
Supervisory control of business processes

Matteo Zavatteri
May 15, 2024

First things first

Matteo Zavatteri Supervisory control of business processes 2 of 68

Outline

1. Context and motivation
2. The framework of supervisory control
3. Modeling of business processes as a set of

finite state automata
4. Supervisory control of BPs
5. Modular synthesis

Matteo Zavatteri Supervisory control of business processes 3 of 68

Controllability of BPs

1. Deciding which path to take under conditional and temporal
uncertainty

2. Deciding which user to commit for a task under conditional
uncertainty

3. Deciding which user to commit for a task under resource uncertainty
4. Deciding which user to commit for a task under conditional and

temporal uncertainty
Matteo Zavatteri Supervisory control of business processes 4 of 68

A business process

Loan
Request

Process
Request

Anti Money
Laundering
Assessment

Tax Fraud
Assessment

Renegotiate
Loan

Assessment
Notification

Decision

Open
Credit Line

Accept
Notification

Reject
Notification

Log
Result

high amount

accept

reject

renegotiate

(Clerk) (Fraud Specialist)

(IRS Officer)

(Clerk, Manager)

(Customer)

(Customer)

(Manager)

(Clerk)

(Clerk)

(Clerk)

(Manager)

These users must be equal

{Alice, Bob}

{Alice, Bob}

{Charlie, David} {Charlie, Gary, Hannah}

{Evie, Frank}

{Charlie, David, Ian, Lucille}

{Ian, Lucille}

{Charlie, David}

{Charlie, David}

{Charlie, David}

These users must
not be relatives

These users
must be equal

These users must
be different

{Ian, Lucille}

These users must be equal

medium amount

low amount

confirm

Matteo Zavatteri Supervisory control of business processes 5 of 68

Weak, Strong and Dynamic
Controllability

Weak Controllability: For any uncontrollable
behavior, there exists a solution

Strong Controllability: There exists a
solution working for all uncontrollable
behaviors

Dynamic Controllability: A solution is
generated in real time depending on what is
going on

Strong ⇒ Dynamic ⇒ Weak
Matteo Zavatteri Supervisory control of business processes 6 of 68

Constraint-based approaches

• Most of them based on (temporal) constraint networks and
suitable for acyclic processes

• Can deal with loops by unfolding them up to maximum
number of iterations (or a deadline)

1) BP model (e.g., BPMN)

Process
Order
[1, 2]

×
1dd?

Fast
Collecting

[1, 3]

Normal
Collecting

[10, 20]

× ×
hurry!

Fast
Delivery

[1, 12]

Normal
Delivery

[24, 48]

×
[1, ∞] [1, 1]

1dd

[1, 1]

¬1dd

[1, 1]

[3, 22]

[1, 1]

[1, 1]

[1, 1]

hurry

[1, 1]

¬hurry

[1, 1]

[3, 50]

[1, 1]

[1, 1]

[1, ∞]

[0, 24] : {1dd?}

[25, 72] : {¬1dd?}

2) Temporal network encoding (e.g., CSTNUD)

S
[⊡]

ProcOS
[⊡]

ProcOE
[⊡]

O?
[⊡]

FastCS
[o]

FastCE
[o]

NormCS
[¬o]

NormCE
[¬o]

OE
[⊡]

H!
[⊡]

FastDS
[h]

FastDE
[h]

NormDS
[¬h]

NormDE
[¬h]

HE
[⊡]

E
[⊡]

[1, ∞],⊡ [1, 2],⊡ [1, 1],⊡

[1, 1], o [1, 12] [1, 1], o

[3, 22],⊡

[1, 1], ¬o

[10, 20]

[1, 1], ¬o

[1, 1],⊡

[1, 1], h [1, 3] [1, 1], h

[1, 1], ¬h

[24, 48]

[1, 1], ¬h

[3, 50],⊡ [1, ∞],⊡

[0, 24], o

[25, 72], ¬o

3) Tool (synthesis, execution)

Matteo Zavatteri Supervisory control of business processes 7 of 68

New challenging features

Maximally-permissiveness

t1 t2

{A, B} {A, C}

These users must be different

• One strategy: t1 = A, t2 = C
• Another strategy: t1 = B, t2 = A
• Yet another strategy: t1 = B, t2 = C

All strategies instead of only one.

