Front End: Lexical Analysis The Structure of a Compiler

Constructing a Lexical Analyser

- By hand: Identify lexemes in input and return tokens
- Automatically: Lexical-Analyser generator
- We will learn about *Lex*
- First we need to introduce:
 - Regular expressions
 - Non-deterministic automata
 - Deterministic automata

Scanning and Parsing

Figure 3.1: Interactions between the lexical analyzer and the parser

Important Notions

- Token: pair consisting of (token-name, opt-value)
- Pattern: form of the lexemes for a token
- Lexemes: sequence of characters matching the pattern for a token

Example

```
printf("Total = %d/n", score);
printf and score are lexemes for token id that matches pattern
in Table 3.2
```

Classes of tokens

Token	INFORMAL DESCRIPTION	SAMPLE LEXEMES
if	characters i, f	if
else	characters e, l, s, e	else
comparison	< or $>$ or $<=$ or $>=$ or $==$ or $!=$	<=, !=
id	letter followed by letters and digits	pi, score, D2
number	any numeric constant	3.14159, 0, 6.02e23
literal	anything but ", surrounded by "'s	"core dumped"

Figure 3.2: Examples of tokens

Languages

- An alphabet is any finite set of symbols
- A string over an alphabet is a finite sequence of symbols from that alphabet
- A language is any countable set of strings over a fixed alphabet.
- $\begin{aligned} |s| \text{ denotes the length of a string } \\ \varepsilon \text{ is the string of length } 0 \\ \text{Exponentiation: } s^0 &= \varepsilon \\ s^i &= s^{i-1} \cdot s \end{aligned}$

Operations on Strings

Parts of a string: example string "necessary"

- prefix : deleting zero or more tailing characters; eg: "nece"
- suffix : deleting zero or more leading characters; eg: "ssary"
- substring : deleting prefix and suffix; eg: "ssa"
- subsequence : deleting zero or more not necessarily contiguous symbols; eg: "ncsay"
- proper prefix, suffix, substring or subsequence: one that cannot equal to the original string;

Operations on Languages

Operation	DEFINITION AND NOTATION
Union of L and M	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
Concatenation of L and M	$LM = \{st \mid s \text{ is in } L \text{ and } t \text{ is in } M\}$
$Kleene \ closure \ of \ L$	$L^* = \cup_{i=0}^{\infty} L^i$
Positive closure of L	$L^+ = \cup_{i=1}^{\infty} L^i$

Figure 3.6: Definitions of operations on languages

We define:

$$L^0 = \{\varepsilon\}$$
$$L^i = L^{i-1}L.$$

Regular Expressions

Definition

A regular expression is defined inductively as follows:

Basis

- ε is a regular expression denoting the language $L(\varepsilon) = \{\varepsilon\}$
- If $a \in \Sigma$ then **a** is a regular expression denoting $L(\mathbf{a}) = \{a\}$
- Induction: if *r* and *s* are regular expression with languages $L(\mathbf{r})$ and $L(\mathbf{s})$
 - ▶ $(r)|(s), (r)(s), (r)^*, (r)$ are r.e. denoting $L(\mathbf{r}) \cup L(\mathbf{s}), L(\mathbf{r})L(\mathbf{s}), (L(\mathbf{r}))^*$ and $L(\mathbf{r})$.

Examples and Properties

Let
$$\Sigma = \{a, b\}.$$

- $a \mid b$ denotes the language $\{a, b\}$
- What are the laguages denoted by (a|b)(a|b), a*, (a|b)*, a|a*b.

LAW	DESCRIPTION	
r s = s r	is commutative	
r (s t) = (r s) t	is associative	
r(st) = (rs)t	Concatenation is associative	
r(s t) = rs rt; (s t)r = sr tr	Concatenation distributes over	
$\epsilon r = r\epsilon = r$	ϵ is the identity for concatenation	
$r^* = (r \epsilon)^*$	ϵ is guaranteed in a closure	
$r^{**} = r^{*}$	* is idempotent	

Figure 3.7: Algebraic laws for regular expressions

Non-regular sets

- Balanced or nested construct
 - Example: if $cond_1$ then if $cond_2$ then \cdots else \cdots else \cdots
 - Can be recognized by context free grammars.
- Matching strings:
 - $\{wcw\}$, where w is a string of a's and b's and c is a legal symbol.
 - Cannot be recognized even using context free grammars.
- Remark: anything that needs to "memorize" "non-constant" amount of information happened in the past cannot be recognized by regular expressions.

