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𝜃 𝑡

Example: Idle speed control of an automotive engine

𝑝 𝑡 : intake manifold pressure  𝑚𝑖 𝑡 : air loaded into cylinder in stroke 𝑖

𝜃 𝑡 , 𝑛 𝑡 : crankshaft position and speed       𝑇 𝑡 : torque generated by the engine
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Example: Idle speed control of an automotive engine
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𝒖𝒄 𝒕

𝒖𝒅

INTAKE 
MANIFOLD

𝑝(𝑡)

POWER-TRAIN

𝑛(𝑡)
𝜃 𝑡

CYLINDERS

𝑚𝐶 𝑡
𝑚𝐸 𝑡
𝑇(𝑡)

𝑚𝐼(𝑡)
𝑇(𝑡) 𝑛(𝑡)

HYBRID  MODEL OF  THE  ENGINE AND POWER-TRAIN

6

𝜃 𝑡

Example: Idle speed control of an automotive engine

E C U       (CONTROLLER)

Find all the control strategies (if any) for the spark timing 𝒖𝒅 and throttle valve 
position 𝒖𝒄 𝒕 = 𝛼 𝑡 ∈ [0, 𝛼𝑚𝑎𝑥] , which keep the crankshaft speed 𝑛(𝑡) in a 
given range [𝑛0 − ∆𝑛, 𝑛0 + ∆𝑛], independently of the two disturbances given 
by the clutch 𝒅𝒅 and the load torque 𝒅𝒄 𝒕 = 𝑇𝑙 𝑡 ∈ [0, 𝑇𝑙

𝑚𝑎𝑥].
𝒅𝒅 𝒅𝒄 𝒕



Control design for safety specifications

The control objective is to maintain the crankshaft speed 𝑛(𝑡) in a given 
range [𝑛0 − ∆𝑛, 𝑛0 + ∆𝑛], whatever the disturbances happen to be.

• A safety property for a hybrid system is specified by means of a set of 
𝐺𝑜𝑜𝑑 configurations that do not violate the property.

𝐺𝑜𝑜𝑑 = 𝑄 × [𝑛0 − ∆𝑛, 𝑛0 + ∆𝑛]

• A configuration (𝑞, 𝑥) ∈ 𝐺𝑜𝑜𝑑 is said controllable safe − with respect 
to the safety specification 𝐺𝑜𝑜𝑑 − if there exists a controller such that 
all the trajectories of the closed-loop system, starting from (𝑞, 𝑥),
remain forever within the set 𝐺𝑜𝑜𝑑 for any admissible disturbances.

• The maximal safe set for a hybrid system and a safety specification 
𝐺𝑜𝑜𝑑, is the largest set of controllable safe configurations.
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A game between control and disturbance

The control objective is to maintain the state (𝑞, 𝑥) inside the set 𝐺𝑜𝑜𝑑, 
whatever the disturbances happen to be.

The disturbance objective is to drive the the state (𝑞, 𝑥) outside the set 
𝐺𝑜𝑜𝑑.

The two players (control and disturbance) affect both the continuous and 
the discrete evolution of the system.
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∃𝑢𝑑 ∀𝑑𝑑
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A game between control and disturbance

One may think of the interaction between the players as a continuous 

game with occasional discrete interruptions.
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∃𝑢𝑑 ∀𝑑𝑑
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Not 
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Hybrid system with control and disturbance

A hybrid system 𝐻 is a collection

is the set of discrete states

is the set of continuous states

is the set of initial states

𝐻 = ((𝑄, 𝑋), 𝑈, Σ𝑐 , 𝐷, Σ𝑑 , 𝐼𝑛𝑖𝑡, (𝑓, 𝛿))

𝑄 = {𝑞1, 𝑞2, … }

𝑋 = ℝ 𝑛

𝑈 ⊆ ℝ 𝑚 is the domain of continuous control variables

Σ𝑐 is the finite set of discrete control events

𝐷 ⊆ ℝ 𝑝 is the domain of continuous disturbance variables

Σ𝑑 is the finite set of discrete disturbance events

𝐼𝑛𝑖𝑡 ⊆ 𝑄 × 𝑋
10
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is the vector field defining the continuous dynamics

𝑓: 𝑄 × 𝑋 × 𝑈 × 𝐷 → ℝ 𝑛

𝛿: 𝑄 × 𝑋 × (Σ𝑐∪ 𝜖) × (Σ𝑑∪ 𝜖) → 2 𝑄×𝑋/{}

is the transition function defining the discrete dynamics

𝜖 is the null event, i.e., no discrete event is given.

