
Data-intensive  
computing systems  

Basic Algorithm Design Patterns  

 

Universtity of Verona 
Computer Science Department 

 
 Damiano Carra 

 2 

Acknowledgements 

!  Credits 

–  Part of the course material is based on slides provided by the following 
authors 

•  Pietro Michiardi, Jimmy Lin 



 3 

Algorithm Design 

!  Developing algorithms involve: 

–  Preparing the input data 

–  Implement the mapper and the reducer 

–  Optionally, design the combiner and the partitioner 

!  How to recast existing algorithms in MapReduce? 

–  It is not always obvious how to express algorithms 

–  Data structures play an important role 

–  Optimization is hard 

" The designer needs to “bend” the framework 

!  Learn by examples 

–  “Design patterns” 

–  Synchronization is perhaps the most tricky aspect 
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Algorithm Design (cont’d) 

!  Aspects that are not under the control of the designer 

–  Where a mapper or reducer will run 

–  When a mapper or reducer begins or finishes 

–  Which input key-value pairs are processed by a specific mapper 

–  Which intermediate key-value pairs are processed by a specific reducer 

!  Aspects that can be controlled 

–  Construct data structures as keys and values 

–  Execute user-specified initialization and termination code for mappers and reducers 

–  Preserve state across multiple input and intermediate keys in mappers and reducers 

–  Control the sort order of intermediate keys, and therefore the order in which a reducer 
will encounter particular keys 

–  Control the partitioning of the key space, and therefore the set of keys that will be 
encountered by a particular reducer 
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Algorithm Design (cont’d) 

!  MapReduce jobs can be complex 

–  Many algorithms cannot be easily expressed as a single MapReduce job 

–  Decompose complex algorithms into a sequence of jobs 

•  Requires orchestrating data so that the output of one job becomes the input to the 
next 

–  Iterative algorithms require an external driver to check for convergence 

!  Basic design patterns 

–  Local Aggregation 

–  Pairs and Stripes 

–  Relative frequencies 

–  Inverted indexing 
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Local aggregation 
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Local aggregation 

!  Between the Map and the Reduce phase, there is the Shuffle phase 

–  Transfer over the network the intermediate results from the processes that 
produced them to those that consume them 

–  Network and disk latencies are expensive 

•  Reducing the amount of intermediate data translates into algorithmic efficiency 

!  We have already talked about 

–  Combiners 

–  In-Mapper Combiners 

–  In-Memory Combiners 
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In-Mapper Combiners: example 
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In-Memory Combiners: example 
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Algorithmic correctness with local aggregation 

!  Example 

–  We have a large dataset where input keys are strings and input values are 
integers 

–  We wish to compute the mean of all integers associated with the same key 

•  In practice: the dataset can be a log from a website, where the keys are user IDs and 
values are some measure of activity 

!  Next, a baseline approach 

–  We use an identity mapper, which groups and sorts appropriately input key-
value paris 

–  Reducers keep track of running sum and the number of integers encountered 

–  The mean is emitted as the output of the reducer, with the input string as the 
key 
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Example: basic MapReduce to compute the mean of values 
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Using the combiners 

!  Note: operations are not distributive 

–  Mean(1,2,3,4,5) ≠ Mean(Mean(1,2), Mean(3,4,5)) 

–  Hence: a combiner cannot output partial means and hope that the reducer will 
compute the correct final mean 

!  Next, a failed attempt at solving the problem 

–  The combiner partially aggregates results by separating the components to 
arrive at the mean 

–  The sum and the count of elements are packaged into a pair 

–  Using the same input string, the combiner emits the pair 
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Example: Wrong use of combiners 
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Wrong use of combiners 

!  What’s wrong with the previous approach? 

–  Trivially, the input/output keys are not correct 

–  Remember that combiners are optimizations, the algorithm should work even 
when “removing” them 

!  Executing the code omitting the combiner phase 

–  The output value type of the mapper is integer 

–  The reducer expects to receive a list of integers 

–  Instead, we make it expect a list of pairs 

!  Next, a correct implementation of the combiner 

–  Note: the reducer is similar to the combiner! 

