
Data-intensive
computing systems

Basic Algorithm Design Patterns

Universtity of Verona
Computer Science Department

 Damiano Carra

 2

Acknowledgements

!  Credits

–  Part of the course material is based on slides provided by the following
authors

•  Pietro Michiardi, Jimmy Lin

 3

Algorithm Design

!  Developing algorithms involve:

–  Preparing the input data

–  Implement the mapper and the reducer

–  Optionally, design the combiner and the partitioner

!  How to recast existing algorithms in MapReduce?

–  It is not always obvious how to express algorithms

–  Data structures play an important role

–  Optimization is hard

" The designer needs to “bend” the framework

!  Learn by examples

–  “Design patterns”

–  Synchronization is perhaps the most tricky aspect

 4

Algorithm Design (cont’d)

!  Aspects that are not under the control of the designer

–  Where a mapper or reducer will run

–  When a mapper or reducer begins or finishes

–  Which input key-value pairs are processed by a specific mapper

–  Which intermediate key-value pairs are processed by a specific reducer

!  Aspects that can be controlled

–  Construct data structures as keys and values

–  Execute user-specified initialization and termination code for mappers and reducers

–  Preserve state across multiple input and intermediate keys in mappers and reducers

–  Control the sort order of intermediate keys, and therefore the order in which a reducer
will encounter particular keys

–  Control the partitioning of the key space, and therefore the set of keys that will be
encountered by a particular reducer

 5

Algorithm Design (cont’d)

!  MapReduce jobs can be complex

–  Many algorithms cannot be easily expressed as a single MapReduce job

–  Decompose complex algorithms into a sequence of jobs

•  Requires orchestrating data so that the output of one job becomes the input to the
next

–  Iterative algorithms require an external driver to check for convergence

!  Basic design patterns

–  Local Aggregation

–  Pairs and Stripes

–  Relative frequencies

–  Inverted indexing

 6

Local aggregation

 7

Local aggregation

!  Between the Map and the Reduce phase, there is the Shuffle phase

–  Transfer over the network the intermediate results from the processes that
produced them to those that consume them

–  Network and disk latencies are expensive

•  Reducing the amount of intermediate data translates into algorithmic efficiency

!  We have already talked about

–  Combiners

–  In-Mapper Combiners

–  In-Memory Combiners

 8

In-Mapper Combiners: example

 9

In-Memory Combiners: example

 10

Algorithmic correctness with local aggregation

!  Example

–  We have a large dataset where input keys are strings and input values are
integers

–  We wish to compute the mean of all integers associated with the same key

•  In practice: the dataset can be a log from a website, where the keys are user IDs and
values are some measure of activity

!  Next, a baseline approach

–  We use an identity mapper, which groups and sorts appropriately input key-
value paris

–  Reducers keep track of running sum and the number of integers encountered

–  The mean is emitted as the output of the reducer, with the input string as the
key

 11

Example: basic MapReduce to compute the mean of values

 12

Using the combiners

!  Note: operations are not distributive

–  Mean(1,2,3,4,5) ≠ Mean(Mean(1,2), Mean(3,4,5))

–  Hence: a combiner cannot output partial means and hope that the reducer will
compute the correct final mean

!  Next, a failed attempt at solving the problem

–  The combiner partially aggregates results by separating the components to
arrive at the mean

–  The sum and the count of elements are packaged into a pair

–  Using the same input string, the combiner emits the pair

 13

Example: Wrong use of combiners

 14

Wrong use of combiners

!  What’s wrong with the previous approach?

–  Trivially, the input/output keys are not correct

–  Remember that combiners are optimizations, the algorithm should work even
when “removing” them

!  Executing the code omitting the combiner phase

–  The output value type of the mapper is integer

–  The reducer expects to receive a list of integers

–  Instead, we make it expect a list of pairs

!  Next, a correct implementation of the combiner

–  Note: the reducer is similar to the combiner!

–  Exercise: verify the correctness

 15

Example: Correct use of combiners

 16

Using in-memory combining

!  Inside the mapper, the partial sums and counts are held in memory (across
inputs)

!  Intermediate values are emitted only after the entire input split is
processed

!  Similarly to before, the output value is a pair

 17

Pairs and stripes

 18

Pairs and stripes

!  A common approach in MapReduce: build complex keys

–  Data necessary for a computation are naturally brought together by the
framework

!  Two basic techniques:

–  Pairs: similar to the example on the average

–  Stripes: uses in-mapper memory data structures

!  Next, we focus on a particular problem that benefits from these two
methods

 19

Problem statement

!  Building word co-occurrence matrices for large corpora

–  The co-occurrence matrix of a corpus is a square n × n matrix

–  n is the number of unique words (i.e., the vocabulary size)

–  A cell mij contains the number of times the word wi co-occurs with word wj
within a specific context

–  Context: a sentence, a paragraph a document or a window of m words

–  NOTE: the matrix may be symmetric in some cases

!  Motivation

–  This problem is a basic building block for more complex operations

–  Estimating the distribution of discrete joint events from a large number of
observations

–  Similar problem in other domains:

•  Customers who buy this tend to also buy that

 20

Observations

!  Space requirements

–  Clearly, the space requirement is O(n2), where n is the size of the vocabulary

–  For real-world (English) corpora n can be hundreds of thousands of words, or
even billion of worlds

!  So what’s the problem?

