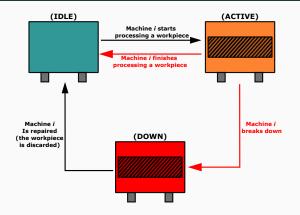
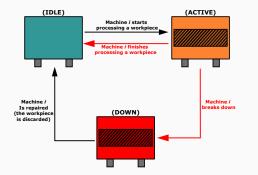

Systems Design Laboratory

A Manufacturing Process

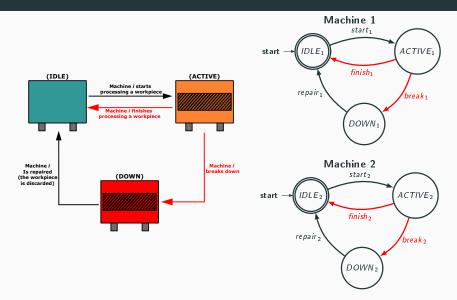
Matteo Zavatteri


Department of Computer Science, University of Verona, ITALY

A Manufacturing Process


- The workflow is intended "left to right"
- Two machines processing workpieces
 - Machine 1 has an infinite source of workpieces
 - Machine 2 has an infinite depot of workpieces
- A Buffer (e.g., a conveyor) passing workpieces from Machine 1 to Machine 2

Machine i = 1, 2


- Machine *i* starts and finishes processing workpieces (exactly like the Machine-Warehouse example)
- Machine *i* can also break down. If it does, it can be repaired and the workpiece being processed is discarded
- Machine *i* can't be prevented from finishing or breaking (why?)
- Initially, Machine *i* is IDLE.

Automaton for Machine i = 1, 2

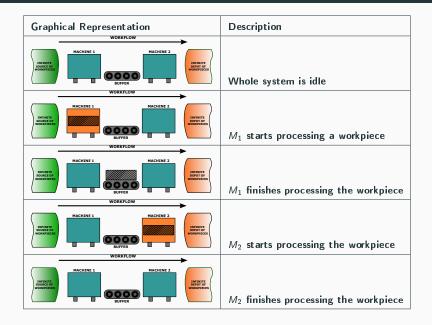
- States?
- Transitions?
- Event controllability?

Automaton for Machine i = 1, 2

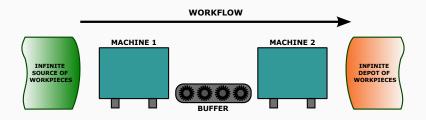
- Buffer has a capacity of 1 workpieces
- Buffer is synchronized with Machine 1 and Machine 2
- Buffer fills when Machine 1 finishes processing a workpiece
- Buffer empties when Machine 2 starts processing a workpiece
- Initially, the Buffer is empty

In other words, Machine 1 puts workpieces on the buffer, whereas Machine 2 removes workpieces from the buffer

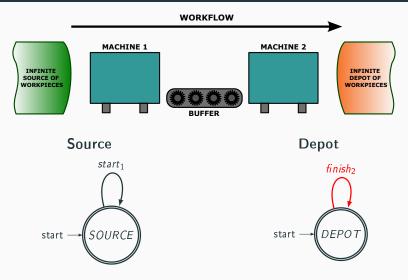
Automaton for Buffer B


- States?
- Transitions?
- Event controllability?

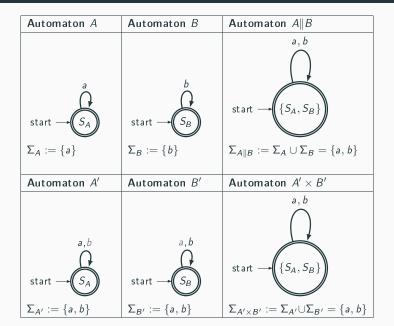
Automaton for Buffer B



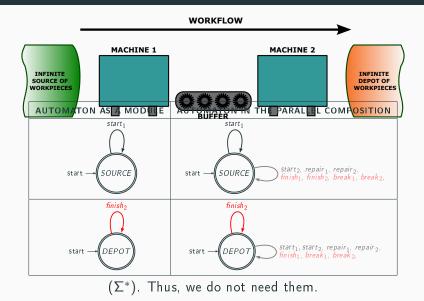
A Manufacturing Process - Usecase Example



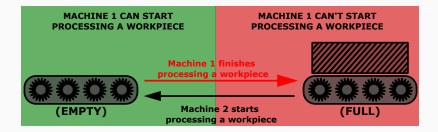
What about source and depot?