Matteo Zavatteri Supervisory control of business processes 8 of 68

New challenging features

Loops

 Loan
Request

{Alice, Bob}

Assessment
Notification

Decision

These users must be equal

......

{Charlie, David} {Charlie, David}

Renegotiate
Loan

{Alice, Bob}

These users must be different

renegotiate

confirm

• customer makes a loan request
• customer is notified of the assessment (“tentative part”)
• customer can decide to accept or renegotiate: in this last case

we must decide what to do with the repeating tasks

Matteo Zavatteri Supervisory control of business processes 9 of 68

Supervisory control

Supervisory control
Supervisory control originated from the work of Ramadge and
Wonham in the late 80s.

• Theory given for languages L ⊆ Σ∗, where Σ is a set of
events;

• Separation between plant G and requirements R;
• Goal is to synthesize a maximally-permissive controller S that

dynamically controls G so that R is always satisfied;
• When languages L are regular we can employ finite state

automata and related algorithms to synthesize controllers;
• Support for (un)controllable and/or (un)observable events;
• Support for non-blockingness (=executions get to the end).

Matteo Zavatteri Supervisory control of business processes 10 of 68

Controller synthesis example

t1 t2

{A, B} {A, B}

These users must be the same

Process P.

g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

Plant G marking K := {ps tA
1 te

1 tA
2 te

2 pe , ps tA
1 te

1 tB
2 te

2 pe , ps tB
1 te

1 tA
2 te

2 pe , ps tB
1 te

1 tB
2 te

2 pe}

r0 r1 r2 r3 r4 r5

tA
1

tA
2

tA
2

tA
1

tB
1

tB
2

tB
2

tB
1

Essential requirement R marking Kspec := {tA
1 tA

2 , tA
2 tA

1 , tB
1 tB

2 , tB
2 tB

1 }

Matteo Zavatteri Supervisory control of business processes 11 of 68

Controller synthesis algorithm

Plant G : g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

Requirement R: r0 r1 r2 r3 r4 r5

tA
1

tA
2

tA
2

tA
1

tB
1

tB
2

tB
2

tB
1

Supervisor G∥R:

(g0, r0) (g1, r0) (g2, r3) (g3, r3)

(g2, r1) (g3, r1)

(g4, r5) (g5, r5) (g6, r5)
ps

tA
1

te
1

tA
2

te
2 petB

1 te
1 tB

2

(Admissible behavior)

Matteo Zavatteri Supervisory control of business processes 12 of 68

Controller synthesis algorithm

Plant G : g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

Requirement R: r0 r1 r2 r3 r4 r5

tA
1

tA
2

tA
2

tA
1

tB
1

tB
2

tB
2

tB
1

Supervisor G∥R:

(g0, r0) (g1, r0) (g2, r3) (g3, r3)

(g2, r1) (g3, r1)

(g4, r5) (g5, r5) (g6, r5)
ps

tA
1

te
1

tA
2

te
2 petB

1 te
1 tB

2

We remove (g3, r1) since tB
2 is executable in g3 of P but not here.

Matteo Zavatteri Supervisory control of business processes 12 of 68

Controller synthesis algorithm

Plant G : g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

Requirement R: r0 r1 r2 r3 r4 r5

tA
1

tA
2

tA
2

tA
1

tB
1

tB
2

tB
2

tB
1

Supervisor G∥R:

(g0, r0) (g1, r0) (g2, r3) (g3, r3)

(g2, r1)

(g4, r5) (g5, r5) (g6, r5)
ps

tA
1

te
2 petB

1 te
1 tB

2

We remove (g2, r1) since it’s a blocking state.

Matteo Zavatteri Supervisory control of business processes 12 of 68

Controller synthesis algorithm

Plant G : g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

Requirement R: r0 r1 r2 r3 r4 r5

tA
1

tA
2

tA
2

tA
1

tB
1

tB
2

tB
2

tB
1

Supervisor G∥R:

(g0, r0) (g1, r0) (g2, r3) (g3, r3) (g4, r5) (g5, r5) (g6, r5)
ps te

2 petB
1 te

1 tB
2

Final S marking K ↑C = {pstB
1 te

1 tB
2 te

2pe} and generating K ↑C

Matteo Zavatteri Supervisory control of business processes 12 of 68

Supervisor deployment

t1 t2

{A, B} {A, B}

These users must be the same

Supervisor deployment

• runs concurrently with the plant (=G∥S)
• enforces control by disabling events when appropriate