Recognition of Tokens

Problem: Find prefixes of the input string that match the patterns.

Example

Consider the following grammar

$$\begin{array}{rrrr} stmt & \rightarrow & \textbf{if } expr \ \textbf{then } stmt \\ & | & \textbf{if } expr \ \textbf{then } stmt \ \textbf{else } stmt \\ & | & \epsilon \\ expr & \rightarrow & term \ \textbf{relop } term \\ & | & term \ \textbf{term } \\ term & \rightarrow & \textbf{id} \\ & | & \textbf{number} \end{array}$$

Figure 3.10: A grammar for branching statements

Example (ctdn.)

$$\begin{array}{rcl} digit & \rightarrow & [0-9] \\ digits & \rightarrow & digit^+ \\ number & \rightarrow & digits (. \ digits)? \ (\ E \ [+-]? \ digits)? \\ letter & \rightarrow & [A-Za-z] \\ id & \rightarrow & letter \ (\ letter \ | \ digit)^* \\ if & \rightarrow & if \\ then & \rightarrow & then \\ else & \rightarrow & else \\ relop & \rightarrow & < | > | <= | >= | <> \end{array}$$

Figure 3.11: Patterns for tokens of Example 3.8

Example (ctdn.)

LEXEMES	TOKEN NAME	ATTRIBUTE VALUE
Any ws	-	_
if	if	_
then	then	_
else	else	_
Any id	id	Pointer to table entry
Any number	number	Pointer to table entry
<	relop	LT
<=	relop	LE
=	relop	EQ
<>	relop	NE
>	relop	GT
>=	relop	GE

Figure 3.12: Tokens, their patterns, and attribute values

Language Recognisers

Definition A Finite Automata is a transition graph that *recognises* whether an input string belongs to a given *regular language* or not.

- Nondeterministic Finite Automata (NFA)
- Deterministic Finite Automata (DFA)

Both recognise the same languages, i.e. the regular languages.

NFA

A NFA consists of:

- A finite set of states S
- A alphabet Σ of input symbols
- A transition function move : $S \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(S)$
- A initial state $s_0 \in S$
- A set of accepting states $F \subseteq S$.

An Example of NFA

Figure 3.26: NFA accepting $\mathbf{aa}^* | \mathbf{bb}^*$

Executing a NFA

An NFA accepts an input string x if and only if there is some path in the transition graph initiating from the starting state to some accepting state such that the edge labels along the path spell out x.

(a|b)*abb input string: **aabb**

 $0 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3 \text{ Accept!}$

 $0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{b} 0$ this is not an accepting path

A DFA is a special case of NFA where

- there are no ε -transitions
- For each s ∈ S and a ∈ Σ there is exactly one transition from s labelled a.

How to execute a DFA?

An Example of DFA

```
s = so;
c = nextChar();
while ( c != eof ) {
    s = move(s, c);
    c = nextChar();
}
if ( s is in F ) return "yes";
else return "no";
```

Figure 3.27: Simulating a DFA

Figure 3.28: DFA accepting $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

How to implement a NFA?

Recall: A NFA for language $(a|b)^*abb$ is

Figure 3.24: A nondeterministic finite automaton

Because of the non-deterministic choices, simulating a NFA is not as straightforward as for a DFA.

Convert NFA in DFA!

Algorithm for Subset Construction

Given NFA N constructs DFA D by simulating in parallel all the moves N can make on a input string.

OPERATION	DESCRIPTION
ϵ -closure(s)	Set of NFA states reachable from NFA state \boldsymbol{s}
	on ϵ -transitions alone.
ϵ -closure(T)	Set of NFA states reachable from some NFA state \boldsymbol{s}
	in set T on ϵ -transitions alone; $= \bigcup_{s \text{ in } T} \epsilon$ -closure(s).
move(T, a)	Set of NFA states to which there is a transition on
	input symbol a from some state s in T .

Figure 3.31: Operations on NFA states

Example

Figure 3.34: NFA N for $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	B	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 4, 5, 6, 7, 10\}$	E	B	C

Figure 3.35: Transition table Dtran for DFA D

Example (ctdn.)

Figure 3.36: Result of applying the subset construction to Fig. 3.34