
Data-intensive
computing systems

Hadoop

Universtity of Verona
Computer Science Department

 Damiano Carra

 2

Acknowledgements

!  Credits

–  Part of the course material is based on slides provided by the following

authors

•  Pietro Michiardi, Jimmy Lin

 3

A Simplified view of MapReduce

 4

From theory to practice

!  The story so far

–  MapReduce programming model

–  High level view of the execution framework

!  Next, we’ll see

–  Implementation of MapReduce: Hadoop

•  Implementation details

•  Types and Formats

!  Before this, we present the special file-system used in Hadoop

 5

Hadoop Distributed File-System (HDFS)

 6

Data and computation colocation

!  As dataset sizes increase, more computing capacity is required for
processing

!  As compute capacity grows, the link between the compute nodes and the
storage nodes becomes a bottleneck

–  One could think of special-purpose interconnects for high-performance
networking

–  This is often a costly solution as cost does not increase linearly with
performance

!  Key idea: abandon the separation between compute and storage nodes

–  This is exactly what happens in current implementations of the MapReduce
framework

–  A distributed filesystem is not mandatory, but highly desirable

 7

The Hadoop Distributed Filesystem

!  Large dataset(s) outgrowing the storage capacity of a single physical machine

–  Need to partition it across a number of separate machines

–  Network-based system, with all its complications

–  Tolerate failures of machines

!  Distributed filesystems are not new!

–  HDFS builds upon previous results, tailored to the specific requirements of MapReduce

–  Write once, read many workloads

–  Does not handle concurrency, but allow replication

–  Optimized for throughput, not latency

!  Hadoop Distributed Filesystem

–  Very large files

–  Streaming data access

–  Commodity hardware

 8

HDFS Blocks

!  (Big) files are broken into block-sized chunks

–  E.g, 64 MB or 128 MB

–  NOTE: A file that is smaller than a single block does not occupy a full block’s
worth of underlying storage

!  Blocks are stored on independent machines

–  Replicate across the local disks of nodes in the cluster

–  Reliability and parallel access

–  Replication is handled by storage nodes themselves (similar to chain
replication)

!  Why is a block so large?

–  Make transfer times larger than seek latency

–  E.g.: Assume seek time is 10ms and the transfer rate is 100 MB/s, if you want
seek time to be 1% of transfer time, then the block size should be 100MB

 9

NameNodes and DataNodes

!  NameNode!
–  Keeps metadata in RAM

–  Each block information occupies roughly 150 bytes of memory

–  Without NameNode, the filesystem cannot be used

•  Persistence of metadata: synchronous and atomic writes to NFS

!  Secondary NameNode!
–  Merges the namespace with the edit log

–  A useful trick to recover from a failure of the NameNode is to use the NFS copy
of metadata and switch the secondary to primary

!  DataNode!
–  They store data and talk to clients

–  They report periodically to the NameNode the list of blocks they hold

 10

Architecture

 11

Architecture

 12

Anatomy of a File Read

!  NameNode is only used to get block location

–  Unresponsive DataNode are discarded by clients

–  Batch reading of blocks is allowed

!  “External” clients

–  For each block, the NameNode returns a set of DataNodes holding a copy
thereof

–  DataNodes are sorted according to their proximity to the client

!  “MapReduce” clients

–  TaskTracker and DataNodes are colocated

–  For each block, the NameNode usually returns the local DataNode!

 13

Anatomy of a File Write

!  Details on replication

–  Clients ask NameNode for a list of suitable DataNodes!
–  This list forms a pipeline: first DataNode stores a copy of a block, then

forwards it to the second, and so on

!  Replica Placement

–  Tradeoff between reliability and bandwidth

–  Default placement:

•  First copy on the “same” node of the client, second replica is off-rack, third replica
is on the same rack as the second but on a different node

•  Since Hadoop 0.21, replica placement can be customized

 14

Network Topology and HDFS

 15

HDFS Coherency Model

!  Read your writes is not guaranteed

–  The namespace is updated

–  Block contents may not be visible after a write is finished

–  Application design (other than MapReduce) should use sync() to force
synchronization