(=intersection of events)

G : g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

S: (g0, r0) (g1, r0) (g2, r3) (g3, r3) (g4, r5) (g5, r5) (g6, r5)
ps te

2 petB
1 te

1 tB
2

Matteo Zavatteri Supervisory control of business processes 13 of 68

Supervisor deployment

t1 t2

{A, B} {A, B}

These users must be the same

Supervisor deployment

• runs concurrently with the plant (=G∥S)
• enforces control by disabling events when appropriate

(=intersection of events)

G : g1g0 g1 g2 g3 g4 g5 g6
ps

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2 te

2 pe

S: (g0, r0) (g1, r0) (g2, r3) (g3, r3) (g4, r5) (g5, r5) (g6, r5)
ps te

2 petB
1 te

1 tB
2

Matteo Zavatteri Supervisory control of business processes 13 of 68

Supervisory control workflow

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT 1

...

ESSENTIAL
REQUIREMENT
AUTOMATON R1

...
ESSENTIAL

REQUIREMENT
AUTOMATON R2

ESSENTIAL
REQUIREMENT
AUTOMATON RM

PARALLEL COMPOSITION

R := R1 || R2 || ... || RM

(REQUIREMENT AUTOMATON R)

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT 2

NATURAL LANGUAGE
DEFINITION OF
REQUIREMENT M

NATURAL LANGUAGE
DEFINITION OF
PLANT MODULE 1

...

PLANT
AUTOMATON G1

...PLANT
AUTOMATON G2

PLANT
AUTOMATON GN

PARALLEL COMPOSITION

G := G1 || G2 || ... || GN

(PLANT AUTOMATON G)

NATURAL LANGUAGE
DEFINITION OF
PLANT MODULE 2

NATURAL LANGUAGE
DEFINITION OF

PLANT MODULE N

FORMALIZATION OF PLANT MODULES FORMALIZATION OF REQUIREMENTS

SUPERVISOR SYNTHESIS

ALGORITHM RUNS ON (G,R)

SUPERVISOR SYNTHESIS

UNCONTROLLABLE
(EMPTY SUPERVISOR)

SUPERVISOR
(AUTOMATON S)

Matteo Zavatteri Supervisory control of business processes 14 of 68

Encoding BPs into FSA

Structure matters.

Matteo Zavatteri Supervisory control of business processes 15 of 68

Encoding BPs into FSA

The encoding

• works at process block level;
• exploits synchronization of enter/exit events of blocks;
• encodes loops naturally;
• controllability of events decided arbitrarily.

Main idea is simple

B

• every block must be entered and exited (if relevant)
• subblocks abstracted by only keeping their enter/exit events
• synchronization with enter/exit events of the blocks models

the partial order of the BP
Matteo Zavatteri Supervisory control of business processes 16 of 68

Encoding BPs into FSA

Task
Block

t

{r1,...,rn}

Automaton
s0 s1

tr1 , . . . , trn

te

• The enter events are E↘
t = {tr1 , . . . , trn};

• The exit event is E↗
t = {te};

• No repeat events;
• Marking in initial state (=block might not be executed)

Matteo Zavatteri Supervisory control of business processes 17 of 68

Encoding BPs into FSA

Sequence
Block

B1 Bn
Automaton

s0 s1 s2

. . .s2n−1

E↘
B1

E↗
B1

. . .

E↘
Bn

E↗
Bn

• The enter events are E↘
S = E↘

B1
;

• The exit events are E↗
S = E↗

Bn
;

• No repeat events;
• Marking in initial state (=block might not be executed).

Matteo Zavatteri Supervisory control of business processes 18 of 68

Encoding BPs into FSA

AND
Block

B1

Bn

Set of automata
s0,1 s1,1 s1,2 s1,3

as E↘
B1

E↗
B1

ae
...

...
...

...

sn,0 sn,1 sn,2 sn,3
as E↘

Bn
E↗

Bn

ae

• The enter event is E↘
A = {as};

• The exit event is E↗
A = {ae};

• No repeat events.
• Marking in initial states (=block might not be executed).

∗ the only block encoded into more than one automaton
Matteo Zavatteri Supervisory control of business processes 19 of 68

Encoding BPs into FSA

XOR
Block

B1

Bn

case1

casen

default

Automaton

s0

s1,1

...

sn,1

s1,2

...

sn,2 s3

x 1

xn

E↘
B1

E ↗
B

1

E↘
Bn

E↗
Bn

xe

xd

• The enter events are E↘
X = {x1, . . . , xn, xd};

• The exit event is E↗
X = {xe};

• No repeat events;
• Marking in initial state (=block might not be executed).