When no discrete input and disturbance control is given, that is

𝑢𝑑 = 𝜖 and 𝑑𝑑 = 𝜖

no transition takes place, i.e.,

𝛿 𝑞, 𝑥, 𝜖, 𝜖 = (𝑞, 𝑥)

In this case, the location 𝑞 remains fixed, and the continuous variables 𝑥(𝑡)
evolve according to the continuous control 𝑢𝑐 𝑡 ∈ 𝑈, the continuous 
disturbance 𝑑𝑐 𝑡 ∈ 𝐷, and the continuous dynamics specified by the function 𝑓.
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CONTINUOUS
HEATING CONTROL

𝑢𝑐 𝑡 ∈ 0, 𝑈
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DISCRETE 
(on/off)
HEATING 
CONTROL

𝑢𝑑 = 𝑜𝑛

𝑤ℎ 𝑜𝑛 = 𝑊
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DISCRETE 
(on/off)
HEATING 
CONTROL

𝑤ℎ 𝑜𝑓𝑓 = 0

𝑢𝑑 = 𝑜𝑓𝑓
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𝑑𝑐 𝑡 ∈ 0, 𝐷

APPLIANCES 
CONTINUOUS 

HEATING DISTURBANCE
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𝑅 𝑜𝑝𝑒𝑛 = 𝑅𝑜 < 𝑅 𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑅𝑐

The thermal resistance decreases from 𝑅𝑐 to 𝑅𝑜
The temperature suddenly decreases (𝑟 < 1)

𝑇 ≔ 𝑟 𝑇

𝑑𝑑 = 𝑜𝑝𝑒𝑛
17
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HEAT PUMP
CONTINUOUS CONTROL

APPLIANCES
CONTINUOUS 
DISTURBANCE

DOOR
DISTURBANCE

EVENT
ELECTRIC
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The control objective is to maintain the temperature 𝑇𝑟𝑜𝑜𝑚(𝑡) of the room 
in a given range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], whatever the disturbances happen to be.



H Y B R I D    M O D E L 
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CONDITIONER

DOOR

ELECTRICAL
APPLIANCES

C O N T R O L L E R

ON/OFF
HEATER

THERMAL 
MODEL 
of the 
ROOM0,𝑊

𝑑𝑐 𝑡

𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒

𝑞, 𝑥𝑜𝑛, 𝑜𝑓𝑓

𝑢𝑐 𝑡

thermal
resistance

𝑅𝑜, 𝑅𝑐

19



Thermal model of the room
𝑇𝑟𝑜𝑜𝑚 (𝑡)

𝑇𝑒𝑛𝑣thermic
resistance

thermic
capacity

𝐶
𝑊𝑑𝑐(𝑡)𝑢𝑐(𝑡)

heat transfer rates from conditioner,      appliances,            heater

𝑇(𝑡) = 𝑇𝑟𝑜𝑜𝑚 (𝑡) − 𝑇𝑒𝑛𝑣
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on/off

𝑅𝑜 or 𝑅𝑐



𝑇𝑟𝑜𝑜𝑚 (𝑡)

𝑇𝑒𝑛𝑣𝑅𝑜 or 𝑅𝑐

𝐶
𝑊𝑑𝑐(𝑡)𝑢𝑐(𝑡)

𝑇(𝑡) = 𝑇𝑟𝑜𝑜𝑚 (𝑡) − 𝑇𝑒𝑛𝑣

on/off

Thermal model of the room

𝑢𝑐 𝑡 + 𝑑𝑐 𝑡 + 0/𝑊 =
1

𝑅
𝑇 𝑡 + 𝐶 ∙ ሶ𝑇 𝑡

ሶ𝑇 𝑡 = −
1

𝑅𝐶
𝑇 𝑡 +

1

𝐶
𝑢𝑐 𝑡 +

1

𝐶
𝑑𝑐 𝑡 +

0/𝑊

𝐶

The value of the thermic resistance 𝑅 depends on whether the door is open or closed
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𝑡

