ is in FIRST(Y_j) for all j = 1,2, ..., k, then add ϵ to FIRST(X).

Computing FIRST (ctd.)

To compute $FIRST(\alpha)$ for any string of symbol α , apply the rules:

Let
$$\alpha = X_1 X_2 \cdots X_n$$
. Perform the following steps in sequence:
• FIRST(α) \Leftarrow FIRST(X_1) – { ϵ };
• if $\epsilon \in$ FIRST(X_1), then
• put FIRST(X_2) – { ϵ } into FIRST(α);
• if $\epsilon \in$ FIRST(X_1) \cap FIRST(X_2), then
• put FIRST(X_3) – { ϵ } into FIRST(α);
• ...
• if $\epsilon \in \cap_{i=1}^{n-1}$ FIRST(X_i), then
• put FIRST(X_n) – { ϵ } into FIRST(α);
• if $\epsilon \in \cap_{i=1}^{n}$ FIRST(X_i), then
• put { ϵ } into FIRST(α).

Computing FIRST: Example

Example for computing $FIRST(\alpha)$

$\begin{array}{l} \operatorname{Grammar} \\ E \to E'T \end{array}$	
$E' \to -TE' \mid \epsilon$	
$T \to FT'$	
$T' \to /FT' \mid \epsilon$	
$F \to int \mid (E)$	

$$\begin{split} & \textbf{FIRST}(E'T) = \{-, int, (\} \\ & \textbf{FIRST}(-TE') = \{-\} \\ & \textbf{FIRST}(\epsilon) = \{\epsilon\} \\ & \textbf{FIRST}(FT') = \{int, (\} \\ & \textbf{FIRST}(/FT') = \{/\} \\ & \textbf{FIRST}(\epsilon) = \{\epsilon\} \\ & \textbf{FIRST}(int) = \{int\} \\ & \textbf{FIRST}((E)) = \{(\} \end{split}$$

• FIRST
$$(T'E') =$$

 \triangleright (FIRST $(T') - \{\epsilon\}) \cup$
 \triangleright (FIRST $(E') - \{\epsilon\}) \cup$
 \triangleright { ϵ }

Computing FOLLOW

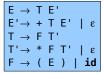
To compute FOLLOW(X) for all nonterminals X, apply the following rules until nothing can be added to any FOLLOW set.

1. Place \$ in FOLLOW(S), (S start symbol, \$ the input right endmarker).

2. If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B\beta$ where FIRST(β) contains ε then everything in FOLLOW(A) is in FOLLOW(B).

3. If there is a production $A \rightarrow \alpha B\beta$ then everything in in FIRST(β) except ϵ is in FOLLOW(B).

FIRST and FOLLOW Example



1. If X is a terminal, then $FIRST(X) = \{X\}$.

2. If X is a nonterminal and $X \Rightarrow Y_1 Y_2 \dots Y_k$ is a production for

some k > 1, then place a in FIRST(X) if for some i, a is in FIRST(Y_i), and ϵ is in all of FIRST(Y_i), ..., FIRST(Y_{i+1}); that is, Y₁...,Y_{k+1} $\Rightarrow \epsilon$. If ϵ is in FIRST(Y_j) for all j = 1,2, ..., k, then add ϵ to

FIRST(X).

Computing FOLLOW(A)

- Place \$ into FOLLOW(S)
- Repeat until nothing changes:
 - if A $\rightarrow \alpha B\beta$ then add FIRST(β)\{ ϵ } to FOLLOW(B)
 - if A $\rightarrow \alpha B$ then add FOLLOW(A) to FOLLOW(B)
 - if A $\rightarrow \alpha B\beta$ and ϵ is in FIRST(β) then add FOLLOW(A) to FOLLOW(B)
- FIRST(F) = FIRST(T) = FIRST(E) = {(, id }
- FIRST(E') = {+, ε}
- FIRST(T') = {*, ε}
- FOLLOW(E) = FOLLOW(E') = {), \$}
- FOLLOW(T) = FOLLOW(T') = {+,),\$}
- FOLLOW(F) = {+, *,), \$}

Another FIRST and FOLLOW Example

Consider the grammar:

$$E \rightarrow TE'$$

$$E' \rightarrow \epsilon \mid +E \mid -E$$

$$T \rightarrow AT'$$

$$T' \rightarrow \epsilon \mid *T$$

$$A \rightarrow \mathbf{a} \mid \mathbf{b} \mid (E)$$

Computing FIRST(X) and FOLLOW(X) for all X in the grammar gives the following result:

		Follow()
Ε	a, b, (\$,)
E'	a, b, ($\epsilon, +, -$ a, b, ($\epsilon, *$	\$,)
Т	a, b, (,),+,-
T'	$\epsilon, *$,),+,-
Α	a, b, (,),+,-,*

How Predictive Parsers Work

Consider a predictive parser implemented as a *non-recursive* procedure that explicitly operates on a stack.