Matteo Zavatteri Supervisory control of business processes 20 of 68

Encoding BPs into FSA

Loop

Block
repeat
condition

Bi

Bj

exit
condition

Automaton

s0

s1 s2 s3

s4s5

ls

E↘
Bi

E↗
Bi

lr

E↘
Bj

E↗
Bj

le

• The enter event is E↘
X = {ls};

• The exit event is E↗
X = {le};

• The repeat event is Rep(X) = {lr };
• Marking in initial state (=block might not be executed).

Matteo Zavatteri Supervisory control of business processes 21 of 68

Encoding BPs into FSA

While
Block

exit
condition

repeat
condition

Bi

Automaton

s0 s1

s2

s3

ws

wr

E↘
Bi

E↗
Bi

we

• The enter event is E↘
W = {ws};

• The exit event is E↗
W = {we};

• The repeat event is Rep(W) = {wr };
• Marking in initial state (=block might not be executed).

Matteo Zavatteri Supervisory control of business processes 22 of 68

Encoding BPs into FSA

Process
Block

Bi

Automaton

s0 s1 s2 s3 s4
ps E↘

Bi
E↗

Bi pe

• The enter event is E↘
P = {ps};

• The exit event is E↗
P = {pe};

• No repeat events;
• Marking in final state (=block must be executed).

Matteo Zavatteri Supervisory control of business processes 23 of 68

BP encoding example

t1 t2

{A, B} {A, B}

Process block GP : s0 s1 s2 s3 s4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : s0 s1 s2 s3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

GP∥GS∥Gt1∥Gt2 encodes all possible unconstrained executions.

Matteo Zavatteri Supervisory control of business processes 24 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : s0 s1 s2 s3 s4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : s0 s1 s2 s3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Initial state

Matteo Zavatteri Supervisory control of business processes 25 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : s0 s1 s2 s3 s4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : s0 s1 s2 s3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Process starts

Matteo Zavatteri Supervisory control of business processes 26 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : s0 s1 s2 s3 s4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : s0 s1 s2 s3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Sequence/Task t1 starts by committing either A or B for its
execution

Matteo Zavatteri Supervisory control of business processes 27 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : s0 s1 s2 s3 s4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : s0 s1 s2 s3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Task t1 ends

Matteo Zavatteri Supervisory control of business processes 28 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : s0 s1 s2 s3 s4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : s0 s1 s2 s3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Task t2 starts by committing either A or B for its execution

Matteo Zavatteri Supervisory control of business processes 29 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : g0 g1 g2 g3 g4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : g0 g1 g2 g3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Task t2/Sequence ends

Matteo Zavatteri Supervisory control of business processes 30 of 68

BP exeucution

t1 t2

{A, B} {A, B}

Process block GP : g0 g1 g2 g3 g4
ps

tA
1 ,

tB
1 te

2 pe

Sequence block GS : g0 g1 g2 g3

tA
1 ,

tB
1 te

1

tA
2 ,

tB
2

te
2

First Task Gt1 :
s0 s1

tA
1 , tB

1

te
1

Second Task Gt2 :
s0 s1

tA
2 , tB

2

te
2

Process ends

Matteo Zavatteri Supervisory control of business processes 31 of 68

Summary of FSA encoding

Encoding BPs into FSA

• runs in linear time in the number of blocks;
• computes a set of automata whose concurrent run allows for

all possible unconstrained executions;
• at this stage there is no need to compute parallel composition

explicitly;
• the encoding is correct-by-construction. . .

. . . because structure matters.

Matteo Zavatteri Supervisory control of business processes 32 of 68

Tentative commitment constraints

t1 t2

{A, B} {A, C}

These users must be different

Situation 1: t1 and t2 can’t be repeated
We must assign the right users.

Matteo Zavatteri Supervisory control of business processes 33 of 68

Tentative commitment constraints

t2t1

{A, C}{A, B}

These users must be different

exit

repeat

Situation 2: t1 and t2 can both be repeated
No different from the previous, but at every iteration all user
assignments are overwritten.

