
Front End: Syntax Analysis

The Role of the Parser

The Role of the Parser

Construct a parse tree

Report and recover from errors

Collect information into symbol tables

Types of Parsers

There are three general types of parsers for grammars:

I Universal
I Top-down
I Bottom-up

In compilers, the methods commonly used are either top-down
or bottom-up.

One input symbol at a time, from left to right.

Efficiency is achieved by restricting to particular grammars:
LL (manually) or LR (automated tools).

Grammars for expressions
Universal methods are suitable for general grammars, e.g.

E → E + E | E ∗ E | (E) | id
(no associativity, no precedence captured)

Bottom-up methods: LR grammars, e.g.

E → E + T | T
T → T ∗ F | F
F → (E) | id

(associativity and precedence captured)
Top-down methods: LL grammars, e.g.

E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → ∗FT ′ | ε
F → (E) | id

Context-free Grammars

A Context-free grammar (or grammar) systematically describes
the syntax of programming language constructs.

Terminal symbols: id + - * / () Non-terminal: expression, term,
factor. Start symbol: expression

CFG: Formal Definition

G = (T ,N,P,S)

T is a finite set of terminals

N is a finite set of non-terminals

P is a finite subset of production rules of the form
I A→ α1α2 . . . αk with A ∈ N, αi ∈ T ∪ N

S is the start symbol
I S ∈ N

Derivations

Using notational conventions the grammar in Fig.4.2 becomes

E → E + T | T
T → T ∗ F | F
F → (E) | id

A derivation of a string of terminals in this grammar is a proof that
the string is an expression.
Leftmost derivation: always choose the leftmost nonterminal

E ⇒lm E + T ⇒lm id + T ⇒lm id + F ⇒lm id + id

Rightmost derivation: always choose the righttmost nonterminal

E ⇒rm E+T ⇒rm E+F ⇒rm E+id⇒rm T+id⇒rm F+id⇒rm id+id

Parse Trees
A parse tree is a graphical representation of a derivation: an
interior node represents the head of a production; its children are
labelled by the symbols in the body.

E → E + E | E ∗ E | − E | (E) | id

Example

E ⇒ −E ⇒ −(E)⇒ −(E + E)⇒ −(id + E)⇒ −(id + id) (4.8)

Ambiguity

A grammar that produces more than one parse tree for some
sentence is called ambiguous.

Problems: (1) Ambiguity can make parsing difficult; (2) Underlying
structure is ill-defined.

Language Generated by a Grammar

A grammar G generates a language L if we can show that:

Every string generated by G is in L, and

Every string in L can be generated by G .

Example: Show that the grammar

S → (S)S | ε

generates all strings of balanced parentheses and only such strings.

Grammars vs Regular Expressions

Every regular language is a context-free language but non
vice-versa.
Example: The language generated by the regular expression

(a|b)∗abb

is equivalent to the grammar

A0 → aA0 | bA0 | aA1

A1 → bA2

A2 → bA3

A3 → ε

NFA-based Construction

From the NFA for the regular expression,

For each state i of the NFA, create a nonterminal Ai

Add production Ai → aAj for each transition from i to j on a

If i is accepting then add Ai → ε

If i is the starting state, make Ai the start symbol of the
grammar.

Grammar with no Corresponding Regular Expression

The language
L = {anbn | n ≥ 1}

can be described by a grammar but not by a regular expression.
Why?

Non-Context-Free Grammars

Grammars alone can be not sufficient to specify some
programming language construct.
This happens for constructs that are context-dependent.
The language

L1 = {wcw | w in (a|b)∗}
is non-context-free. L1 abstracts the requirements that

identifiers are defined before their use (as in C and Java).

L2 = {anbmcndm | n ≥ 0,m ≥ 0}
is non-context-free. L2 abstracts the requirements that the

number of formal parameters in a function declaration is the same
as the number of actual parameters in a use of the function.

Common Grammars Problems (CGP)

A grammar may have some ‘bad’ styles or ambiguity. Some CGP
are:

Ambiguity

Left-recursion

Left factors

We need to transform a grammar G1 into a grammar G2 with no
CGP and such that G1 and G2 are equivalent, i.e. they define the
same language.

Eliminating Ambiguity
Consider the grammar:

stmt → if expr then stmt

| if expr then stmt else stmt

| other

The sentence

if E1 then if E2 then S1 else S2

is ambiguous (cf. Figure 4.9).

Example

CGP: Left Recursion

Definition

A grammar G is recursive if it contains a nonterminal X such that
X ⇒+ αXβ.
G is left-recursive if X ⇒+ Xβ.
G is immediately left-recursive if X ⇒ Xβ.