- Can you think about two automata to model them?
- States?
- Transitions?
- Event controllability?

What about source and depot?

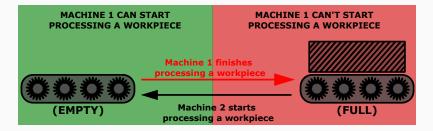

Do we really need them?

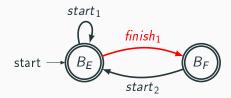
Recall on the Equivalence Between Parallel and Product



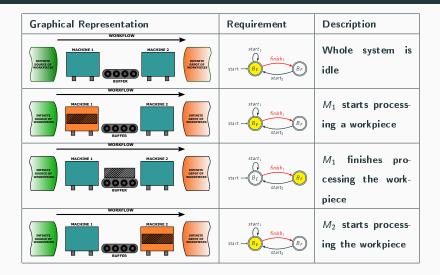
11

What about source and depot?


Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty

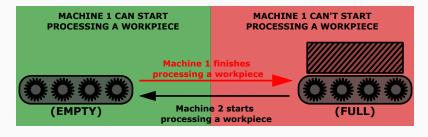


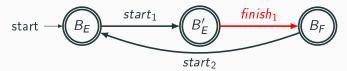
What should the automaton look like?


Requirement R₁ - Essential Desired Behavior

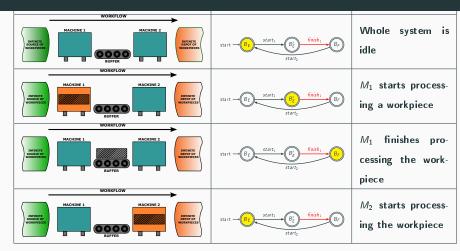
Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty

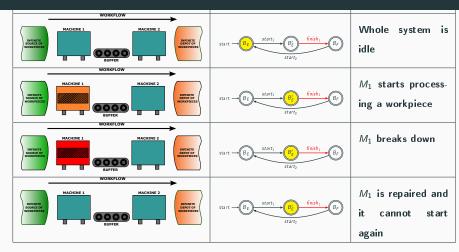
Requirement R_1 - Usecase 1




Requirment R_1 - Usecase 2

What about this version for R_1 ? Right or wrong?

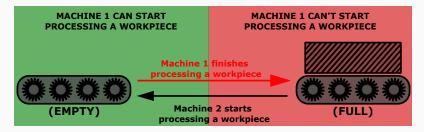

Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty

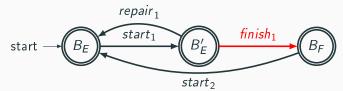

Could this be another automaton modeling R_1 ?

Right or wrong? - Usecase 1

Seems working, right? ...right?

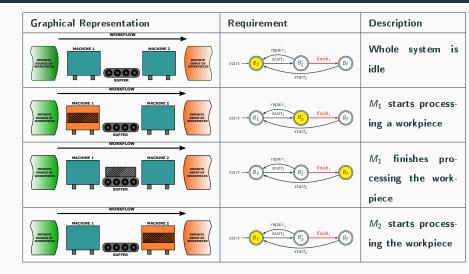
Right or wrong? - Usecase 2

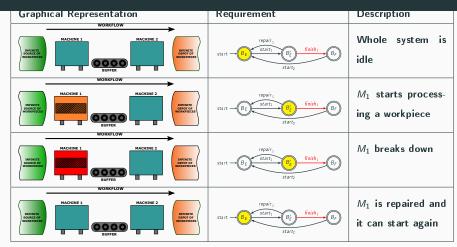



Wrong! But still OK if Machine 1 never breaks (Usecase 1)

What's missing?

Alternative R₁


Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty



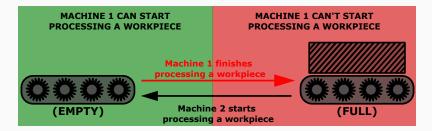
Right! Can we simplify it?

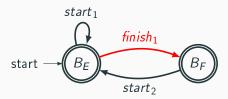
Alternative R_1 - Usecase 1


Alternative R_1 - Usecase 2

Correct! Can we simplify the requirement?