Matteo Zavatteri Supervisory control of business processes 34 of 68

Tentative commitment constraints

t1 t2

{A, B} {A, C}

These users must be different

exit

repeat

Situation 3: t1 cannot repeat, whereas t2 can.
We can’t make mistakes when assigning a user to t2.

Matteo Zavatteri Supervisory control of business processes 35 of 68

Tentative commitment constraints

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

Situation 4: t1 can be repeated, whereas t2 can’t
We can exit the loop only if there is a way to extend the partial
assignment to t1 to a complete one to t1 and t2. Otherwise, we
repeat and overwrite the partial assignment to t1.

Matteo Zavatteri Supervisory control of business processes 36 of 68

Tentative commitment constraints

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

Tentative commitment constraints
• are relational constraints evaluated under activity repetition;
• are centered around the idea that by repeating they overwrite

(partial) assignments;
• relational constraint is evaluated only when the resource

assignment is complete (=users assigned to both tasks).

TCCs become more intriguing under uncertainty: what if the
resource commitment to t1 were uncontrollable?

Matteo Zavatteri Supervisory control of business processes 37 of 68

Encoding of TCC

s1,0

s1,1

...

s1,m

tr
1
1

Rep(t 1)

SAT1(tr1
1)

{tr1
2 , . . . , trn

2 } ∪ Rep(t1)
t rm1

Rep(t1) SAT1(trm
1)

(a) Automaton R1.

s2,0 ...

s2,1

s2,n

tr
1
2

Rep(t 2)

SAT2(tr1
2)

{tr1
1 , . . . , trm

1 } ∪ Rep(t2)
t rn2

Rep(t2) SAT2(trn
2)

(b) Automaton R2.

Encoding a TCC in two automata

• Two automata (we don’t know which task is executed first).
• If t ri

1 is executed (ri is committed for t1), then SAT1(t ri
1) is the set of

resource commitments allowed for t2. Similarly for t2.
• Rep(ti) is the set of repeating events for ti (=reset of the current

tentative assignment).

Matteo Zavatteri Supervisory control of business processes 38 of 68

BP+TCC encoding example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 39 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Initial state

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 40 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Process block starts

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 41 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Sequence/Loop starts

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 42 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Task t1 starts (t1 = B)

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 43 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Task t1 ends

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 44 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Loop repeats (t1 = B is forgotten)

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 45 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Task t1 starts again (t1 = A)

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 46 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Task t1 ends

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 47 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Loop exists

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 48 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Task t2 starts (t2 = A)

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 49 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Task t2/Sequence ends

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 50 of 68

BP+TCC execution example

P: g0 g1 g2 g3 g4
ps ls te

2 pe

S: g0 g1 g2 g3
ls le

tA
2 ,

tC
2

te
2

GL :

s0 s1 s2 s3
ls tA

1 , tB
1 te

1

lr

le

Gt1 :
s0 s1

tA
1 , tB

1

te
1

Gt2 :
s0 s1

tA
2 , tC

2

te
2

Process ends

t2t1

{A, C}{A, B}

These users must be equal

exit

repeat

If t1 executes first:

R1 : s1,0

s1,1

s1,2

tA1

l r

tA
2

tA
2 , tC

2 , lr t B1

lr

If t2 executes first (never happens):

R2 : s2,0

s2,1

s2,2

tA2

tA
1

tA
1 , tB

1 t C2

Matteo Zavatteri Supervisory control of business processes 51 of 68

Supervisor Synthesis: Workflow

TCC1 FIRST
AUTOMATON R11

...

PARALLEL COMPOSITION

R := R11 || R12 || ... || Rm2

(REQUIREMENT AUTOMATON R)

PLANT
AUTOMATON GB1

...PLANT
AUTOMATON GB2

PLANT
AUTOMATON GBn

PARALLEL COMPOSITION

G := GB1 || GB1 || ... || GBn

(PLANT AUTOMATON G)

FORMALIZATION OF PLANT MODULES
(Business process Blocks)

FORMALIZATION OF REQUIREMENTS
(Tentative Commitment Constraints)

SUPERVISOR SYNTHESIS

ALGORITHM RUNS ON (G,R)

SUPERVISOR SYNTHESIS

UNCONTROLLABLE
(EMPTY SUPERVISOR)

SUPERVISOR
(AUTOMATON S)

TCC1 SECOND
AUTOMATON R12

TCCm SECOND
AUTOMATON Rm2

Deployment of controller: G∥S.