Top-down parsing cannot handle left-recursive grammars.

We need to eliminate left recursion.

Eliminating Left Recursion
Consider a grammar G with a production

A→ Aα | β,
where β does not start with A.
Transform G in G ′ by replacing it by

A → βA′

A′ → αA′ | ε.
G and G ′ are equivalent: L(G) = L(G ′).

The Grammar Expression Example
The non-left-recursive expression grammar

E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → ∗FT ′ | ε
F → (E) | id

is obtained by eliminating immediate left recursion from the
expression grammar

E → E + T | T
T → T ∗ F | F
F → (E) | id

by applying the above transformation.

Algorithm for Eliminating Left Recursion

Input: A grammar G with no cycles and no ε-productions.
Output: An equivalent grammar with no left recursion..

Applying the Algorithm

Example

Original Grammar:
• (1) S → Aa | b
• (2) A → Ac | Sd | e

Ordering of nonterminals: S ≡ A1 and A ≡ A2.
i = 1

• do nothing as there is no immediate left-recursion for S

i = 2
• replace A → Sd by A → Aad | bd
• hence (2) becomes A → Ac | Aad | bd | e
• after removing immediate left-recursion:

! A → bdA′ | eA′

! A′ → cA′ | adA′ | ε

Resulting grammar:
! S → Aa | b

! A → bdA′ | eA′

! A′ → cA′ | adA′ | ε

Compiler notes #3, 20070503, Tsan-sheng Hsu 25

Algorithm 4.19

Algorithm 4.19 systematically eliminates left recursion and
works only if the input grammar has no cycles or ε-productions.

! Cycle: A
+

=⇒ A
! ε-production: A → ε
! Can remove cycles and all but one ε-production using other algorithms.

Input: grammar G without cycles and ε-productions.
Output: An equivalent grammar without left recursion.
Number the nonterminals in some order A1, A2, . . . , An

for i = 1 to n do
• for j = 1 to i − 1 do

! replace Ai → Ajγ
with Ai → δ1γ | · · · | δkγ
where Aj → δ1 | · · · | δk are all the current Aj-productions.

• Eliminate immediate left-recursion for Ai

! New nonterminals generated above are numbered Ai+n

Compiler notes #3, 20070503, Tsan-sheng Hsu 22

CGP: Left Factor

The left factor problem occurs when for some nonterminal A there
are A- productions whose bodies have a common prefix.
Example

stmt → if expr then stmt else stmt

| if expr then stmt

On input if, we have no way to decide which production to choose.

Idea: Expand with the full common factor!

Eliminating Left Factors
The algorithm below produces on input G an equivalent
left-factored G ′.

Top-down Parsing
Constructing a parse tree for the input string starting from the
root in a depth-first manner (leftmost derivation).

Example

Given the grammar

E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → ∗FT ′ | ε
F → (E) | id

the sequence of trees given in the next slide corresponds to a
leftmost derivation of the input string id + id ∗ id.

Example (ctdn.)

Recursive-descent Parsing

A recursive-descent parsing program is a set of procedures, one for
each nonterminal, of the form:

Backtracking
Top-down parsing may require repeated scans over the input: if an
A-production leads to a failure, we must backtrack and try with
another one.
Example

S → cAd

A → ab | a

On input w = cad we apply recursive-descent parsing. Since the
choice of the first production leads to failure, we backtrack and try
the second.

Predictive Parsing

The previous approach may be very inefficient due to backtracking.
A predictive parser is a recursive-descent parser needing no
backtracking.
A predictive parser can choose one of the available productions for
a nonterminal A by looking at the next input symbol(s).
The class of LL(1) grammars [Lewis&Stearns 1968] can be parsed
by a predictive parsers in O(n) time.
We first need to introduce two important functions:
FIRST and FOLLOW.

FIRST

Definition

Let G be a grammar and let α be a string on T ∪ N.

First(α) is the set of terminal symbols that may occur at the
beginning of a string derived from α:

a ∈ T , a ∈ First(α) if and only if α⇒∗ aβ for some
β ∈ (T ∪ N)∗.

If α⇒∗ ε, then ε ∈ First(α).

FOLLOW

Definition

Let G be a grammar and let A be a non-terminal of G .

Follow(A) is the set of terminal symbols that may occur on the
right hand side immediately after A in a sentential form:

a ∈ T , a ∈ Follow(A) if and only if S ⇒∗ αAaβ for some
α, β ∈ (T ∪ N)∗.

If S ⇒∗ αA, then $ ∈ Follow(A).

