
Algorithm for Eliminating Left Recursion

Input: A grammar G with no cycles and no ε-productions.
Output: An equivalent grammar with no left recursion.



Eliminating ε-productions

ε-production: A→ ε

nullable: A⇒+ ε

The set of nullable symbols N (G ) can be calculated as follows:

1. N0(G ) = {A ∈ N | A→ ε ∈ P};
2. Ni+1(G ) = Ni (G ) ∪

{B ∈ N | B → C1 · · ·Ck ∈ P
e C1, . . . ,Ck ∈ Ni (G )}.

Ni (G ) ⊆ Ni+1(G );

there exists ic such that Nic (G ) = Nic+1(G ).



Eliminating ε-productions
An Algorithm:

1 Pick a production X → α with α 6= ε.

2 Calculate N (G ).

3 Let Z1, . . . ,Zk be all the occurrences of nullables in α. Add to
P all productions obtained from X → α by eliminating all
possible subsets of Z1, . . . ,Zk (including the empty set.

4 If α is composed by nullable non-terminals only, then no
production is added to P.

Example

A → aXbXcXd

X → ε

becomes

A→ aXbXcXd | aXbXcd | aXbcXd | abXcXd | abXcd | abcXd | abcd



Exercise

Apply the algorithm to the grammar

S → aSbS | bSaS | ε



Single Productions

A single production is A→ B, with A and B non-terminals.

A single pair is a pair of non-terminals A and B such that
A⇒∗ B with only single productions.

Computing the set U(G ) of single pairs:

1. U0(G ) = {(A,A) | A ∈ N};
2. Ui+1(G ) = Ui (G ) ∪

{(A,C ) | B → C ∈ P
with C ∈ N and (A,B) ∈ Ui (G )}.

Eliminating all single pairs from a grammar corresponds to
eliminating cycles.



Eliminating Cycles

Given a grammar G = (T ,N,P,S), construct G ′ = (T ,N,P ′,S)
where P ′ contains all non-single productions of P, B → α, for all
(A,B) ∈ U(G ).

Exercise: apply the above method to the following grammar:

S → A | SaB
A → B | AbB
B → C | BcC
C → d | e | f