Alternative R₁ - Simplification

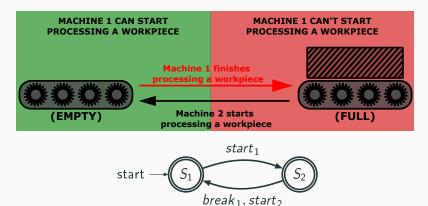

Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty



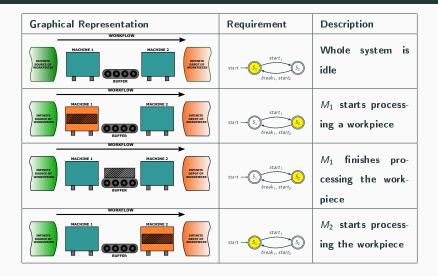
Can Machine 1 be repaired if it didn't even start? (=can we further simplify the requirement?)

Requirement R₁ - Essential Desired Behavior

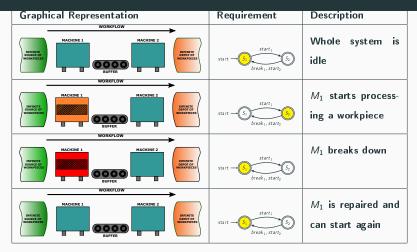
Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty



That's it! You got it!

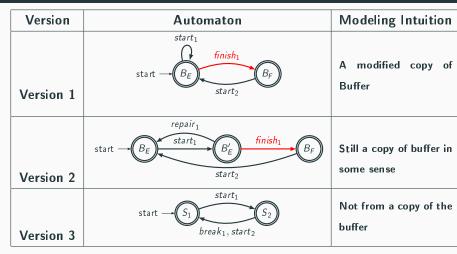

Another alternative version for R_1 - Right or wrong?

Requirement 1: Machine 1 can start processing a workpiece only if the Buffer is empty



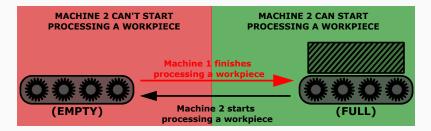
What about this one (no longer related to the buffer automaton)?

Alternative R_1 - Usecase 1



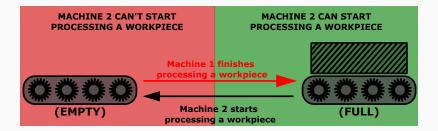
Alternative R_1 - Usecase 2

Correct!


Automata for R₁ - Summary of Equivalent Versions

Homework: check that the effect of each version of R_1 on the plant is the same.

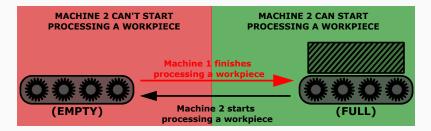
Requirement R₂ - Automaton


Requirement 2: Machine 2 can start processing a workpiece only if the Buffer is full

- States?
- Transitions?
- Event controllability?

Requirement R₂ - Essential Desired Behavior

Requirement 2: Machine 2 can start processing a workpiece only if the Buffer is full

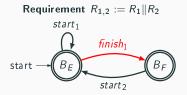


Doesn't it look familiar?

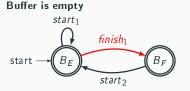
Requirement R₂ - Essential Desired Behavior

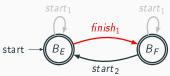
Requirement 2: Machine 2 can start processing a workpiece only if the Buffer is full

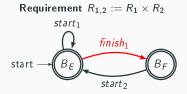
 R_2 is already enforced by the plant. Note that $B \| R_2 = B \times R_2 = B$.


Requirement $R_{1,2}$ - Parallel composition point of view

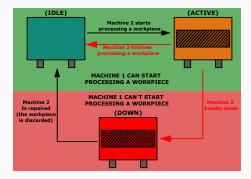
Requirement R_1 (v.1): Machine 1 can start processing a workpiece only if the


Requirement R_2 : Machine 2 can start processing a workpiece only if the Buffer is full

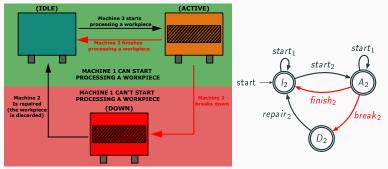



Requirement $R_{1,2}$ - Product point of view

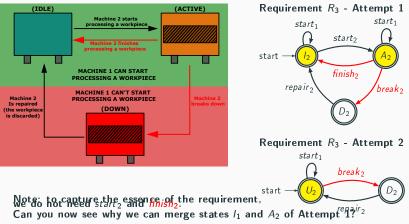
Requirement R_1 (v.1): Machine 1 can start processing a workpiece only if the


Requirement R_2 : Machine 2 can start processing a workpiece only if the Buffer is full

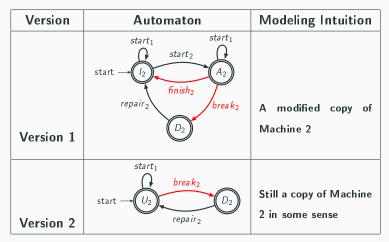
Requirement R₃ - Essential Desired Behavior


Requirement 3: Machine 1 can't start processing a workpiece if Machine 2 is down.