Computing FIRST
To compute First(()X) for any symbol X , apply the rules:

Computing FIRST (ctd.)
To compute First(α) for any string of symbol α, apply the rules:

How to compute FIRST(α)?

To build a parsing table, we need FIRST(α) for all α such that
X → α is a production in the grammar.

• Need to compute FIRST(X) for each nonterminal X first.

Let α = X1X2 · · ·Xn. Perform the following steps in sequence:
• FIRST(α) = FIRST(X1) − {ε};
• if ε ∈ FIRST(X1), then

! put FIRST(X2) − {ε} into FIRST(α);

• if ε ∈ FIRST(X1) ∩ FIRST(X2), then
! put FIRST(X3) − {ε} into FIRST(α);

• · · ·
• if ε ∈ ∩n−1

i=1 FIRST(Xi), then
! put FIRST(Xn) − {ε} into FIRST(α);

• if ε ∈ ∩n
i=1FIRST(Xi), then

! put {ε} into FIRST(α).

What to do when recursive calls are encountered?
What are the time and space complexities?

ſݭ״ݏԓ֊ͯͯߺݏۿޱॿ , -. /00�020-. ʯߺ ߺۿ˿ ӿͯۿϿߺɏ৺ -ÿ

⇐

Computing FIRST: Example

Example for computing FIRST(α)

Grammar
E → E′T

E′ → −TE′ | ε

T → FT ′

T ′ → /FT ′ | ε

F → int | (E)

FIRST(F) = {int, (}

FIRST(T ′) = {/, ε}

FIRST(T) = {int, (}

FIRST(E′) = {−, ε}

FIRST(E) = {−, int, (}

FIRST(E′T) = {−, int, (}

FIRST(−TE′) = {−}

FIRST(ε) = {ε}

FIRST(FT ′) = {int, (}

FIRST(/FT ′) = {/}

FIRST(ε) = {ε}

FIRST(int) = {int}

FIRST((E)) = {(}

• FIRST(T ′E′) =
" (FIRST(T ′) − {ε})∪
" (FIRST(E′) − {ε})∪
" {ε}

Compiler notes #3, 20070503, Tsan-sheng Hsu 39

Computing FOLLOW
To compute Follow(X) for all nonterminals X , apply the
following rules until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), (S start symbol, $ the input right endmarker).

2. If there is a production A → αB or a production A → αBβ where
FIRST(β) contains ε then everything in FOLLOW(A) is in FOLLOW(B).

3. If there is a production A → αBβ then everything in in FIRST(β)
except ε is in FOLLOW(B).

45

!"#$%&'()&!*++*,&-.'/012

• !"#$%&!'()(!"#$%&%'()(!"#$%&*'()(+&,(-.(/

• !"#$%&*0'()(+1,(ε/

• !"#$%&%0'()(+2,(ε/

• !34435&*'()(!34435&*0'()(+',(6/

• !34435&%'()(!34435&%0'()(+1,',6/

• !34435&!'()(+1,(2,(',(6/

!"→"#"!$

!$→"%"#"!$"&"ε
#"→"'"#$

#$→"("'"#$"&"ε
'"→")"!"*"&"!"

!"#$%&'()*+,--,./01

• !"#$%&'&()*+&,-..-/012

• 3%4%#*&5)*("&)+*6()7&$6#)7%89
– (:&;&→&α<β&*6%)&#==&,>31?0β2@AεB&*+&,-..-/0<2

– (:&;&→&α<&*6%)&#==&,-..-/0;2&*+&,-..-/0<2

– (:&;&→&α<β&#)=&ε&(8&()&,>31?0β2&*6%)&#==&,-..-/0;2&

*+&,-..-/0<2

1. If X is a terminal, then FIRST(X) = {X}.

2. If X is a nonterminal and X ⇒ YI Y2 ... Yk is a production for
some k > 1, then place a in FIRST(X) if for some i, a is in
FIRST(Yi), and ε is in all of FIRST(Yi), ... ,FIRST(Yi-1); that is,
YI ...Yi-1 ⇒ ε. If ε is in FIRST(Yj) for all j = 1,2, ... ,k, then add ε to
FIRST(X).

