
Syntax-Directed
Translation

What is syntax-directed translation?

‣ The compilation process is driven by the syntax.

‣ The semantic routines perform interpretation based on
the syntax structure.

‣ Attaching attributes to the grammar symbols.

‣ Values for attributes are computed by semantic
actions
associated with the grammar productions.

Format for writing syntax-directed definitions

• E.val is one of the attributes of E.
• digit.lexval is the attribute (integer value) returned

by the lexical analyzer
• To avoid confusion, recursively defined

nonterminals are numbered on the RHS.
• Semantic actions are performed when this

production is “used”.

PRODUCTION SEMANTIC RULES

1) L→E n L.val = E.val

2) E → E1 + T E.val = E1.val + T.val

3) E→T E.val = T.val

4) T → T1 ∗ F T.val = T1.val x F.val

5) T→F T. val = F. val

6) F→(E) F.val = E.val

7) F → digit F.val = digit.lexval

SDD for a desk calculator

Terminal symbols can have synthetised attributed
(computed by the lexical analyzer) but not inherited attributes.

Each grammar symbol is associated with a
set of attributes

computed w.r.t. the parsing tree
〈A,N〉 a non terminal A labelling a node N of the parse tree

‣ Synthesized attribute of〈A,N〉: defined in terms of the attributes of
the children of N and of N itself (semantic rule associated to the
production relative to N)

‣ Inherited attribute of〈A,N〉: defined in terms of the N's parent, N
itself, and N's siblings (semantic rule associated to the production
relative to the parent of N)

‣ General attribute: value can be depended on the attributes of any nodes.

PRODUCTION SEMANTIC RULES

1) L→E n L.val = E.val

2) E → E1 + T E.val = E1.val + T.val

3) E→T E.val = T.val

4) T → T1 ∗ F T.val = T1.val x F.val

5) T→F T. val = F. val

6) F→(E) F.val = E.val

7) F → digit F.val = digit.lexval

SSD for a desk calculator

In this case each non terminal
symbol has a

unique synthesized
attribute

val

S-attributed SDD

involves only synthesized attributes

 In an S-attributed SDD, each rule computes an
attribute for the nonterminal at the head of a production
from attributes taken from the body of the production.

An S-attributed SDD can be implemented
naturally in conjunction with an LR parser.

We work with parse trees
even though a translator needs not

actually build a parse tree.

A parse tree + the value(s) of its attribute(s):
annotated parse tree

Synthesized
attributes: we can
evaluate attributes in any
bottom-up order, such as a
postorder traversal of the parse tree

For SDD's with both
inherited and synthesized

attributes, there is no
guarantee that there exists

one order in which to evaluate
attributes at nodes

PRODUCTION
A→B

SEMANTIC RULES
A.s = B.i; B.i = A.s + 1

These rules are circular
it is impossible to evaluate either A.s at a

node N or B.i at the child of N without
first evaluating the other

PRODUCTION SEMANTIC RULES
1) L→E n L.val = E.val
2) E → E1 + T E.val = E1.val + T.val
3) E→T E.val = T.val
4) T → T1 ∗ F T.val = T1.val x F.val

5) T→F T. val = F. val

6) F→(E) F.val = E.val

7) F → digit F.val = digit.lexval

SSD for a desk calculatorSSD for a desk calculatorSSD for a desk calculator

Each of the nodes for the nonterminals has
attribute val computed in a bottom-up order

PRODUCTION SEMANTIC RULES

1) T → F T' T'.inh = F.val
T.val = T'.syn

2) T' → * F T'1 T1ʼ.inh = T'.inh x F.val
T'.syn = T1ʼ.syn

3) T' → ε T'.syn = T'.inh

4) F → digit F.val = digit.lexval

The semantic rules are based on
the idea that the left operand of the
operator * is inherited.
More precisely, the head T' of the
production T' → * F T'1
inherits the left operand of * in the
production body

PRODUCTION SEMANTIC RULES

1) T → F T' T'.inh = F.val
T.val = T'.syn

2) T' → * F T1ʼ T1ʼ.inh = T'.inh x F.val
T'.syn = T1ʼ.syn

3) T' → ε T'.syn = T'.inh
4) F → digit F.val = digit.lexval

PRODUCTION SEMANTIC RULES

1) T → F T' T'.inh = F.val
T.val = T'.syn

2) T' → * F T1ʼ T1ʼ.inh = T'.inh x F.val
T'.syn = T1ʼ.syn

3) T' → ε T'.syn = T'.inh
4) F → digit F.val = digit.lexval

DEPENDENCY GRAPHS

∀ parse-tree-node labeled by X, ∀ X-attribute: the dependency graph
has a node.