–  Exercise: verify the correctness 
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Example: Correct use of combiners 
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Using in-memory combining 

!  Inside the mapper, the partial sums and counts are held in memory (across 
inputs) 

!  Intermediate values are emitted only after the entire input split is 
processed 

!  Similarly to before, the output value is a pair 
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Pairs and stripes 
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Pairs and stripes 

!  A common approach in MapReduce: build complex keys 

–  Data necessary for a computation are naturally brought together by the 
framework 

!  Two basic techniques: 

–  Pairs: similar to the example on the average 

–  Stripes: uses in-mapper memory data structures 

!  Next, we focus on a particular problem that benefits from these two 
methods 
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Problem statement 

!  Building word co-occurrence matrices for large corpora 

–  The co-occurrence matrix of a corpus is a square n × n matrix 

–  n is the number of unique words (i.e., the vocabulary size) 

–  A cell mij contains the number of times the word wi co-occurs with word wj 
within a specific context 

–  Context: a sentence, a paragraph a document or a window of m words 

–  NOTE: the matrix may be symmetric in some cases 

!  Motivation 

–  This problem is a basic building block for more complex operations 

–  Estimating the distribution of discrete joint events from a large number of 
observations 

–  Similar problem in other domains: 

•  Customers who buy this tend to also buy that 
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Observations 

!  Space requirements 

–  Clearly, the space requirement is O(n2), where n is the size of the vocabulary 

–  For real-world (English) corpora n can be hundreds of thousands of words, or 
even billion of worlds 

!  So what’s the problem? 

–  If the matrix can fit in the memory of a single machine, then just use whatever 
naive implementation 

–  Instead, if the matrix is bigger than the available memory, then paging would 
kick in, and any naive implementation would break 
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Word co-occurrence: the Pairs approach 

Input to the problem: Key-value pairs in the form of a docid and a doc 

!  The mapper: 

–  Processes each input document 

–  Emits key-value pairs with: 

•  Each co-occurring word pair as the key 

•  The integer one (the count) as the value 

–  This is done with two nested loops: 

•  The outer loop iterates over all words 

•  The inner loop iterates over all 
neighbors 

!  The reducer: 

–  Receives pairs relative to co-
occurring words 

–  Computes an absolute count of the 
joint event 

–  Emits the pair and the count as the 
final key-value output 

•  Basically reducers emit the cells of 
the matrix 
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Word co-occurrence: the Pairs approach 
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Word co-occurrence: the Stripes approach 

Input to the problem: Key-value pairs in the form of a docid and a doc 

!  The mapper: 

–  Same two nested loops structure as 
before 

–  Co-occurrence information is first 
stored in an associative array 

–  Emit key-value pairs with words as keys 
and the corresponding arrays as values 

!  The reducer: 

–  Receives all associative arrays related 
to the same word 

–  Performs an element-wise sum of all 
associative arrays with the same key 

–  Emits key-value output in the form of 
word, associative array 

•  Basically, reducers emit rows of the 
co-occurrence matrix 
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Word co-occurrence: the Stripes approach 
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Pairs and Stripes, a comparison 

!  The pairs approach 

–  Generates a large number of key-value pairs (also intermediate) 

–  The benefit from combiners is limited, as it is less likely for a mapper to 
process multiple occurrences of a word 

–  Does not suffer from memory paging problems 

!  The pairs approach 

–  More compact 

–  Generates fewer and shorted intermediate keys 

•  The framework has less sorting to do 

–  The values are more complex and have serialization/deserialization overhead 

–  Greatly benefits from combiners, as the key space is the vocabulary 

–  Suffers from memory paging problems, if not properly engineered 
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Relative frequencies 
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“Relative” Co-occurrence matrix 

!  Problem statement 

–  Similar problem as before, same matrix 

–  Instead of absolute counts, we take into consideration the fact that some 
words appear more frequently than others 

•  Word wi may co-occur frequently with word wj simply because one of the two is 
very common 

–  We need to convert absolute counts to relative frequencies f(wj |wi ) 

•  What proportion of the time does wj appear in the context of wi ? 

