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returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Memory Management

commonly placed in registers (when possible)

A.R.

 

Static

Heap

Free Memory

Stack

For some compiler, the intermediate code is a 

pseudo-code of a virtual machine.

 
• Interpreter of the virtual machine is invoked to execute the intermediate.

• No machine-dependent generation is needed. 

• Usually with great overhead. 

Examples:

! Pascal: P-code  for the virtual P machine. 

! JAVA: Bytecode for the virtual JAVA machine.



Machine-dependent issues

! Input and output formats:

- The formats of the intermediate   and the target program.

! Memory management:

- Alignment, indirect addressing, paging, segment, . . . 

- Those you learned from your assembly language class.

! Instruction cost:

- Special machine instructions to speed up execution. 

- Example:

• Increment by 1. 

• Multiplying or dividing by 2. 

• Bit-wise manipulation. 

• Operators applied on a continuous block of memory space.

- Pick a fastest instruction combination for a certain target machine.

Machine-dependent issues

Register allocation: in-between machine dependent and 
independent issues.

! C language allows the user to management a pool of registers.

! Some language leaves the task to compiler.

! Idea: save mostly used intermediate result in a register. However, 
finding an optimal solution for using a limited set of registers is 
NP-hard.

t=a+b 

load R0,a 

load R1,b 

add R0,R1 

store R0,T

load R0,a 

add! R0,b 

store R0,T



Machine-independent issues

Techniques 

- Analysis of dependence graphs.

- Analysis of basic blocks and flow graphs. 

- Semantics-preserving transformations. 

- Algebraic transformations.

!"#$!%&'#($)&*'&%+$
• ,-./$0&#123#1$456(&237*5$6#($3*+82(#&9

– :%5;$&#'46(#&6<$("&##$%11&#66$456(&237*56<$64+8=#$$%11&#6645'$+*1#6<$

64+8=#$456(&237*5$6#($%&3"

• /-./$03*+8=#>$456(&237*5$6#($3*+82(#&9$– ?#@$&#'46(#&6<$(@*$

%11&#66$456(&237*56<$A%&4*26$

%11&#6645'$+*1#6<$A%&4%B=#$=#5'("$456(&237*5$6#(

• .(%3C$B%6#1$:%3"45#

– )26"45'$*8#&%516$*5(*$%$6(%3C$

– D=+*6($146%88#%&#1<$("#5$&#A4A#1$@4("$E%A%$F4&(2%=$$:%3"45#$0EF:9



Machine-dependent issues

Choice of the target language: RISC 

LD R0, y        //R0 = y 

ADD R0, R1, R2  //R0 = R0=R1+R2

ST x, R0        // x = R0 

A Simple Target Machine Model 

Byte-addressable machine with n general-purpose registers, R0, R1, ... ,Rn - 1

OPERATIONS FORMAT

Load 
LD r,x  (r=x)

Store ST x,r  (x=r)

Computation OP  r1, r2,r3 (SUB r1, r2,r3 // r1=r2-r3)

   Unconditional jumps BR L

   Conditional jump Bcond r, L (BLTZ r, L)



Addressing modes

format addr examples

x Lval(x) name

a(r) Lval(a)+ Rval(r)  LD R1 a(R2)

const(r)  const+Rval(r) LD R1, 100(R2)

*r Rval(Rval(r)) LD R1, *(R2)

*const(r) Rval(const+Rval(r)) LD R1, *100(R2)

#const // immediate 

op
nil LD R1, #100

x = y-z
LD R1, y         

LD R2, z       

SUB R1,R1,R2     

ST x, R1         

b = a[i]

LD R1, i         

MUL R1,R1,8      

LD R2,a(R1)      //R2 ! Rval(Lval(a)+Rval(R1))

ST b, R2         



x = *i
LD R1, i         

LD R2,0(R1)      

ST b, R2         

a[j] = c

LD R1, c              

LD R2, j               

MUL R2, R2, 8         

ST a(R2), R1           

*p = y

LD R1, p         

LD R2, y        

ST 0(R1),R2     

if x < y goto L

LD R1, x                

LD R2, y                

SUB R1, R1, R2          

BLTZ R1, M              

M is the label that represents the first machine instruction generated from the three-address 

instruction that has label L



Register allocation: 

in-between machine dependent and 

independent issues.

• C language allows the user to management a pool of registers. 
• Some language leaves the task to compiler. 
• Idea: save mostly used intermediate result in a register. 

Finding an optimal solution for using a limited set of registers is 
NP-hard. 

t=a+b

load R0,a 

load!R1,b 

add R0,R1 

store R0,T

Basic blocks

Maximal sequences of consecutive three-address instructions s.t.:

• The flow of control can only enter the basic block through the first instruction in 

the block (no jumps into the middle of the block)

• Control will leave the block without halting or branching, except possibly at the  

last instruction in the block.