INIT: parser pushes the start symbol on the stack and call the scanner to get the first token.

LOOP:

- if TOP is $X \in N$, then
 - Choose a production $X \rightarrow \beta$ (looking at the current token)
 - Pop X and push β (from right to left).
 - Goto LOOP.
- If TOP is $a \in T$ and a matches the current token
 - Pop a and ask scanner for the next token
 - ► Goto LOOP.
- If STACK is empty and there are no more tokens, ACCEPT!
- If none of the above hold, FAIL!

Why computing FIRST?

Suppose that during parsing

• TOP is a non-terminal X and

 $X \to \alpha_1, \ldots, X \to \alpha_k$

are all productions in the string grammar.

- The current lookahead token is a
- $a \in \text{FIRST}(\alpha_i)$ for more than one *i*.

Then the parser cannot choose deterministically and may need to backtrack.

Why computing FOLLOW?

Suppose that during parsing

• TOP is a non-terminal X and

$$X \to \alpha_1, \ldots, X \to \alpha_k$$

are all productions in the string grammar.

- The current lookahead token is a.
- $a \notin \text{FIRST}(\alpha_i)$ for all *i*'s.

Then the parser can still select a production to expand X: If $\alpha_i \Rightarrow^* \varepsilon$, for some *i*, and $a \in \text{Follow}(X)$, the production $X \to \alpha_i$ is a suitable one. Note that $\alpha_i \Rightarrow^* \varepsilon$ iff $\varepsilon \in \text{First}(\alpha_i)$.

LL(1) Grammars

Left to right parsers producing a Leftmost derivation *looking* ahead by at most 1 input symbol.

Definition

A grammar G is **LL(1)** if and only if whenever $A \rightarrow \alpha \mid \beta$ are two distinct productions in G, then

- FIRST(α) and FIRST(β) are disjoint sets
- If ε is in ${\rm FIRST}(\beta)$ then ${\rm FIRST}(\alpha)$ and ${\rm FOLLOW}({\rm A})$ are disjoint sets
- If ε is in FIRST(α) then FIRST(β) and FOLLOW(A) are disjoint sets.

Most programming language constructs are **LL(1)** but careful grammar writing is required.

If a grammar is LL(1) then it does not have CGP, but the vice-versa does not hold.

(Non) Example

Is the following grammar LL(1)?

$$egin{array}{rcl} G &
ightarrow & aAb \mid aBbb \ A &
ightarrow & aAb \mid 0 \ B &
ightarrow & aBbb \mid 1 \end{array}$$

No: it is not factored.

$$egin{array}{rcl} G &
ightarrow & aG' \ G' &
ightarrow & Ab \mid Bbb \ A &
ightarrow & aAb \mid 0 \ B &
ightarrow & aBbb \mid 1 \end{array}$$

This factored version is still not LL(1). Why?

LL (Predictive) Parsing Table

A Predictive Parsing Table is a bidimensional matrix M where

- Rows represent non-terminals
- Columns represent terminals (including \$), and
- *M*[*A*, *a*] contains the productions chosen for expanding *A* with *a* as the current input.

Predictive Parsing Table

To construct a parsing table *M* for a grammar *G*, for each production $A \rightarrow \alpha$ in G:

- If a is in FIRST(a), add $A \rightarrow \alpha$ in M[A, a].
- If ε is in FIRST(α), add $A \rightarrow \alpha$ in M[A, b] for each b in FOLLOW(A).
- If ε is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ in M[A, \$].

An empty entry in M corresponds to an error.

Definition

A grammar is **LL(1)** if and only if every entry of the parsing table contains *at most* una production.

Example I

For the expression grammar the algorithm produces the following table.