–  If the matrix can fit in the memory of a single machine, then just use whatever
naive implementation

–  Instead, if the matrix is bigger than the available memory, then paging would
kick in, and any naive implementation would break

 21

Word co-occurrence: the Pairs approach

Input to the problem: Key-value pairs in the form of a docid and a doc

!  The mapper:

–  Processes each input document

–  Emits key-value pairs with:

•  Each co-occurring word pair as the key

•  The integer one (the count) as the value

–  This is done with two nested loops:

•  The outer loop iterates over all words

•  The inner loop iterates over all
neighbors

!  The reducer:

–  Receives pairs relative to co-
occurring words

–  Computes an absolute count of the
joint event

–  Emits the pair and the count as the
final key-value output

•  Basically reducers emit the cells of
the matrix

 22

Word co-occurrence: the Pairs approach

 23

Word co-occurrence: the Stripes approach

Input to the problem: Key-value pairs in the form of a docid and a doc

!  The mapper:

–  Same two nested loops structure as
before

–  Co-occurrence information is first
stored in an associative array

–  Emit key-value pairs with words as keys
and the corresponding arrays as values

!  The reducer:

–  Receives all associative arrays related
to the same word

–  Performs an element-wise sum of all
associative arrays with the same key

–  Emits key-value output in the form of
word, associative array

•  Basically, reducers emit rows of the
co-occurrence matrix

 24

Word co-occurrence: the Stripes approach

 25

Pairs and Stripes, a comparison

!  The pairs approach

–  Generates a large number of key-value pairs (also intermediate)

–  The benefit from combiners is limited, as it is less likely for a mapper to
process multiple occurrences of a word

–  Does not suffer from memory paging problems

!  The pairs approach

–  More compact

–  Generates fewer and shorted intermediate keys

•  The framework has less sorting to do

–  The values are more complex and have serialization/deserialization overhead

–  Greatly benefits from combiners, as the key space is the vocabulary

–  Suffers from memory paging problems, if not properly engineered

 26

Relative frequencies

 27

“Relative” Co-occurrence matrix

!  Problem statement

–  Similar problem as before, same matrix

–  Instead of absolute counts, we take into consideration the fact that some
words appear more frequently than others

•  Word wi may co-occur frequently with word wj simply because one of the two is
very common

–  We need to convert absolute counts to relative frequencies f(wj |wi)

•  What proportion of the time does wj appear in the context of wi ?

!  Formally, we compute:

f(wj|wi) = N(wi,wj) / Σw′ N(wi,w′)

–  N(·, ·) is the number of times a co-occurring word pair is observed

–  The denominator is called the marginal

 28

Computing relative frequencies

!  The stripes approach

–  In the reducer, the counts of all words that co-occur with the conditioning
variable (wi) are available in the associative array

–  Hence, the sum of all those counts gives the marginal

–  Then we divide the the joint counts by the marginal and we’re done

!  The pairs approach

–  The reducer receives the pair (wi , wj) and the count

–  From this information alone it is not possible to compute f(wj |wi)

–  Fortunately, as for the mapper, also the reducer can preserve state across
multiple keys

•  We can buffer in memory all the words that co-occur with wi and their counts

•  This is basically building the associative array in the stripes method

 29

Computing relative frequencies: a basic approach

!  We must define the sort order of the pair

–  In this way, the keys are first sorted by the left word, and then by the right word (in the
pair)

–  Hence, we can detect if all pairs associated with the word we are conditioning on (wi)
have been seen

–  At this point, we can use the in-memory buffer, compute the relative frequencies and
emit

!  We must define an appropriate partitioner

–  The default partitioner is based on the hash value of the intermediate key, modulo the
number of reducers

–  For a complex key, the raw byte representation is used to compute the hash value

•  Hence, there is no guarantee that the pair (dog, aardvark) and (dog,zebra) are sent to the same
reducer

–  What we want is that all pairs with the same left word are sent to the same reducer

 30

Computing relative frequencies: order inversion

!  The key is to properly sequence data presented to reducers

–  If it were possible to compute the marginal in the reducer before
processing the join counts, the reducer could simply divide the joint
counts received from mappers by the marginal

–  The notion of “before” and “after” can be captured in the ordering of
key-value pairs

–  The programmer can define the sort order of keys so that data needed
earlier is presented to the reducer before data that is needed later

 31

Computing relative frequencies: order inversion

!  Recall that mappers emit pairs of co-occurring words as keys

!  The mapper:

–  additionally emits a “special” key of the form (wi , �)

–  The value associated to the special key is one, that represents the contribution
of the word pair to the marginal

–  Using combiners, these partial marginal counts will be aggregated before being
sent to the reducers

!  The reducer:

–  We must make sure that the special key-value pairs are processed before any
other key-value pairs where the left word is wi

–  We also need to modify the partitioner as before, i.e., it would take into
account only the first word

 32

Computing relative frequencies: order inversion

!  Memory requirements:

–  Minimal, because only the marginal (an integer) needs to be stored

–  No buffering of individual co-occurring word

–  No scalability bottleneck

!  Key ingredients for order inversion

–  Emit a special key-value pair to capture the marginal

–  Control the sort order of the intermediate key, so that the special key-value
pair is processed first

–  Define a custom partitioner for routing intermediate key-value pairs

–  Preserve state across multiple keys in the reducer

 33

Inverted indexing

 34

Inverted indexing

! Quintessential large-data problem: Web search
–  A web crawler gathers the Web objects and store them

–  Inverted indexing
•  Given a term t " Retrieve relevant web objects that contains t

–  Document ranking
•  Sort the relevant web objects

! Here we focus on the inverted indexing

–  For each term t, the output is a list of documents and the number of
occurrences of the term t

 35

Inverted indexing: visual solution