𝑞𝑘

(𝑞𝑘+1, 𝑥′ 𝜏 ) ∈ 𝛿(𝑞𝑘, 𝑥 𝜏 , 𝑢𝑑 , 𝑜𝑝𝑒𝑛)

𝑞𝑘+1

𝑥 𝜏

𝜏

𝑥′ 𝜏

Temperature reset when opening the door

𝑇 ≔ 𝑟𝑇 with 𝑟 < 1

22

To prevent the discrete disturbance from dropping the temperature by opening and 
closing the door over and over again in a short period of time, a minimum interval of 

time Δ is assumed between two consecutive transitions.



(𝑜𝑓𝑓, 𝜖) ∧ 𝜏 𝑡 ≥ 0

𝜏 ≔ −∆

(𝑜𝑓𝑓, 𝜖) ∧ 𝜏 𝑡 ≥ 0

𝑇 ≔ 𝑟𝑇

𝜏 ≔ −∆

𝜏 ≔ −∆

(𝜖, 𝑜𝑝𝑒𝑛) ∧ 𝜏 𝑡 ≥ 0

(𝜖, 𝑐𝑙𝑜𝑠𝑒) ∧ 𝜏 𝑡 ≥ 0

𝜏 ≔ −∆

𝜏 ≔ −∆

𝜏 ≔ −∆

(𝑜𝑛, 𝜖) ∧ 𝜏 𝑡 ≥ 0

(𝑜𝑛, 𝜖) ∧ 𝜏 𝑡 ≥ 0

𝑇 ≔ 𝑟𝑇

𝜏 ≔ −∆

𝜏 ≔ −∆

(𝜖, 𝑐𝑙𝑜𝑠𝑒) ∧ 𝜏 𝑡 ≥ 0

(𝜖, 𝑜𝑝𝑒𝑛) ∧ 𝜏 𝑡 ≥ 0

𝒒𝟏: 𝒐𝒇𝒇, 𝒄𝒍𝒐𝒔𝒆 𝒒𝟐: 𝒐𝒏, 𝒄𝒍𝒐𝒔𝒆

𝒒𝟑: 𝒐𝒏, 𝒐𝒑𝒆𝒏𝒒𝟒: 𝒐𝒇𝒇, 𝒐𝒑𝒆𝒏

ሶ𝑇 𝑡 = −
1

𝑅𝑐𝐶
𝑇(𝑡) +

𝑢𝑐 𝑡

𝐶
+
𝑑𝑐(𝑡)

𝐶

ሶ𝑇 𝑡 = −
1

𝑅𝑜𝐶
𝑇(𝑡) +

𝑢𝑐 𝑡

𝐶
+
𝑑𝑐(𝑡)

𝐶

ሶ𝑇 𝑡 = −
1

𝑅𝑐𝐶
𝑇(𝑡) +

𝑢𝑐 𝑡

𝐶
+
𝑊

𝐶
+
𝑑𝑐(𝑡)

𝐶

ሶ𝑇 𝑡 = −
1

𝑅𝑜𝐶
𝑇(𝑡) +

𝑢𝑐 𝑡

𝐶
+
𝑊

𝐶
+
𝑑𝑐(𝑡)

𝐶

ሶ𝜏 𝑡 = 1 ሶ𝜏 𝑡 = 1

ሶ𝜏 𝑡 = 1ሶ𝜏 𝑡 = 1
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DISCRETE UNCONTROLLABLE PREDECESSORS (And the winner is … disturbance)

𝐷𝑈𝑃𝑟𝑒(𝑆) = 𝑞, 𝑥 ∈ 𝑄 × 𝑋 ∶ ∀ 𝑢𝑑 , ∃𝑑𝑑 | (𝑢𝑑 , 𝑑𝑑) ≠ (𝜖, 𝜖) ∧ 𝛿 𝑞, 𝑥 , (𝑢𝑑 , 𝑑𝑑) ⊈ 𝑆