• Partition the intermediate code into basic blocks

• The basic blocks become the nodes of a flow graph, whose edges indicate 

which blocks can follow which other blocks.

 



Algorithm 8.5: 

INPUT: 

A sequence of three-address instructions.

OUTPUT: 

A list of the basic blocks for that sequence in which each instruction 

is assigned to exactly one basic block.

METHOD: 

a) determine the leaders:

1. The first three-address instruction in the intermediate   is 

a leader.

2. Any instruction that is the target of a conditional or 

unconditional jump ! is a leader.

3. Any instruction that immediately follows a conditional or 

unconditional jump is a leader.

b) for each leader, its basic block consists of itself and all 

instructions up to but not including the next leader or the end 

of the intermediate program. 

Partitioning three-address instructions into basic blocks. 

1) i = 1 

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2) 

12) i = 1

13) t5 = i - 1

14) t6 = 88 * t5

15) a [t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

Leaders ?



1) i = 1 

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2) 

12) i = 1

13) t5 = i - 1

14) t6 = 88 * t5

15) a [t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

1) i = 1 

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2) 

12) i = 1

13) t5 = i - 1

14) t6 = 88 * t5

15) a [t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

1) i = 1 

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2)

12) i = 1

13) t5 = i - 1

14) t6 = 88 * t5

15) a [t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)



1) i = 1 

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2) 

12) i = 1

13) t5 = i - 1

14) t6 = 88 * t5

15) a [t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

 i = 1 

 j = 1

 t1 = 10 * i

 t2 = t1 + j

 t3 = 8 * t2

 t4 = t3 - 88

 a[t4] = 0.0

 j = j + 1

 if j <= 10 goto B3

 i = i + 1

 if i <= 10 goto B2

 i = 1

 t5 = i - 1

 t6 = 88 * t5

 a [t6] = 1.0

 i = i + 1

 if i <= 10 goto B6

B1

B2

B3

B4

B5

B6

1) i = 1 

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1

11) if i <= 10 goto (2) 

12) i = 1

13) t5 = i - 1

14) t6 = 88 * t5

15) a [t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

 i = 1 

 j = 1

 t1 = 10 * i

 t2 = t1 + j

 t3 = 8 * t2

 t4 = t3 - 88

 a[t4] = 0.0

 j = j + 1

 if j <= 10 goto B3

 i = i + 1

 if i <= 10 goto B2

 i = 1

 t5 = i - 1

 t6 = 88 * t5

 a [t6] = 1.0

 i = i + 1

 if i <= 10 goto B6

B1

B2

B3

B4

B5

B6



Optimization of Basic Blocks

•"Local optimization within each basic block

•"Global optimization 

We will focus on the former.

DAG Representation of Basic Blocks

Target: Construct a DAG for a basic block

1. There is a node in the DAG for each of the initial values of the variables appearing in 

the basic block.

2. !statement s we associate a node Ns. 

The children of Ns are those nodes corresponding to statements that are the last 

definitions, prior to s, of the operands used by s.

3. each node Ns is labeled by the operator applied at s.

Attached to Ns is the list of variables for which it is the last definition within the 

block.

4. Certain nodes are designated output nodes. These are the nodes whose variables are 

live on exit from the block; that is, their values may be used later, in another block of the 

flow graph.



When we construct the node for the third statement 

c=b+c, we know that the use of b in b+c refers to the 

node labeled -, because that is the most recent 

definition of b. Thus, we do not confuse the values 

computed at statements one and three. 

However, the node corresponding to the fourth statement 

d=a-d has the operator - and the nodes with attached 

variables a and d0 as children. Since the operator and 

the children are the same as those for the node 

corresponding to statement two, we do not create this 

node, but add d to the list of definitions for the node 

labeled 
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The DAG representation of a basic block lets us perform

• local common sub-expressions elimination

• dead code elimination

• reordering of statements that do not depend on one another

• reordering of operands of three-address instructions by applying algebraic laws
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These are competing needs, since the number of 

registers available is limited. 

• LD reg, mem 

• ST mem, reg 

• OP reg, reg, reg 
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  Generation Algorithm

• For a three address instruction, e.g. x=y+z, do:
– Use getReg(x=y+z) to select registers Rx, Ry, Rz for x, y , z 
– If y is not in Ry, issue an instruction LD Ry,y' (y' is a location for y)

• Similarly for z 
– Issue the instruction ADD Rx,Ry,Rz
• Copy statement x=y
We assume that getReg() will always choose the same register for both 
x and y
– If y is not already in register, generate LD Ry,y' (y' is a location for y)

– Adjust RD for Ry  so it includes x
– change the AD for x so that its only location is Ry

• Ending the basic block
– for each variable x whose location descriptor does not say that its 
value is located in the memory location for x  and if x is used at other 
blocks, issue 
ST x,R (R is a register in which x's value exists at the end of the block)
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• M*&$$>Q$;, after generating the load for y into register Ry, if needed, and 

after managing descriptors as for all load statements: 

– Add x to the register descriptor for Ry. 