Suppose that a semantic rule associated with a production p
defines the value of synthesized attribute A.b in terms of the
value of X.c (the rule may define A.b in terms of other attributes
in addition to X.c). Then, the dependency graph has an edge
from X.c to A.b.

Suppose that a semantic rule associated with a production p
defines the value of inherited attribute B.c in terms of the
value of X.a. Then, the dependency graph has an edge from
X.a to B.c.

PRODUCTION SEMANTIC RULES

1) T → F T' T'.inh = F.val
T.val = T'.syn

2) T' → * F T1ʼ T1ʼ.inh = T'.inh x F.val
T'.syn = T1ʼ.syn

3) T' → ε T'.syn = T'.inh
4) F → digit F.val = digit.lexval

Ordering the Evaluation of Attributes

 If the dependency graph has an edge from node
M to node N, then the attribute corresponding to

M must be evaluated before the attribute of N.

the only allowable orders of evaluation are those sequences of nodes NI,
N2, ••• .Ni; such that:
if there is an edge of the dependency graph from Ni to Nj,
 then i < j.
Such an ordering embeds a directed graph into a linear order, and is
called a topological sort of the graph.

If there is any cycle in the graph, then there are no
topological sorts; that is, there is no way to evaluate the
SDD on this parse tree.

If there are no cycles, however, then there is always at
least one topological sort.

S-Attributed Definitions
An SDD is S-attributed if every attribute is synthesized

S-attributed definitions can be implemented during bottom-up parsing,
since a bottom-up parse corresponds to a postorder traversal.

Specifically, postorder corresponds exactly to the order in
which an LR parser reduces a production body to its head.

postorder(N){
foreach (child C of N, from the left)
 postorder(C);
evaluate the attributes associated with node N;

}

L-Attributed Definitions
The idea behind this class is that, between the attributes associated with a production
body, dependency-graph edges can go from left to right, but not from right to left
(hence "L-attributed")

Each attribute must be either
1.Synthesized

or
2.Inherited:

if A → X1X2 ... Xn, and there is an inherited attribute Xi.a computed by a rule
associated with this production then the rule may use only:

(a) Inherited attributes associated with the head A.
(b) inherited or synthesized attributes associated with the occurrences of
symbols X1,X2, .. , ,Xi-1 located to the left of Xi.
(c) Inherited or synthesized attributes associated with this occurrence of Xi itself,
but only in such a way that there are no cycles in a dependency graph formed by
the attributes of this Xi.

PRODUCTION SEMANTIC RULES

1) T → F T' T'.inh = F.val
T.val = T'.syn

2) T' → * F T1ʼ T1ʼ.inh = T'.inh x F.val
T'.syn = T1ʼ.syn

3) T' → ε T'.syn = T'.inh
4) F → digit F.val = digit.lexval

L-ATTRIBUTED

?

PRODUCTION SEMANTIC RULES

1) T → F T' T'.inh = F.val
T.val = T'.syn

2) T' → * F T1ʼ T1ʼ.inh = T'.inh x F.val
T'.syn = T1ʼ.syn

3) T' → ε T'.syn = T'.inh
4) F → digit F.val = digit.lexval

L-ATTRIBUTED

Any SDD containing the following
production and rules
cannot be L-attributed:

PRODUCTION SEMANTIC RULES
A→BC A.s = B.b;
 B.i = f(C.c,A.s)

SEMANTIC RULES WITH
CONTROLLED SIDE EFFECTS

Side effects: a desk calculator might print a result; a code generator might
enter the type of an identifier into a symbol table...