–  sync() involves some overhead: tradeoff between robustness/consistency and
throughput

!  Multiple writers (for the same block) are not supported

–  Instead, different blocks can be written in parallel (using MapReduce)

 16

Hadoop MapReduce:
the Execution Framework

 17

Disclaimer

!  MapReduce APIs

–  Fast evolving

–  Sometimes confusing

!  Do NOT reply on these slides as a reference

–  Use appropriate API docs

 18

Terminology

!  MapReduce:

–  Job: an execution of a Mapper and Reducer across a data set

–  Task: an execution of a Mapper or a Reducer on a slice of data

–  Task Attempt: instance of an attempt to execute a task

–  Example:
•  Running “Word Count” across 20 files is one job

•  20 files to be mapped = 20 map tasks + some number of reduce tasks

•  At least 20 attempts will be performed... more if a machine crashes

!  Task Attempts

–  Task attempted at least once, possibly more

–  Multiple crashes on input imply discarding it

–  Multiple attempts may occur in parallel (speculative execution)

 19

Anatomy of a MapReduce Job Run

 20

Job Submission

!  JobClient class

–  The runJob() method creates a new instance of a JobClient

–  Then it calls the submitJob() on this class

!  Simple verifications on the Job

–  Is there an output directory?

–  Are there any input splits?

–  Can I copy the JAR of the job to HDFS?

!  Note: the JAR of the job is replicated 10 times

 21

Job Initialization

!  The JobTracker is responsible for:

–  Create an object for the job

–  Encapsulate its tasks

–  Bookkeeping with the tasks’ status and progress

!  This is where the scheduling happens

–  JobTracker performs scheduling by maintaining a queue

–  Queueing disciplines are pluggable

!  Compute mappers and reducers

–  JobTracker retrieves input splits (computed by JobClient)

–  Determines the number of Mappers based on the number of input splits

–  Reads the configuration file to set the number of Reducers

 22

Task Assignment

!  Hearbeat-based mechanism

–  TaskTrackers periodically send heartbeats to the JobTracker!
•  TaskTrackers is alive

•  Heartbeat contains information on availability of the TaskTrackers to execute a task

–  JobTracker piggybacks a task if TaskTracker is available

!  Selecting a task

–  JobTracker first needs to select a job (i.e. job scheduling)

–  TaskTrackers have a fixed number of slots for map and reduce tasks

–  JobTracker gives priority to map tasks (WHY?)

!  Data locality

–  JobTracker is topology aware

•  Useful for map tasks, unused for reduce tasks (WHY?)

 23

Task Execution

!  Task Assignment is done, now TaskTrackers can execute

–  Copy the JAR from the HDFS

–  Create a local working directory

–  Create an instance of TaskRunner!

!  TaskRunner launches a child JVM

–  This prevents bugs from stalling the TaskTracker!
–  A new child JVM is created per InputSplit!

•  Can be overridden by specifying JVM Reuse option, which is very useful for custom,
in-memory, combiners

!  Streaming and Pipes

–  User-defined map and reduce methods need not to be in Java

–  Streaming and Pipes allow C++ or python mappers and reducers

 24

Scheduling

!  FIFO Scheduler (default behavior)
–  Each job uses the whole cluster

–  Not suitable for shared production-level cluster

•  Long jobs monopolize the cluster

•  Short jobs can hold back and have no guarantees on execution time

!  Fair Scheduler
–  Every user gets a fair share of the cluster capacity over time

–  Jobs are placed in to pools, one for each user

•  Users that submit more jobs have no more resources than others

•  Can guarantee minimum capacity per pool

–  Supports preemption

!  Capacity Scheduler
–  Hierarchical queues (mimic an organization)

–  FIFO scheduling in each queue

–  Supports priority

 25

Handling Failures

In the real world, code is buggy, processes crash and machines fail

!  Task Failure
–  Case 1: map or reduce task throws a runtime exception

•  The child JVM reports back to the parent TaskTracker!
•  TaskTracker logs the error and marks the TaskAttempt as failed