DISCRETE CONTROLLABLE PREDECESSORS (And the winner is … control)

𝐷𝐶𝑃𝑟𝑒(𝑆) = 𝑞, 𝑥 ∈ 𝑄 × 𝑋 ∶ ∃𝑢𝑑 | ∀ 𝑑𝑑, (𝑢𝑑 , 𝑑𝑑) ≠ (𝜖, 𝜖) ∧ 𝛿 𝑞, 𝑥 , (𝑢𝑑 , 𝑑𝑑) ⊆ 𝑆

is the set of configurations such that, for every controller discrete input, there exists a 
discrete disturbance input that forces the configuration outside 𝑆 in one step.

is the set of configurations that can be forced to remain into 𝑆 in one step, 
whatever is the disturbance discrete input. 

A discrete game between control and disturbance

24



CONTINUOUS FLOW

CONTINUOUS UNCONTROLLABLE PREDECESSORS

𝐶𝑈𝑃𝑟𝑒 𝐵, 𝐸 = { 𝑞, 𝑥 ∈ 𝑄 × 𝑋 ∶ ∀ 𝑢𝑐 𝑡 , ∃ 𝑑𝑐 𝑡 𝑎𝑛𝑑 ∃ 𝑡∗> 0|

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑥(𝑡)

∀ 𝑡 ∈ 0, 𝑡∗ , 𝑞, 𝑥 𝑡 ∈ 𝐼𝑛𝑣 ∩ ത𝐸 ∧ 𝑞, 𝑥 𝑡∗ ∈ 𝐵}

𝐵 is the set of configurations 
the disturbance 
is trying to reach

𝐸 is the set of 
configurations that must be avoided 25



𝐷𝑈𝑃𝑟𝑒(𝑊)

𝐷𝐶𝑃𝑟𝑒(𝑊)

Given a set 𝑊,

𝐶𝑈𝑃𝑟𝑒 𝐷𝑈𝑃𝑟𝑒 𝑊 ∪ ഥ𝑊,𝐷𝐶𝑃𝑟𝑒(𝑊)

is the set of states that, whatever the continuous control is, can be 

steered to the set 𝐷𝑈𝑃𝑟𝑒 𝑊 or outside the set 𝑊 while avoiding 

entering the set 𝐷𝐶𝑃𝑟𝑒(𝑊).

A continuous game between control and disturbance

𝑊

26
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The «losing» states of the set 𝑊 are those that belong to the set

𝐷𝑈𝑃𝑟𝑒 𝑊

or to the set

𝐶𝑈𝑃𝑟𝑒 𝐷𝑈𝑃𝑟𝑒 𝑊 ∪ ഥ𝑊,𝐷𝐶𝑃𝑟𝑒(𝑊)

A continuous game between control and disturbance

𝐷𝐶𝑃𝑟𝑒(𝑊)
𝑊

𝐶𝑈𝑃𝑟𝑒 𝐷𝑈𝑃𝑟𝑒 𝑊 ∪ ഥ𝑊,𝐷𝐶𝑃𝑟𝑒(𝑊)

𝐷𝑈𝑃𝑟𝑒(𝑊)

27
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𝑊𝑖|𝑞𝑘

𝑊𝑖|𝑞ℎ

𝐷𝑈𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎ

𝐷𝐶𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎ

∀𝑢𝑐 𝑡 ∃𝑑𝑐(𝑡)

∃𝑢𝑑 ∀𝑑𝑑

∀𝑢𝑑 ∃𝑑𝑑

𝑊0 ≔ 𝐺𝑜𝑜𝑑

𝑖 ≔ 𝑖 + 1

𝑖 ≔ −1

𝑊𝑖+1 ≔ 𝑊𝑖\ 𝐷𝑈𝑃𝑟𝑒 𝑊𝑖 ∪ 𝐶𝑈𝑃𝑟𝑒 𝐷𝑈𝑃𝑟𝑒 𝑊𝑖 ∪𝑊𝑖 , 𝐷𝐶𝑃𝑟𝑒(𝑊𝑖)