- States?
- Transitions?
- Event controllability?

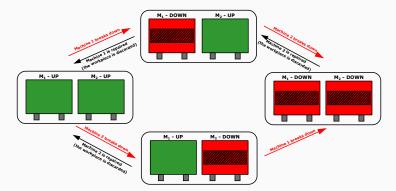

Requirement R_3 - Attempt 1

Requirement 3: Machine 1 can't start processing a workpiece if Machine 2 is down.

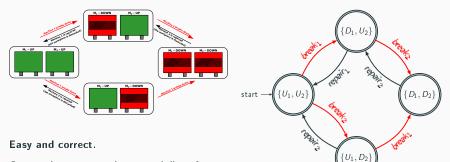


Correct, but maybe not "so essential". Can we get a smaller automaton?

Requirement 3: Machine 1 can't start processing a workpiece if Machine 2 is down.


Automata for R₃ - Summary of Equivalent Versions

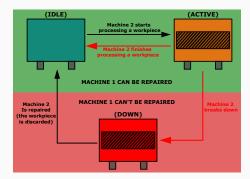
Homework: check that the effect of each version of R_3 on the plant is the same.


Requirement R₄ - Attempt 1

Requirement 4: If both Machines are down, then Machine 2 is repaired before Machine 1.

- States?
- Transitions?
- Event controllability?

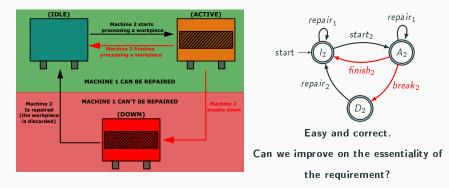
Requirement 4: If both Machines are down, then Machine 2 is repaired before Machine 1.



Can we improve on the essentiality of

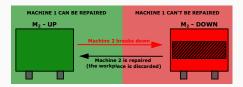
the requirement?

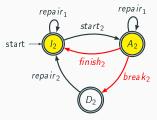
Requirement R₄ - Attempt 2 - Desired Behavior


Requirement 4: If both Machines are down, then Machine 2 is repaired before Machine 1.

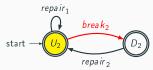
- States?
- Transitions?
- Event controllability?

Requirement R₄ - Attempt 2 - Automaton

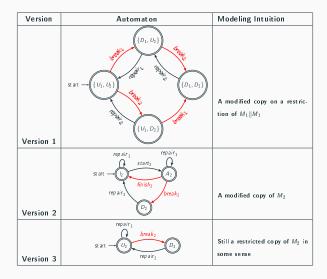

Requirement 4: If both Machines are down, then Machine 2 is repaired before Machine 1.


Rationale: When Machine 2 is down if we repair Machine 1 it means that Machine 1 is down as well.

Requirement R₄ - Attempt 3 - Automaton

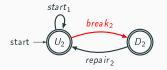

Requirement 4: If both Machines are down, then Machine 2 is repaired before Machine 1.

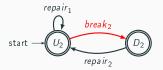
Requirement R₄ - Attempt 2

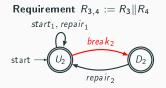

Requirement R₄ - Attempt 3

Recall the concept of "Machine is UP" (=Machine is NOT down)

42

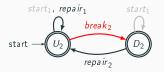

Automata for R₄ - Summary of Equivalent Versions

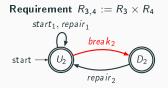

Homework: check that the effect of each version of R_4 on the plant is the same.


Requirement $R_{3,4}$ - Parallel composition point of view

Requirement R_3 (v.2): Machine 1 can't start processing a workpiece if Machine 2 is down.


Requirement R_4 (v.3): If both Machines are down, then Machine 2 is repaired before Machine 1.




Requirement $R_{3,4}$ - Product composition point of view

Requirement R_3 (v.2): Machine 1 can't start processing a workpiece if Machine 2 is down.

Requirement R_4 (v.3): If both Machines are down, then Machine 2 is repaired before Machine 1.