•  TaskTracker frees up a slot to run another task

–  Case 2: Hanging tasks

•  TaskTracker notices no progress updates (timeout = 10 minutes)

•  TaskTracker kills the child JVM

–  JobTracker is notified of a failed task

•  Avoids rescheduling the task on the same TaskTracker!
•  If a task fails 4 times, it is not re-scheduled

•  Default behavior: if any task fails 4 times, the job fails

 26

Handling Failures (cont’d)

!  TaskTracker Failure
–  Types: crash, running very slowly

–  Heartbeats will not be sent to JobTracker!
–  JobTracker waits for a timeout (10 minutes), then it removes the TaskTracker from

its scheduling pool

–  JobTracker needs to reschedule even completed tasks (WHY?)

–  JobTracker needs to reschedule tasks in progress

–  JobTracker may even blacklist a TaskTracker if too many tasks failed

!  JobTracker Failure
–  Currently, Hadoop has no mechanism for this kind of failure

–  In future (and commercial) releases:

•  Multiple JobTrackers!

 27

Shuffle and Sort

!  The MapReduce framework guarantees the input to every reducer to be
sorted by key

–  The process by which the system sorts and transfers map outputs to reducers is
known as shuffle

!  Shuffle is the most important part of the framework, where the “magic”
happens

–  Good understanding allows optimizing both the framework and the execution
time of MapReduce jobs

!  Subject to continuous refinements

 28

Shuffle and Sort: the Map Side

 29

Shuffle and Sort: the Map Side

!  The output of a map task is not simply written to disk

–  In memory buffering

–  Pre-sorting

!  Circular memory buffer

–  100 MB by default

–  Threshold based mechanism to spill buffer content to disk

–  Map output written to the buffer while spilling to disk

–  If buffer fills up while spilling, the map task is blocked

!  Disk spills

–  Written in round-robin to a local dir

–  Output data is partitioned corresponding to the reducers they will be sent to

–  Within each partition, data is sorted (in-memory)

–  Optionally, if there is a combiner, it is executed just after the sort phase

 30

Shuffle and Sort: the Map Side

!  More on spills and memory buffer

–  Each time the buffer is full, a new spill is created

–  Once the map task finishes, there are many spills

–  Such spills are merged into a single partitioned and sorted output file

!  The output file partitions are made available to reducers over HTTP

–  There are 40 (default) threads dedicated to serve the file partitions to reducers

 31

Shuffle and Sort: the Reduce Side

!  The map output file is located on the local disk of tasktracker

!  Another tasktracker (in charge of a reduce task) requires input from many
other TaskTracker (that finished their map tasks)

–  How do reducers know which tasktrackers to fetch map output from?

•  When a map task finishes it notifies the parent tasktracker

•  The tasktracker notifies (with the heartbeat mechanism) the jobtracker

•  A thread in the reducer polls periodically the jobtracker

•  Tasktrackers do not delete local map output as soon as a reduce task has fetched
them (WHY?)

!  Copy phase: a pull approach

–  There is a small number (5) of copy threads that can fetch map outputs in
parallel

 32

Shuffle and Sort: the Reduce Side

!  The map outputs are copied to the the trasktracker running the reducer in
memory (if they fit)

–  Otherwise they are copied to disk

!  Input consolidation

–  A background thread merges all partial inputs into larger, sorted files

–  Note that if compression was used (for map outputs to save bandwidth),
decompression will take place in memory

!  Sorting the input

–  When all map outputs have been copied a merge phase starts

 33

Hadoop MapReduce:
Types and Formats

 34

Data Types: Keys and Values

Writable ! Defines a de/serialization protocol. Every
data type in Hadoop is a Writable.!

WritableComprable! Defines a sort order. All keys must be of this
type (but not values).!

IntWritable"
LongWritable!

Text!
…!

Concrete classes for different data types.!

SequenceFiles! Binary encoded of a sequence of "
key/value pairs!