} 𝑢𝑛𝑡𝑖𝑙 (𝑊𝑖+1 = 𝑊𝑖)

𝑆𝑎𝑓𝑒 ≔ 𝑊𝑖

𝑟𝑒𝑝𝑒𝑎𝑡{

∃𝑢𝑐 𝑡 ∀𝑑𝑐(𝑡)

28



Result
𝑈 = 0,5

𝑟 = 0,95

𝐷 = 0,01

𝑊 = 0,2

𝐶 = 1

𝑅𝑐 = 1000

𝑅𝑜 = 500

29



COMPUTATION OF DISCRETE PREDECESSORS

• No transitions may take place for 𝜏 < 0
• Guard conditions do not depend on the value of 𝑇

The discrete predecessors are sets of the form

𝑇 ∈ 𝑇𝑙𝑜𝑤 , 𝑇ℎ𝑖𝑔ℎ , 𝜏 ≥ 0

𝑇

−∆ 0

𝜏
0

30

𝑇𝑙𝑜𝑤

𝑇ℎ𝑖𝑔ℎ



𝑊0 ≔ 𝐺𝑜𝑜𝑑 𝑊0 ≔ 𝐺𝑜𝑜𝑑

𝑊0 ≔ 𝐺𝑜𝑜𝑑 𝑊0 ≔ 𝐺𝑜𝑜𝑑

31



18

𝑟
= 18,95

32



18

𝑟
= 18,95

33



𝐷𝑈𝑃𝑟𝑒 𝑊0 𝐷𝑈𝑃𝑟𝑒 𝑊0

34



𝑜𝑛, 𝜖
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𝑜𝑓𝑓, 𝜖
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𝑜𝑓𝑓, 𝜖
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𝑜𝑛, 𝜖
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𝐷𝑈𝑃𝑟𝑒 𝑊0

𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝐷𝑈𝑃𝑟𝑒 𝑊0

𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝐷𝐶𝑃𝑟𝑒(𝑊0) 𝐷𝐶𝑃𝑟𝑒(𝑊0)

18,95

39



COMPUTATION OF CONTINUOUS PREDECESSORS

𝑑𝑐(𝑡) = 0

𝑢𝑐(𝑡) = 0

𝑇(𝑡)

𝑡

• Can be calculated one location 𝑞 at a time
• Can be viewed as a game between the continuous control and the 

continuous disturbance

• The boundaries of 𝐶𝑈𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎare obtained  by solving a min-max 

problem

ሶ𝑇 𝑡 = −
1

𝑅𝑜/𝑐𝐶
𝑇(𝑡) +

𝑢𝑐 𝑡

𝐶
+
𝑊/0

𝐶
+
𝑑𝑐(𝑡)

𝐶

𝑢𝑐 𝑡 ∈ [0, 𝑈]

𝑑𝑐 𝑡 ∈ [0, 𝐷]

𝑢𝑐(𝑡) = 𝑈

𝑑𝑐(𝑡) = 𝐷

Integration forward in time
40

max ሶ𝑇 𝑡 for

min ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 ∈ (0, 𝑈)

𝑑𝑐 𝑡 ∈ (0, 𝐷)

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)

𝑇(𝑡)

𝑡

Integration backward in time

𝑢𝑐 𝑡 ∈ (0, 𝑈)

𝑑𝑐 𝑡 ∈ (0, 𝐷)

𝑢𝑐(𝑡) = 𝑈

𝑑𝑐(𝑡) = 𝐷
max ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)

𝑑𝑐(𝑡) = 0

𝑢𝑐(𝑡) = 0
min ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)



COMPUTATION OF CONTINUOUS PREDECESSORS

𝐷𝑈𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎ

𝑇

𝜏
−∆ 0

The states that can be steered to 𝐷𝑈𝑃𝑟𝑒 𝑊0 [while avoiding 𝐷𝐶𝑃𝑟𝑒(𝑊0)]
can be computed by integration backward in time from points 𝐴 and 𝐵

𝐴

𝐵

“bad” states

Which evolution of 𝑢 𝑡 ∈ 0, 𝑈 and 𝑑 𝑡 ∈ 0, 𝐷 should be considered
while integrating? 
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COMPUTATION OF CONTINUOUS PREDECESSORS

The continuous disturbance would like to maximize the yellow area while 
the continuous control would like to minimize it.