Matteo Zavatteri Supervisory control of business processes 52 of 68

Modular Supervisory Control

t1 t2

{A, B} {A, B}

t4

{A, B}

t3

{A, B}

These users must
be different

These users must
be different

• The user assignment to t1 and t2 has nothing to do with the
user assignment to t3 and t4;

• synthesizing a single controller is not wrong but we can do
much better

Decomposition (=detecting independent parts of the BP)

• 1 controller to handle t1 ̸= t2
• 1 controller to handle t3 ̸= t4

Matteo Zavatteri Supervisory control of business processes 53 of 68

What about this one?

t1 t2

{A,B} {A, C}

t3

{A, B}

≤≤

• Assume ti ≤ tj means that the user committed to ti must not
be more expert of that committed for tj ;

• Suppose we synthesize a controller for t1 ≤ t2 and another
controller for t2 ≤ t3.

Blocking problem!

• Suppose that t1 = B. Both controllers allow that assignment.
• Now, the first controller allows for the assignment t2 = C ,

whereas the second doesn’t.
• Overall, since all automata run in parallel, by synchronous

composition we have that there is no assignment for t2.
Matteo Zavatteri Supervisory control of business processes 54 of 68

Tree decomposition

We need to understand how to decompose BPs properly.

• Every structured BP is a tree
• Every node of the tree matches a specific block of the BP
• Every block matches an automaton in the encoding

Process

t1 t2

{A, B} {A, B}

t4

{A, B}

t3

{A, B}

These users must
be different

These users must
be different

Process tree

P

S

t1 t2 t3 t4

Structure matters.
Matteo Zavatteri Supervisory control of business processes 55 of 68

Tree decomposition

First (incomplete) approach

• Build a subtree for each TCC;
• Synthesize a controller for each tree: plant consists of all

automata appearing as nodes of the tree, whereas
requirements of all TCCs involving the leaves.

Process

t1 t2

{A, B} {A, B}

t4

{A, B}

t3

{A, B}

These users must
be different

These users must
be different

Process trees

P

S

t1 t2

P

S

t3 t4

Matteo Zavatteri Supervisory control of business processes 56 of 68

Tree decomposition

Process

t1 t2

{A, B} {A, B}

t4

{A, B}

t3

{A, B}

These users must
be different

These users must
be different

Process trees

P

S

t1 t2

P

S

t3 t4

Two supervisors

• S1 synthesized from G1 := GP∥GS∥Gt1∥Gt2 and R(t1; t2);
• S2 synthesized from G2 := GP∥GS∥Gt3∥Gt4 and R(t3; t4);

Deployment:
plant encoding︷ ︸︸ ︷

GP∥GS∥Gt1∥Gt2∥Gt3∥Gt4 ∥
all supervisors︷ ︸︸ ︷

S1∥S2

Matteo Zavatteri Supervisory control of business processes 57 of 68

Tree decomposition

Workflow
1. Find a particular set of trees that meets some properties
2. Synthesize a controller for each such tree

• If one of these controller does not exist the whole process is
uncontrollable;

• Otherwise, we can deploy all controllers in parallel and we are
equivalent to the monolithic approach.

Matteo Zavatteri Supervisory control of business processes 58 of 68

Tree decomposition rules

Rule 1
Every tree in the decomposition is a subtree of the process tree
rooted at P

Process

t1 t2

{A} {B}

t3 t4

{A} {B}

These users must be equal

case1

case2

Process tree

P

S

t1 t2

• TCC is unsatisfiable.
• If we can take the branch case2 we can avoid the problem.
• If the XOR is uncontrollable, then we will detect the problem

(and in case try to control before).
Matteo Zavatteri Supervisory control of business processes 59 of 68

Tree decomposition

Dependent blocks
Two blocks B1 and B2 are dependent is there exists t1 ∈ B1 and
t2 ∈ B2 such that t1 and t2 are involved in a TCC.

Rule 2
If two task blocks are dependent, then they belong to the same tree

Process

t1 t2

{A, B} {A, B}

These users
must be different

t3

{A, B}

These users
must be different

These users must be different

t4

{A, B}

Process tree

P

S

t1 t2 t4

Matteo Zavatteri Supervisory control of business processes 60 of 68

Tree decomposition

Rule 3
If all children blocks of a XOR block without default branch are
dependent with another block of the process, then the XOR block
belongs to exactly one tree (similarly for Loop blocks).

