Front End: Lexical Analysis

The Structure of a Compiler

Constructing a Lexical Analyser

@ By hand: ldentify lexemes in input and return tokens
o Automatically: Lexical-Analyser generator

@ We will learn about Lex
@ First we need to introduce:

» Regular expressions
» Non-deterministic automata
» Deterministic automata

Scanning and Parsing

source
program

foken
Lexical Parser
Analyzer)
gerNextToken
\\ 4
N
Symbol
Table

to semantic
analysis

Figure 3.1: Interactions between the lexical analyzer and the parser

Important Notions

@ Token: pair consisting of (token-name, opt-value)
@ Pattern: form of the lexemes for a token

@ Lexemes: sequence of characters matching the pattern for a
token

Example
printf("Total = %d/n", score);

printf and score are lexemes for token id that matches pattern
in Table 3.2

Classes of tokens

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, T if
else characters e, 1, s, e else
comparison | < or > or <= or >= or == or != <= 1=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159. 0, 6.02e23
literal anything but ", swrounded by "'s | "core dumped"

Figure 3.2: Examples of tokens

Languages

@ An alphabet is any finite set of symbols

@ A string over an alphabet is a finite sequence of symbols from
that alphabet

@ A language is any countable set of strings over a fixed
alphabet.

|s| denotes the length of a string

¢ is the string of length 0

Exponentiation: s = ¢
i si—1

S =)

Operations on Strings

Parts of a string: example string “necessary”

« prefix : deleting zero or more tailing characters;

« suffix : deleting zero or more leading characters; | eg

» substring : deleting prefix and suffix; m

o | subsequence : deleting zero or more not necessarily contiguous sym-

bols; | eg: “ncsay
« proper prefix, suffix, substring or subsequence: one that cannot equal

to the original string;

Operations on Languages

OPERATION DEFINITION AND NOTATION
Union of L and M LUM={s|sisin Lorsisin M}
Concatenation of L and M | LM = {st | s isin L and ¢ is in M}
Kleene closure of L L ==, L'
Positive closure of L Lt =ux, L

Figure 3.6: Definitions of operations on languages

We define:
L0 = {e}
L= 11,

Regular Expressions

Definition

A regular expression is defined inductively as follows:

@ Basis

» ¢ is a regular expression denoting the language L(c) = {e}
» If a € X then a is a regular expression denoting L(a) = {a}

@ Induction: if r and s are regular expression with languages
L(r) and L(s)
> (N)|(s), (r)(s), (r)*, (r) are r.e. denoting L(r) U L(s), L(r)L(s),
(L(r))* and L(r).

Examples and Properties
Let ¥ = {a, b}.

@ a|b denotes the language {a, b}

e What are the laguages denoted by (a|b)(a|b), a*, (a|b)*,

ala*b.

Law

DESCRIPTION

I“.« = .s“f‘

| is commutative

rl(slt) = (rls)lt

| 18 assoclative

r(st) = (rs)t

Coneatenation is associative

r(s|t) = rslrt; (s|t)r = sritr

Concatenation distributes over

€r =re—=r

¢ is the identity for concatenation

r = (rle)”

€ is guaranteed in a elosure

is idempotent

Figure 3.7: Algebraic laws for regular expressions

Non-regular sets

Balanced or nested construct
« Example:
if cond, then if cond, then --- else --- else - --

o Can be recognized by | context free grammars.

Matching strings:

o {wcw}, where w is a string of a’s and b’s and c is a legal symbol.

o Cannot be recognized even using context free grammars.
Remark: anything that needs to “memorize” “non-constant”
amount of information happened in the past cannot be
recognized by regular expressions.

Recognition of Tokens
Problem: Find prefixes of the input string that match the patterns.