 35

Map interface

!  Input / output to mappers and reducers

–  map: (k1, v1) � [(k2, v2)]

–  reduce: (k2, [v2]) � [(k3, v3)]

!  In Hadoop, a mapper is created as follows:

void map(k1 key, v1 value, Context context)

!  Types:

–  k1 types implement WritableComparable!
–  v1 types implement Writable!

!  What about “context”?
–  Used to send the data to the reducers

–  context.write(k2 outKey, v2 outValue)

•  k2 implements WritableComparable, v2 implements Writable!

 36

How the mapper get the data?

 37

Reading data

!  Datasets are specified by InputFormats!
–  InputFormats define input data (e.g. a file, a directory)

–  InputFormats identify partitions of the data that form an InputSplit!
•  InputSplit is a (reference to a) chunk of the input processed by a single map

–  InputFormats is a factory for RecordReader objects to extract key-value
records from the input source

!  Splits and records are logical, they are not physically bound to a file

 38

Relationship between InputSplit and HDFS blocks

 39

FileInputFormat!

!  Base class for all implementations of InputFormat that use files as
their data source

!  It provides a method for specifying the path where the input file(s) are
stored

–  The path can be a directory with many files in it

!  Example of implementation: TextInputFormat

–  treats each newline-terminated line of a file as a value
On the top of the Crumpetty Tree " (0, On the top of the Crumpetty Tree)

The Quangle Wangle sat, " (33, The Quangle Wangle sat,)

But his face you could not see, " (57, But his face you could not see,)

On account of his Beaver Hat. " (89, On account of his Beaver Hat.)

 40

Reduce interface

!  In Hadoop, a reducer is created as follows:

void reduce(k2 key, iterator<v2> values, Context context)

!  Types:

–  k2 types implement WritableComparable!
–  v2 types implement Writable!
–  Context is used to write data to the output

 41

Writing the output

 42

Writing the output

!  Analogous to InputFormat!

!  TextOutputFormat writes “key value <newline>” strings to output file

!  NullOutputFormat discards output

 43

Detour: how to divide the work among reducers?

!  Solution: Partitioner

–  It is in charge of assigning intermediate keys to reducers

–  it can be customized

!  Default: Hash-based partitioner

–  Computes the hash of the key modulo the number of reducers r

–  This ensures a roughly even partitioning of the key space

•  However, it ignores values: this can cause imbalance in the data processed by each
reducer

–  When dealing with complex keys, even the base partitioner may need
customization

 44

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

Partitioners

 45

Hadoop MapReduce:
Summary

 46

Basic Cluster Components

!  One of each:

–  Namenode (NN): master node for HDFS

–  Jobtracker (JT): master node for job submission

!  Set of each per slave machine:

–  Tasktracker (TT): contains multiple task slots

–  Datanode (DN): serves HDFS data blocks

* Not quite… leaving aside YARN for now!

 47

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

 48

Basic Hadoop API

!  Mapper

–  void setup(Mapper.Context context)  
Called once at the beginning of the task

–  void map(K key, V value, Mapper.Context context)  
Called once for each key/value pair in the input split

–  void cleanup(Mapper.Context context)  
Called once at the end of the task

!  Reducer/Combiner

–  void setup(Reducer.Context context)  
Called once at the start of the task

–  void reduce(K key, Iterable<V> values, Reducer.Context
context)  
Called once for each key

–  void cleanup(Reducer.Context context)  
Called once at the end of the task *Note that there are two versions of the API!!

 49

Basic Hadoop API

!  Partitioner

–  int getPartition(K key, V value, int numPartitions)  
Get the partition number given total number of partitions

!  Job

–  Represents a packaged Hadoop job for submission to cluster

–  Need to specify input and output paths

–  Need to specify input and output formats

–  Need to specify mapper, reducer, combiner, partitioner classes

–  Need to specify intermediate/final key/value classes

–  Need to specify number of reducers (WHY?)

*Note that there are two versions of the API!!

 50

Three Gotchas

!  Avoid object creation at all costs

–  Reuse Writable objects, change the payload

!  Execution framework reuses value object in reducer

!  Passing parameters via class statics