𝐷𝑈𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎ

𝑇

𝜏
−∆ 0

𝑢𝑐(𝑡) = 0

𝑑𝑐(𝑡) = 0

𝑑𝑐(𝑡) = 𝐷

𝑢𝑐(𝑡) = 𝑈

States that can be steered to 𝐷𝑈𝑃𝑟𝑒 𝑊0 [while avoiding 𝐷𝐶𝑃𝑟𝑒(𝑊0)]
can be computed by integration backward in time

42

𝑇(𝑡)

𝑡

Integration backward in time

𝑢𝑐 𝑡 ∈ (0, 𝑈)

𝑑𝑐 𝑡 ∈ (0, 𝐷)

𝑢𝑐(𝑡) = 𝑈

𝑑𝑐(𝑡) = 𝐷
max ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)

𝑑𝑐(𝑡) = 0

𝑢𝑐(𝑡) = 0
min ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)



COMPUTATION OF CONTINUOUS PREDECESSORS

The states that can be steered to 𝐷𝐶𝑃𝑟𝑒 𝑊0 [while avoiding 𝐷𝑈𝑃𝑟𝑒(𝑊0)]
can be computed by integration backward in time from points 𝐴 and 𝐵

𝐷𝐶𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎ

𝑇

𝜏
−∆ 0

𝐴

𝐵

“good” states

Which evolution of 𝑢 𝑡 ∈ 0, 𝑈 and 𝑑 𝑡 ∈ 0, 𝐷 should be considered
while integrating? 
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COMPUTATION OF CONTINUOUS PREDECESSORS

The continuous control would like to maximize the yellow area while the 
continuous disturbance would like to minimize it.

𝐷𝐶𝑃𝑟𝑒(𝑊𝑖)|𝑞ℎ

𝑇

𝜏
−∆ 0

𝑢𝑐(𝑡) = 𝑈

𝑑𝑐(𝑡) = 𝐷

𝑑𝑐(𝑡) = 0

𝑢𝑐(𝑡) = 0

States that can be steered to 𝐷𝐶𝑃𝑟𝑒 𝑊0 [while avoiding 𝐷𝑈𝑃𝑟𝑒(𝑊0)]
can be computed by integration backward in time

44

𝑇(𝑡)

𝑡

Integration backward in time

𝑢𝑐 𝑡 ∈ (0, 𝑈)

𝑑𝑐 𝑡 ∈ (0, 𝐷)

𝑢𝑐(𝑡) = 𝑈

𝑑𝑐(𝑡) = 𝐷
max ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)

𝑑𝑐(𝑡) = 0

𝑢𝑐(𝑡) = 0
min ሶ𝑇 𝑡 for

𝑢𝑐 𝑡 , 𝑑𝑐(𝑡)



𝐶𝑈𝑃𝑟𝑒 𝐷𝑈𝑃𝑟𝑒 𝑊𝑖 ∪𝑊𝑖 , 𝐷𝐶𝑃𝑟𝑒(𝑊𝑖)

𝐷𝑈𝑃𝑟𝑒 𝑊0

𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝐷𝑈𝑃𝑟𝑒 𝑊0

𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝐷𝐶𝑃𝑟𝑒(𝑊0) 𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝑢𝑐 𝑡 = 𝑈, 𝑑𝑐 𝑡 = 0 𝑢𝑐 𝑡 = 𝑈, 𝑑𝑐 𝑡 = 0

𝑢𝑐 𝑡 = 0, 𝑑𝑐 𝑡 = 𝐷

𝑢𝑐 𝑡 = 0, 𝑑𝑐 𝑡 = 𝐷
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𝐶𝑈𝑃𝑟𝑒 𝐷𝑈𝑃𝑟𝑒 𝑊𝑖 ∪𝑊𝑖 , 𝐷𝐶𝑃𝑟𝑒(𝑊𝑖)