PRODUCTION SEMANTIC RULES

1) L→E n print(E.val)

2) E → E1 + T E.val = E1.val + T.val

3) E→T E.val = T.val

4) T → T1 ∗ F T.val = T1.val x F.val

5) T→F T. val = F. val

6) F→(E) F.val = E.val

7) F → digit F.val = digit.lexval

Productions 4 and 5 also have a rule in
which a function addType is called with two
arguments:

1. id.entry, a lexical value that points to a
symbol-table object, and
2. L. inh, the type being assigned to every
identifier on the list.

We suppose that function addType
properly installs the type L.inh as the type
of the represented identifier.

Dependency graph for a declaration float id1 , id2 , id3

dummy-attributes

CONSTRUCTION OF (ABSTRACT)
SYNTAX TREES

E1 + E2

In an (abstract) syntax tree for an expression, each interior
node represents an operator; the children of the node represent
the operands of the operator. More generally, any programming
construct can be handled by making up an operator for the
construct and treating as operands the semantically meaningful
components of that construct.

E1 E2

+

•If the node is a leaf, an additional field holds the lexical value for the leaf.
A constructor function Leaf(op, val) creates a leaf object. Alternatively, if nodes
are viewed as records, then Leaf returns a pointer to a new record for a leaf.

•If the node is an interior node, there are as many additional fields as the node
has children in the syntax tree. A constructor function Node takes two or more
arguments: Node(op, c1, c2, ... ,ck) creates an object with first field op and k
additional fields for the k children c1, c2, ... ,ck

?

a

-

4

+

c
a-4+c

Here, the idea is to
build a syntax tree for
x + y by passing x as
an inherited attribute,
since x and + y appear
in different subtrees

Inherited attributes are useful when the structure of the parse tree
differs from the abstract syntax of the input

int[2][3] ≡ array(2,array(3,integer))

C.b inherited

int[2][3] ≡ array(2,array(3,integer))

Problems with L-attributed definitions

Comparisons:

• L-attributed definitions go naturally with LL parsers.

• S -attributed definitions go naturally with LR parsers.

• L-attributed definitions are more flexible than S -attributed definitions.

• LR parsers are more powerful than LL parsers.

Some cases of L-attributed definitions cannot be incooperated

into LR parsers
• Assume the next handle to take care is A → X1X2 · · · Xi · · · Xk , and

X1, . . . , Xi is already on the top of the STACK.

• Attribute values of X1, . . . , Xi−1 can be found on the STACK at this

moment.

• No information about A can be found anywhere at this moment.

• Thus the attribute values of Xi cannot be depended on the value of A.

L−-attributed definitions
 Same as L-attributed definitions, but do not depend on

◁ the inherited attributes of parent nodes, or
◁ any attributes associated with itself.
Can be handled by LR parsers.

Syntax-Directed Translation scheme
(SDT)

=
CFG + program fragments embedded

within production bodies

program fragments ➽ semantic actions
program fragments can appear at any position
within a production body

Typically, SDT's are implemented during parsing, without building a parse tree.

Syntax-Directed Translation scheme

Implementation of two important classes of SDD's
by means of SDT

•The underlying grammar is LR-parsable, and the SDD
is S-attributed.

•The underlying grammar is LL-parsable, and the SDD
is L-attributed.

We will see that any SDT can be implemented by:
1) first building a parse tree
and
2) then performing the actions in a left-to-right depth-

first order; that is, during a preorder traversal.

 Postfix Translation Schemes
The simplest SDD implementation occurs when we can parse the grammar bottom-
up and the SDD is S-attributed.

In that case, we can construct an SDT in which each action is placed at the end of the
production and is executed along with the reduction of the body to the head of that
production. SDT's with all actions at the right ends of the production bodies are called
postfix SDT's.

Postfix SDT implementing the desk calculator

Parser-Stack Implementation of Postfix SDT's

Parser stack with a field for synthesized attributes

Postfix SDT's can be implemented during LR parsing by executing
the actions when reductions occur

If the attributes are all synthesized, and the actions occur at the ends of the
productions, then we can compute the attributes for the head when we
reduce the body to the head.

If we reduce by a production such as A → X Y Z, then we have all the attributes
of X, Y, and Z available, at known positions on the stack. After the action, A and its
attributes are at the top of the stack, in the position of the record for X.