!  Formally, we compute: 

f(wj|wi) = N(wi,wj) / Σw′ N(wi,w′) 

–  N(·, ·) is the number of times a co-occurring word pair is observed 

–  The denominator is called the marginal 

 28 

Computing relative frequencies 

!  The stripes approach 

–  In the reducer, the counts of all words that co-occur with the conditioning 
variable (wi) are available in the associative array 

–  Hence, the sum of all those counts gives the marginal 

–  Then we divide the the joint counts by the marginal and we’re done 

!  The pairs approach 

–  The reducer receives the pair (wi , wj) and the count 

–  From this information alone it is not possible to compute f(wj |wi) 

–  Fortunately, as for the mapper, also the reducer can preserve state across 
multiple keys 

•  We can buffer in memory all the words that co-occur with wi and their counts 

•  This is basically building the associative array in the stripes method 
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Computing relative frequencies: a basic approach 

!  We must define the sort order of the pair 

–  In this way, the keys are first sorted by the left word, and then by the right word (in the 
pair) 

–  Hence, we can detect if all pairs associated with the word we are conditioning on (wi) 
have been seen 

–  At this point, we can use the in-memory buffer, compute the relative frequencies and 
emit 

!  We must define an appropriate partitioner 

–  The default partitioner is based on the hash value of the intermediate key, modulo the 
number of reducers 

–  For a complex key, the raw byte representation is used to compute the hash value 

•  Hence, there is no guarantee that the pair (dog, aardvark) and (dog,zebra) are sent to the same 
reducer 

–  What we want is that all pairs with the same left word are sent to the same reducer 
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Computing relative frequencies: order inversion 

!  The key is to properly sequence data presented to reducers 

–  If it were possible to compute the marginal in the reducer before 
processing the join counts, the reducer could simply divide the joint 
counts received from mappers by the marginal 

–  The notion of “before” and “after” can be captured in the ordering of 
key-value pairs 

–  The programmer can define the sort order of keys so that data needed 
earlier is presented to the reducer before data that is needed later 
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Computing relative frequencies: order inversion 

!  Recall that mappers emit pairs of co-occurring words as keys 

!  The mapper: 

–  additionally emits a “special” key of the form (wi , �) 

–  The value associated to the special key is one, that represents the contribution 
of the word pair to the marginal 

–  Using combiners, these partial marginal counts will be aggregated before being 
sent to the reducers 

!  The reducer: 

–  We must make sure that the special key-value pairs are processed before any 
other key-value pairs where the left word is wi 

–  We also need to modify the partitioner as before, i.e., it would take into 
account only the first word 
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Computing relative frequencies: order inversion 

!  Memory requirements: 

–  Minimal, because only the marginal (an integer) needs to be stored 

–  No buffering of individual co-occurring word 

–  No scalability bottleneck 

!  Key ingredients for order inversion 

–  Emit a special key-value pair to capture the marginal 

–  Control the sort order of the intermediate key, so that the special key-value 
pair is processed first 

–  Define a custom partitioner for routing intermediate key-value pairs 

–  Preserve state across multiple keys in the reducer 
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Inverted indexing 
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Inverted indexing 

! Quintessential large-data problem: Web search 
–  A web crawler gathers the Web objects and store them 

–  Inverted indexing 
•  Given a term t " Retrieve relevant web objects that contains t 

–  Document ranking 
•  Sort the relevant web objects 

! Here we focus on the inverted indexing 

–  For each term t, the output is a list of documents and the number of 
occurrences of the term t 
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Inverted indexing: visual solution 