𝐷𝑈𝑃𝑟𝑒 𝑊0

𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝐷𝑈𝑃𝑟𝑒 𝑊0

𝐷𝐶𝑃𝑟𝑒(𝑊0)

𝐷𝐶𝑃𝑟𝑒(𝑊0) 𝐷𝐶𝑃𝑟𝑒(𝑊0)

States that can be steered to 𝐷𝑈𝑃𝑟𝑒 𝑊0 while avoiding 𝐷𝐶𝑃𝑟𝑒(𝑊0)

States that can be steered ouside 𝑊0

while avoiding 𝐷𝐶𝑃𝑟𝑒(𝑊0)

States that can be steered ouside 𝑊0

while avoiding 𝐷𝐶𝑃𝑟𝑒(𝑊0)
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𝑊1 𝑊1

𝑊1
𝑊1

18,27
18,47

19,81

19,83

18,95
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18,27

18,27

18,47
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18,27

18,47
18,27
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𝐷𝑈𝑃𝑟𝑒 𝑊1𝐷𝑈𝑃𝑟𝑒 𝑊1 18,27 18,27
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𝑜𝑛, 𝜖
𝑜𝑛, 𝜖

19,81

51



𝑜𝑓𝑓, 𝜖

52



𝑜𝑛, 𝜖

𝑜𝑓𝑓, 𝜖

18,27

18,27

18,47

18,47
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𝑜𝑛, 𝜖

19,81

19,81
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𝐷𝐶𝑃𝑟𝑒(𝑊1) 𝐷𝐶𝑃𝑟𝑒(𝑊1)

𝐷𝐶𝑃𝑟𝑒(𝑊1) 𝐷𝐶𝑃𝑟𝑒(𝑊1)

𝐷𝑈𝑃𝑟𝑒 𝑊1 𝐷𝑈𝑃𝑟𝑒 𝑊1
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𝐷𝐶𝑃𝑟𝑒(𝑊1) 𝐷𝐶𝑃𝑟𝑒(𝑊1)

𝐷𝐶𝑃𝑟𝑒(𝑊1) 𝐷𝐶𝑃𝑟𝑒(𝑊1)

𝐷𝑈𝑃𝑟𝑒 𝑊1 𝐷𝑈𝑃𝑟𝑒 𝑊1

𝑢𝑐 𝑡 = 𝑈, 𝑑𝑐 𝑡 = 0 𝑢𝑐 𝑡 = 𝑈, 𝑑𝑐 𝑡 = 0

56



𝐷𝐶𝑃𝑟𝑒(𝑊1) 𝐷𝐶𝑃𝑟𝑒(𝑊1)

𝐷𝐶𝑃𝑟𝑒(𝑊1) 𝐷𝐶𝑃𝑟𝑒(𝑊1)

𝐷𝑈𝑃𝑟𝑒 𝑊1 𝐷𝑈𝑃𝑟𝑒 𝑊1

States that can be steered to 𝐷𝑈𝑃𝑟𝑒 𝑊1 while avoiding 𝐷𝐶𝑃𝑟𝑒(𝑊1)
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𝑊2 = 𝑆𝑎𝑓𝑒 𝑊2 = 𝑆𝑎𝑓𝑒

𝑊2 = 𝑆𝑎𝑓𝑒 𝑊2 = 𝑆𝑎𝑓𝑒

18,27
18,47

19,81

19,83

18,95

18,27
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Maximal Safe Set



Maximal Controller design

𝑢𝑑 = 𝑜𝑓𝑓𝑢𝑑 = 𝑜𝑛

𝑢𝑑 = 𝑜𝑓𝑓
𝑢𝑑 = 𝑜𝑛

𝑢𝑐(𝑡) = 𝑈𝑢𝑐(𝑡) = 𝑈

𝑢𝑐(𝑡) = 𝑈 𝑢𝑐(𝑡) = 𝑈

𝑢𝑐(𝑡) = 0

𝑢𝑐(𝑡) = 0

18,47
18,27

18,27

18,95

𝑢𝑐(𝑡) ≤ 0,03

𝑢𝑐(𝑡) ≤ 0,01
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