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \to T E'$		
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$
F	$F \rightarrow \mathbf{id}$			$F \rightarrow (E)$		

Figure 4.17: Parsing table M for Example 4.32

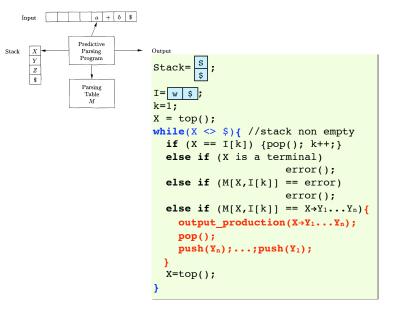
Example II

$$\begin{array}{cccc} S &
ightarrow \ iEtSS' \mid a \ S' &
ightarrow \ eS \mid arepsilon \ E &
ightarrow \ b \end{array}$$

Non -			Input	SYMBOL		
TERMINAL	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow i E t S S'$		
CI			$S' \to \epsilon$			$S' \to \epsilon$
5			$\begin{array}{c} S' \to \epsilon \\ S' \to eS \end{array}$			
E		$E \rightarrow b$				

Figure 4.18: Parsing table M for Example 4.33

Table-driven Predictive Parser



Example

Matched	Stack	INPUT	ACTION
	E	$\mathbf{id} + \mathbf{id} * \mathbf{id}\$$	
	TE'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id}\$$	output $E \to TE'$
	FT'E'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id}\$$	output $T \to FT'$
	id $T'E'$ \$	$\mathbf{id} + \mathbf{id} * \mathbf{id}\$$	output $F \to \mathbf{id}$
\mathbf{id}	T'E'\$	$+ \operatorname{id} * \operatorname{id} \$$	$\mathrm{match}\ \mathbf{id}$
id	E'\$	$+ \mathbf{id} * \mathbf{id}\$$	output $T' \to \epsilon$
id	+ TE'\$	$+\operatorname{id}*\operatorname{id}\$$	output $E' \to + TE'$
id +	TE'\$	$\mathbf{id} * \mathbf{id}\$$	match +
id +	FT'E'\$	$\mathbf{id} * \mathbf{id}$	output $T \to FT'$
id +	id $T'E'$ \$	$\mathbf{id} * \mathbf{id}$	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	T'E'\$	* id\$	$\mathrm{match}\ \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	* FT'E'\$	* id\$	output $T' \to * FT'$
$\mathbf{id} + \mathbf{id} *$	FT'E'\$	\mathbf{id}	match *
$\mathbf{id} + \mathbf{id} *$	id $T'E'$ \$	\mathbf{id}	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id} * \mathbf{id}$	T'E'\$	\$	$\mathrm{match}\ \mathbf{id}$
$\mathbf{id} + \mathbf{id} * \mathbf{id}$	E'\$	\$	output $T' \to \epsilon$
$\mathbf{id} + \mathbf{id} \ast \mathbf{id}$	\$	\$	output $E' \to \epsilon$

Figure 4.21: Moves made by a predictive parser on input id + id * id

More Examples

					Follow()
S	\rightarrow	aAB	S	а	\$
Α	\rightarrow	C D	Α	c, d, ϵ	Ь
В	\rightarrow	Ь	В	a c,d,€ b	\$
С	\rightarrow	$c \mid \epsilon$	С	c, e d	Ь
D	\rightarrow	d	D	d	Ь

	a	Ь	с	d	\$
S	$S \rightarrow aAB$				
Α		$A \rightarrow C$	$A \rightarrow C$	$A \rightarrow D$	
В		$B \rightarrow b$			
С		$C \rightarrow \epsilon$	$C \rightarrow c$		
D				$D \to d$	

Output	Pila	Input	Output	Pila	Input
Start	<i>S</i> \$	adb\$	Start	<i>S</i> \$	abb\$
S ightarrow aAB	aAB\$	adb\$	S o aAB	aAB\$	abb\$
	AB\$	db\$		AB\$	<i>bb</i> \$
$A \rightarrow D$	DB\$	db\$	A ightarrow C	CB\$	<i>bb</i> \$
D ightarrow d	dB\$	db\$	$C ightarrow \epsilon$	В\$	<i>bb</i> \$
	В\$	Ь\$	B ightarrow b	Ь\$	<i>bb</i> \$
B ightarrow b	Ь\$	<i>b</i> \$		\$	Ь\$
	\$	\$	Errore!		
OK!					