8.7 Exercises - Part 5

(Published on December 13, solutions to be submitted on January 10, 2017.)

Exercise 17. Let K be a field and Q be the Kronecker quiver $1 \xrightarrow{} 2$.

- (a) Let $\lambda \in K \setminus \{0\}$ and let M_{λ} be the representation $K \xrightarrow{\lambda} K$. Show that there is a short exact sequence $\varepsilon_{\lambda} \colon 0 \to S(2) \to M_{\lambda} \to S(1) \to 0$.
- (b) Let $\lambda, \mu \in K \setminus \{0\}$. Show that ε_{λ} and ε_{μ} are equivalent if and only if $\lambda = \mu$.

Exercise 18. Let A, B and B' be R-modules. Let $\beta \in \operatorname{Hom}_R(B, B')$. Show that the map $\operatorname{Ext}^1_R(A,\beta) \colon \operatorname{Ext}^1_R(A,B) \to \operatorname{Ext}^1_R(A,B')$, where the assignment $[\varepsilon] \mapsto [\beta \varepsilon]$ is given by sending the short exact sequence $\varepsilon \colon 0 \to B \to E \to A \to 0$ to the short exact sequence $\beta \varepsilon$ via the pushout,

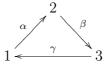
$$\begin{array}{cccc} \varepsilon \colon 0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0 \\ & \beta & & & & \\ \beta & & & & \\ \beta \varepsilon \colon 0 \longrightarrow B' \longrightarrow E' \longrightarrow A \longrightarrow 0 \end{array}$$

is well defined.

Exercise 19. (a) Show that an *R*-module *P* is projective if and only if $\operatorname{Ext}_{R}^{n}(P, B) = 0$ for all *R*-modules *B* and for all n > 0.

- (b) Let $P_{\bullet}: \dots P_2 \xrightarrow{p_2} P_1 \xrightarrow{p_1} P_0 \xrightarrow{p_0} A \longrightarrow 0$ be a projective resolution of an *R*-module A and $K_n = \ker p_n$ for each $n \ge 0$. Show that $\operatorname{Ext}^1_R(K_n, B) \cong \operatorname{Ext}^{n+2}_R(A, B)$ for all $n \ge 0$.
- (c) Given $A \in R$ Mod, show that if $\operatorname{Ext}_{R}^{n+1}(A, B) = 0$ for all *R*-modules *B*, then there is a projective resolution of *A* of the form $0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to A$.
- (d) Given $B \in R$ Mod, show that if $\operatorname{Ext}_{R}^{n+1}(A, B) = 0$ for all *R*-modules *A*, then there is an injective (co)resolution of *B* of the form $0 \to B \to E^{0} \to E^{1} \to \cdots \to E^{n-1} \to E^{n} \to 0$.
- (e) Conclude that $\sup\{\operatorname{proj} \dim A \mid A \in R \mod\} = \sup\{\operatorname{inj} \dim B \mid B \in R \mod\}$.

Exercise 20. Let K be a field and Q the quiver



- (a) Let $\Lambda_1 = KQ/\mathcal{I}_1$, where $\mathcal{I}_1 = (\alpha \gamma)$.
 - (i) Determine all indecomposable projective representations of Λ_1 .
 - (ii) Compute the global dimension of Λ_1 .
- (b) Let $\Lambda_2 = KQ/\mathcal{I}_2$, where $\mathcal{I}_2 = (\alpha \gamma, \gamma \beta)$. Compute the global dimension of Λ_2 .
- (c) Let $\Lambda_3 = KQ/\mathcal{I}_3$, where $\mathcal{I}_3 = (\alpha\gamma, \gamma\beta, \beta\alpha)$. Compute the global dimension of Λ_3 .