An extreme example of a problematic
SDT

we turn our desk-calculator running example into an
SDT that prints the prefix form of an expression,
rather than evaluating the expression

Unfortunately, it is impossible to implement this SDT during
either topdown or bottom-up parsing, because the parser
would have to perform critical actions, like printing
instances of * or +, long before it knows whether these
symbols will appear in its input

Any SDT can be implemented as follows:

1.Ignoring the actions, parse the input and produce a parse tree as a result.

2.Then, examine each interior node N, say one for production A → α (α=β{a}δ) Add
additional children to N for the actions in α, so the children of N from left to right
have exactly the symbols and actions a of α.

3.Perform a preorder traversal (see Section 2.3.4) of the tree, and as soon as a
node labeled by an action is visited, perform that action.

3 * 5 + 4

+ * 3 5 4

SDT's for L-Attributed Definitions

If the underlying grammar is not LL(k) it
is frequently impossible to perform the
translation in connection with either an

LL or an LR parser.

The rules for turning an L-attributed SDD into an SDT are as follows:
1.Embed the action that computes the inherited attributes for a

nonterminal A immediately before that occurrence of A in the body of
the production. If several inherited attributes for A depend on one
another in an acyclic fashion, order the evaluation of attributes so that
those needed first are computed first.

2.Place the actions that compute a synthesized attribute for the head of
a production at the end of the body of that production.

C →β A δ
A.inh = Ψ(...)

....
C.synt = Φ(...)

C →β {A.inh = Ψ(...) }A δ{C.synt = Φ(...)}

Exercise:
turn the L-attributed SDD into an SDT

D → T {L.inh:= T .type} L
T → int {T .type :=integer}
T → float {T .type :=float}
L → {L1 .inh:= L.in} L1 , id {addtype(id.entry, L.inh)}
L → id {addType(id.entry, L.inh)}

Build the parse-tree with semantic actions for
real id1 , id2 , id3

D → T {L.inh:= T .type} L
T → int {T .type :=integer}
T → float {T .type :=float}
L → {L1 .inh:= L.in} L1 , id {addtype(id.entry, L.inh)}
L → id {addType(id.entry, L.inh)}

Free University of Bolzano–Compilers. Lecture V, 2009/2010 – A.Artale (33)

Translation Schemes: An Example (Cont.)

• Example (Cont). The parse-tree with semantic actions for the input

real id1, id2, id3 is:

D

T {L.in := T.type} L

real {T.type := real} {L1.in := L.in} L1
, id3 {addtype(id3.entry, L.in)}

{L2.in := L1.in} L2
, id2 {addtype(id2.entry, L1.in)}

id1 {addtype(id1.entry, L2.in)}

• Traversing the Parse-Tree in depth-first order (PostOrder) we can

evaluate the attributes.

Build the parse-tree with
semantic actions for
real id1 , id2 , id3

D → T {L.inh:= T .type} L
T → int {T .type :=integer}
T → float {T .type :=float}
L → {L1 .inh:= L.in} L1 , id {addtype(id.entry, L.inh)}
L → id {addType(id.entry, L.inh)}

Design of Translation Schemes

• When designing a Translation Scheme we must be sure that an attribute value

is available when a semantic action is executed.

• When the semantic action involves only synthesized attributes the

action can be put at the end of the production.

IMPLEMENTING L-ATTRIBUTED SDD’s

1.Build the parse tree and annotate. This method works for any noncircular SDD
whatsoever.

2.Build the parse tree, add actions, and execute the actions in preorder.

3.Use a recursive-descent parser with one function for each nonterminal.

The function for nonterminal A receives the inherited attributes of A as arguments and returns
the synthesized attributes of A.

4. Generate code on the fly, using a recursive-descent parser.

5.Implement an SDT in conjunction with an LL-parser. The attributes are kept on the parsing
stack, and the rules fetch the needed attributes from known locations on the stack.

6.Implement an SDT in conjunction with an LR-parser.

This method may be surprising, since the SDT for an L-attributed SDD typically has
actions in the middle of productions, and we cannot be sure during an LR parse
that we are even in that production until its entire body has been constructed. We
shall see, however, that if the underlying grammar is LL, we can always handle
both the parsing and translation bottom-up.