– Change the address descriptor for x so that its only location is Ry. 
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• For a three address instruction, e.g. x=y+z, do:

– Use getReg(x=y+z) to select registers Rx, Ry, Rz for x, y , z 
– If y is not in Ry, issue an instruction LD Ry,y' (y' is a location for y)
• Similarly for z 
– Issue the instruction ADD Rx,Ry,Rz
• Copy statement x=y
We assume that getReg() will always choose the same register for both x an y
– If y is not already in register, generate LD Ry,y' (y' is a location for y)

– Adjust RD for Ry  so it includes x
–change the AD for x so that it only location is Ry

• Ending the basic block
– for each variable x whose location descriptor does not say that its value is located in the memory location for x  and 
if x is used at other blocks, issue 
ST x, R (R is a register in which x's value exists at the end of the block)

• For LD R, x 
– Change RD for R so it holds only x
– Change AD for x by adding R as an 
additional location
• For ST x, R 
– Change AD for x to include its own 
memory location
• For ADD Rx, Ry, Rz 
– Change RD for Rx  so it holds only 
x
– Change AD for x so its only location 
is Rx 
– Remove Rx from the AD of any var 
other than x
• For  x= y, after generating the load 
for y into register Ry, if needed, and 
after managing descriptors as for all 
load statements: 
– Add x to the register descriptor for 
Ry. 
– Change the address descriptor for x 
so that its only location is Ry. 
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• For a three address instruction, e.g. x=y+z, do:

– Use getReg(x=y+z) to select registers Rx, Ry, Rz for x, y , z 
– If y is not in Ry, issue an instruction LD Ry,y' (y' is a location for y)
• Similarly for z 
– Issue the instruction ADD Rx,Ry,Rz
• Copy statement x=y
We assume that getReg() will always choose the same register for both x an y
– If y is not already in register, generate LD Ry,y' (y' is a location for y)

– Adjust RD for Ry  so it includes x
–change the AD for x so that it only location is Ry

• Ending the basic block
– for each variable x whose location descriptor does not say that its value is located in the memory location for x  and 
if x is used at other blocks, issue 
ST x, R (R is a register in which x's value exists at the end of the block)

• For LD R, x 
– Change RD for R so it holds only x
– Change AD for x by adding R as an 
additional location
• For ST x, R 
– Change AD for x to include its own 
memory location
• For ADD Rx, Ry, Rz 
– Change RD for Rx  so it holds only 
x
– Change AD for x so its only location 
is Rx 
– Remove Rx from the AD of any var 
other than x
• For  x= y, after generating the load 
for y into register Ry, if needed, and 
after managing descriptors as for all 
load statements: 
– Add x to the register descriptor for 
Ry. 
– Change the address descriptor for x 
so that its only location is Ry. 
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• For a three address instruction, e.g. x=y+z, do:

– Use getReg(x=y+z) to select registers Rx, Ry, Rz for x, y , z 
– If y is not in Ry, issue an instruction LD Ry,y' (y' is a location for y)
• Similarly for z 
– Issue the instruction ADD Rx,Ry,Rz
• Copy statement x=y
We assume that getReg() will always choose the same register for both x an y
– If y is not already in register, generate LD Ry,y' (y' is a location for y)

– Adjust RD for Ry  so it includes x
• Ending the basic block
– for each variable x whose location descriptor does not say that its value is located in the memory location for x  and 
if x is used at other blocks, issue 
ST x, R (R is a register in which x's value exists at the end of the block)

• For LD R, x 
– Change RD for R so it holds only x
– Change AD for x by adding R as an 
additional location
• For ST x, R 
– Change AD for x to include its own 
memory location
• For ADD Rx, Ry, Rz 
– Change RD for Rx  so it holds only 
x
– Change AD for x so its only location 
is Rx 
– Remove Rx from the AD of any var 
other than x
• For  x= y, after generating the load 
for y into register Ry, if needed, and 
after managing descriptors as for all 
load statements: 
– Add x to the register descriptor for 
Ry. 
– Change the address descriptor for x 
so that its only location is Ry. 



getReg(I): selects registers for each memory location associated with the 

three-address instruction I
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Selection of the register Rx. The issues and options are 

almost as for y, so we shall only mention the differences.

- Since a new value of x is being computed, a register that 

holds only x is always an acceptable choice for Rx. This 

statement holds even if x is one of y and z, since our 

machine instructions allows two registers to be the same in 

one instruction.

- If y is not used after instruction I  and Ry holds only y after 

being loaded, if necessary, and, if y is not a temporary, 

AD(y) contains y, then Ry can also be used as Rx. A 

similar option holds regarding z and Rz.

- Case when I is a copy instruction x = y. 

We pick the register Ry as above. Then, we always choose 

Rx = Ry.