• !"#$%&!'()(!"#$%&%'()(!"#$%&*'()(+&,(-.(/

• !"#$%&*0'()(+1,(ε/

• !"#$%&%0'()(+2,(ε/
• !34435&*'()(!34435&*0'()(+',(6/

• !34435&%'()(!34435&%0'()(+1,',6/

• !34435&!'()(+1,(2,(',(6/

Another FIRST and FOLLOW Example

Consider the grammar:

E → TE ′

E ′ → ε | +E | −E
T → AT ′

T ′ → ε | ∗T
A → a | b | (E)

Computing First(X) and Follow(X) for all X in the grammar
gives the following result:

First() Follow()

E a,b, ($,)
E ′ ε,+,− $,)
T a,b, ($,),+,−
T ′ ε, ∗ $,),+,−
A a,b, ($,),+,−, ∗

How Predictive Parsers Work

Consider a predictive parser implemented as a non-recursive
procedure that explicitly operates on a stack.
INIT: parser pushes the start symbol on the stack and call the
scanner to get the first token.
LOOP:

if TOP is X ∈ N, then
I Choose a production X → β (looking at the current token)
I Pop X and push β (from right to left).
I Goto LOOP.

If TOP is a ∈ T and a matches the current token
I Pop a and ask scanner for the next token
I Goto LOOP.

If STACK is empty and there are no more tokens, ACCEPT!

If none of the above hold, FAIL!

Why computing FIRST?

Suppose that during parsing

TOP is a non-terminal X and

X → α1, . . . ,X → αk

are all productions in the string grammar.

The current lookahead token is a

a ∈ First(αi) for more than one i .

Then the parser cannot choose deterministically and may need to
backtrack.

Why computing FOLLOW?

Suppose that during parsing

TOP is a non-terminal X and

X → α1, . . . ,X → αk

are all productions in the string grammar.

The current lookahead token is a.

a 6∈ First(αi) for all i ’s.

Then the parser can still select a production to expand X :
If αi ⇒∗ ε, for some i , and a ∈ Follow(X), the production
X → αi is a suitable one.
Note that αi ⇒∗ ε iff ε ∈ First(αi).

LL(1) Grammars

Left to right parsers producing a Leftmost derivation looking
ahead by at most 1 input symbol.

Definition

A grammar G is LL(1) if and only if whenever A→ α | β are two
distinct productions in G , then

FIRST(α) and FIRST(β) are disjoint sets

If ε is in FIRST(β) then FIRST(α) and FOLLOW(A) are
disjoint sets

If ε is in FIRST(α) then FIRST(β) and FOLLOW(A) are
disjoint sets.

Most programming language constructs are LL(1) but careful
grammar writing is required.
If a grammar is LL(1) then it does not have CGP, but the
vice-versa does not hold.

(Non) Example

Is the following grammar LL(1)?

G → aAb | aBbb
A → aAb | 0

B → aBbb | 1

No: it is not factored.

G → aG ′

G ′ → Ab | Bbb
A → aAb | 0

B → aBbb | 1

This factored version is still not LL(1). Why?

LL (Predictive) Parsing Table

A Predictive Parsing Table is a bidimensional matrix M where

Rows represent non-terminals

Columns represent terminals (including $), and

M[A, a] contains the productions chosen for expanding A with
a as the current input.

Predictive Parsing Table

To construct a parsing table M for a grammar G , for each
production A→ α in G:

If a is in FIRST(a), add A→ α in M[A, a].

If ε is in FIRST(α), add A→ α in M[A, b] for each b in
FOLLOW(A).

If ε is in FIRST(α) and $ is in FOLLOW(A), add A→ α in
M[A, $].

An empty entry in M corresponds to an error.

Definition

A grammar is LL(1) if and only if every entry of the parsing table
contains at most una production.

Example I

For the expression grammar the algorithm produces the following
table.

Example II

S → iEtSS ′ | a
S ′ → eS | ε
E → b

Table-driven Predictive Parser

Stack= ;

I= ;
k=1;
X = top();
while(X <> $){ //stack non empty
 if (X == I[k]) {pop(); k++;}
 else if (X is a terminal)
 error();
 else if (M[X,I[k]] == error)
 error();
 else if (M[X,I[k]] == X→Y1...Yn){
 output_production(X→Y1...Yn);
 pop();
 push(Yn);...;push(Y1);
}

 X=top();
}

S
$

w $

Example

More Examples

S → aAB
A → C | D
B → b
C → c | ε
D → d

First() Follow()

S a $
A c , d , ε b
B b $
C c , ε b
D d b

a b c d $

S S → aAB
A A→ C A→ C A→ D
B B → b
C C → ε C → c
D D → d

Output Pila Input
Start S$ adb$
S → aAB aAB$ adb$

AB$ db$
A→ D DB$ db$
D → d dB$ db$

B$ b$
B → b b$ b$

$ $
OK!

Output Pila Input
Start S$ abb$
S → aAB aAB$ abb$

AB$ bb$
A→ C CB$ bb$
C → ε B$ bb$
B → b b$ bb$

$ b$
Errore!

	Basic Concepts
	Top-down