Example

Consider the following grammar

stmt — if expr then stmt
| if expr then stmt else stmt

| e

expr — term relop term
| term

term — id
| number

Figure 3.10: A grammar for branching statements

Example (ctdn.)

digit — [0-9]
digits — digit"
number — digits (. digits)? (E [+-]7 digits)?
letter — |[A-Za-z]
id — letter (letter | digit)
i — if
then — then
else — else
relop — < | > | <= >=] =] <

Figure 3.11: Patterns for tokens of Example 3.8

Example (ctdn.)

LEXEMES TOKEN NAME ATTRIBUTE VALUL
Any ws - -
if if —
then then -
else else -
Any id id Pointer to table entry
Any number number Pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
relop GT
>= relop GE

Figure 3.12: Tokens, their patterns, and attribute values

Language Recognisers

Definition
A Finite Automata is a transition graph that recognises whether an
input string belongs to a given regular language or not.

e Nondeterministic Finite Automata (NFA)
@ Deterministic Finite Automata (DFA)

Both recognise the same languages, i.e. the regular languages.

NFA

A NFA consists of:

@ A finite set of states S

@ A alphabet X of input symbols

@ A transition function move : S x T U {e} — P(S)
@ Ainitial statesp € S

@ A set of accepting states F C S.

An Example of NFA

1 f———{(2)
f//'\'/ \\://
-
start .
—»(0\?/
\,/\

— SN
e o b V)
C—{)

{
NS

b

Figure 3.26: NFA accepting aa”|bb”

Executing a NFA

An NFA accepts an input string z if and only if there is some
path in the transition graph initiating from the starting state to
some accepting state such that the edge labels along the path
spell out z.

(a]b)*abb input string: aabb

-

start _a.®_b.@_b, (1) {06,11} :
2

0-%0-"1-"2-" 3 Accept! |

WNO

Ny

-

0-%0-%0-20-0 this is not an accepting path

DFA

A DFA is a special case of NFA where

@ there are no e-transitions

@ For each s € S and a € ¥ there is exactly one transition from
s labelled a.

How to execute a DFA?

An Example of DFA

5 = Soi

¢ = nextChar();

while (¢ 1= eof) {
s = move(s, c);

= neatChar():

}
if (sisin F') return "yes":
else return "no":

Figure 3.27: Simulating a DFA

s b
() _
start ‘\/\/“/ a — b ?;',,\\
—(0) (1) ()
- 7T /_ 7
\J -
a

Figure 3.28: DFA accepting (alb)*abb

How to implement a NFA?

Recall: A NFA for language (a|b)*abb is

4]
N
|
start \/d'\/“ a I/l"_‘ b TN b
S L/ TN
) :
NS
b

Figure 3.24: A nondeterministic finite automaton

Because of the non-deterministic choices, simulating a NFA is not
as straightforward as for a DFA.

Convert NFA in DFA!

Algorithm for Subset Construction

Given NFA N constructs DFA D by simulating in parallel all the
moves N can make on a input string.

OPERATION DESCRIPTION

e-closure(s) Set of NFA states reachable from NFA state s

on e-transitions alone.

e-closure(T) Set of NFA states reachable from some NFA state ¢

in set 1" on e-transitions alone; = Uy, ¢ e-closure(s).

move(I. a) Set of NFA states to which there is a transition on

input symbol a from some state s in 7',

Figure 3.31: Operations on NFA states

Example

/(3
/ N CA N\
st ¢ /!\/: g\/\ € N a b~ b\
—{0 —{1] (6 —(7 —{8 —>{9 —(10))
% A e N \J & 2 N
\ N\ / -
Y 2 Y //
NPARraay) P
\‘ ~
€

Figure 3.34: NFA N for (alb)“abb

NFA StTaTE DFA STATE a b
10,1,2.4.7} A B
7.8} B B

,-\
[
-
NEAata

Figure 3.35: Transition table Diran for DFA D

Example (ctdn.)

start

Figure 3.36: Result of applying the subset construction to Fig. 3.34

	The Role of a LA
	Specification of Tokens
	Recognition of Tokens
	Finite Automata

