Algorithm for Eliminating Left Recursion

Input: A grammar *G* with no cycles and no ε -productions. **Output**: An equivalent grammar with no left recursion.

 $\begin{array}{ll} 1) & \operatorname{arrange the nonterminals in some order } A_1, A_2, \ldots, A_n. \\ 2) & \operatorname{for} (\operatorname{each} i \operatorname{from} 1 \operatorname{to} n) \\ 3) & & \operatorname{for} (\operatorname{each} j \operatorname{from} 1 \operatorname{to} i - 1) \\ 4) & & \operatorname{replace each production of the form } A_i \to A_j \gamma \text{ by the} \\ & & & & \\ productions & A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, \text{ where} \\ & & & & \\ A_j \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k \text{ are all current } A_j \text{-productions} \\ 5) & & \\ 6) & & & \\ 6) & & & \\ 7) & \\ \end{array}$

Figure 4.11: Algorithm to eliminate left recursion from a grammar

Eliminating ϵ -productions

- ϵ -production: $A \rightarrow \epsilon$
- nullable: $A \Rightarrow^+ \epsilon$

The set of nullable symbols $\mathcal{N}(G)$ can be calculated as follows:

1.
$$\mathcal{N}_0(G) = \{A \in N \mid A \to \epsilon \in P\};$$

2. $\mathcal{N}_{i+1}(G) = \mathcal{N}_i(G) \cup \{B \in N \mid B \to C_1 \cdots C_k \in P \in C_1, \dots, C_k \in \mathcal{N}_i(G)\}.$

- $\mathcal{N}_i(G) \subseteq \mathcal{N}_{i+1}(G);$
- there exists i_c such that $\mathcal{N}_{i_c}(G) = \mathcal{N}_{i_c+1}(G)$.

Eliminating ϵ -productions

An Algorithm:

- **1** Pick a production $X \to \alpha$ with $\alpha \neq \epsilon$.
- ² Calculate $\mathcal{N}(G)$.
- Let Z₁,..., Z_k be all the occurrences of nullables in α. Add to P all productions obtained from X → α by eliminating all possible subsets of Z₁,..., Z_k (including the empty set.
- If α is composed by nullable non-terminals only, then **no** production is added to *P*.

Example

$$egin{array}{rcl} A &
ightarrow & aXbXcXd \ X &
ightarrow & \epsilon \end{array}$$

becomes

 $A \rightarrow aXbXcXd \mid aXbXcd \mid aXbcXd \mid abXcXd \mid abXcd \mid abcXd \mid abcd$

Apply the algorithm to the grammar

$$S \rightarrow aSbS \mid bSaS \mid \epsilon$$

Single Productions

- A single production is $A \rightarrow B$, with A and B non-terminals.
- A single pair is a pair of non-terminals A and B such that $A \Rightarrow^* B$ with only single productions.

Computing the set $\mathcal{U}(G)$ of single pairs:

1.
$$\mathcal{U}_0(G) = \{(A, A) \mid A \in N\};$$

2. $\mathcal{U}_{i+1}(G) = \mathcal{U}_i(G) \cup \{(A, C) \mid B \rightarrow C \in P \text{ with } C \in N \text{ and } (A, B) \in \mathcal{U}_i(G)\}.$

Eliminating all single pairs from a grammar corresponds to eliminating cycles.

Eliminating Cycles

Given a grammar G = (T, N, P, S), construct G' = (T, N, P', S)where P' contains all non-single productions of $P, B \rightarrow \alpha$, for all $(A, B) \in \mathcal{U}(G)$.

Exercise: apply the above method to the following grammar:

$$\begin{array}{rrrr} S & \rightarrow & A \mid SaB \\ A & \rightarrow & B \mid AbB \\ B & \rightarrow & C \mid BcC \\ C & \rightarrow & d \mid e \mid f \end{array}$$