Process

t1 t2

{A} {B}

t3 t4

{A} {B}

These users must be equal

case1

case2

These users must be equal

Process tree

P

X

S1

t1 t2

S2

t3 t4

If we computed one supervisor for each branch we would get
non-empty supervisors, each one saying “take the other branch”.

Matteo Zavatteri Supervisory control of business processes 61 of 68

Tree decomposition

Rule 4
If two children blocks and of an AND node are dependent, then
they belong to exactly one tree.

Process

t1 t2

{A, B} {A, B}

t3 t4

{A, B} {A, B}

These users must be equal

These users
must be equal

t5

{C, D}

Process tree

P

S1

A

S2

t1 t2

S3

t3 t4

If we computed one supervisor for each branch we would get
non-empty supervisors, each one trying to execute the task with
uncontrollable resource commitment first.

Matteo Zavatteri Supervisory control of business processes 62 of 68

Tree decomposition

Rule 5
There are no redundant trees (=subtrees of already existing trees)
in the decomposition.

Process

t1 t2

{A, B} {A, B}

t3 t4

{A, B} {A, B}

These users must be equal

These users
must be equal

t5

{C, D}

Process trees
P

S1

A

S2

t1 t2

S3

t3 t4

P

S1

A

S2

t1 t2

S3

t3 t4

t5

Trees are “minimal”. Here, the leftmost is a subtree of the
rightmost (which adds nothing).

Matteo Zavatteri Supervisory control of business processes 63 of 68

Algorithm

Finest Tree Decomposition

• creates initial trees from tasks “up to” process node following
the parent relation;

• exploits strongly connected component of graphs to detect
dependent blocks;

• merges trees in case some rules applies;
• at the end returns a set of (minimal) trees.

Complexity
Computing the finest tree decomposition runs in time O(M × N),
where M is the number of of TCCs and N is the number of blocks
in the process.

Matteo Zavatteri Supervisory control of business processes 64 of 68

Modular supervisory synthesis

Approach
• Synthesize a controller for each tree

• take as plant all automata corresponding to the nodes of the
trees

• take as requirement all automata of TCCs involving tasks in
the trees (leaves)

• If one controller is empty, the whole process is uncontrollable.
• Otherwise, we deploy all controllers in parallel with the

process.

Matteo Zavatteri Supervisory control of business processes 65 of 68

Loan origination process

Process

Loan
Request

Process
Request

Anti Money
Laundering
Assessment

Tax Fraud
Assessment

Renegotiate
Loan

Assessment
Notification

Decision

Open
Credit Line

Accept
Notification

Reject
Notification

Log
Result

high amount

accept

reject

renegotiate

(Clerk) (Fraud Specialist)

(IRS Officer)

(Clerk, Manager)

(Customer)

(Customer)

(Manager)

(Clerk)

(Clerk)

(Clerk)

(Manager)

These users must be equal

{Alice, Bob}

{Alice, Bob}

{Charlie, David} {Charlie, Gary, Hannah}

{Evie, Frank}

{Charlie, David, Ian, Lucille}

{Ian, Lucille}

{Charlie, David}

{Charlie, David}

{Charlie, David}

These users must
not be relatives

These users
must be equal

These users must
be different

{Ian, Lucille}

These users must be equal

medium amount

low amount

confirm

Finest Tree Decomposition

P

T1

S1

LR L

RN

P

T2

S1

L

S2

X1

ML TX

AN

P

T3

S1

X2

A

CL AC

P

T4

S1

DC LG

We synthesize 4 controllers (one for each tree).

Matteo Zavatteri Supervisory control of business processes 66 of 68

Conclusions

Achieved results
• Dynamic controllability under task repetitions
• Encoding from BPs into FSAs
• Tentative commitment constraints
• Supervisory control synthesis
• Maximally-permissiveness
• Tree decomposition for modular synthesis

Matteo Zavatteri Supervisory control of business processes 67 of 68

Future work

What’s next?
• Definition of more expressive classes of

constraints (e.g., multi-tasking limitation)
• Definition of more complex properties on

process blocks and trees to get better tree
decompositions

• Development of symbolic synthesis algorithms
• Modeling of quantitative time
• Support of other kinds of uncertainty

Matteo Zavatteri Supervisory control of business processes 68 of 68

	Context and Motivation

