8.7 Exercises - Part 5

(Published on December 13, solutions to be submitted on January 10, 2017.)
Exercise 17. Let K be a field and Q be the Kronecker quiver $1 \longrightarrow 2$.
(a) Let $\lambda \in K \backslash\{0\}$ and let M_{λ} be the representation $K \xrightarrow[{ }^{\prime}]{\xrightarrow{\lambda}} K$. Show that there is a short exact sequence $\varepsilon_{\lambda}: 0 \rightarrow S(2) \rightarrow M_{\lambda} \rightarrow S(1) \rightarrow 0$.
(b) Let $\lambda, \mu \in K \backslash\{0\}$. Show that ε_{λ} and ε_{μ} are equivalent if and only if $\lambda=\mu$.

Exercise 18. Let A, B and B^{\prime} be R-modules. Let $\beta \in \operatorname{Hom}_{R}\left(B, B^{\prime}\right)$. Show that the map $\operatorname{Ext}_{R}^{1}(A, \beta): \operatorname{Ext}_{R}^{1}(A, B) \rightarrow \operatorname{Ext}_{R}^{1}\left(A, B^{\prime}\right)$, where the assignment $[\varepsilon] \mapsto[\beta \varepsilon]$ is given by sending the short exact sequence $\varepsilon: 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ to the short exact sequence $\beta \varepsilon$ via the pushout,

is well defined.
Exercise 19. (a) Show that an R-module P is projective if and only if $\operatorname{Ext}_{R}^{n}(P, B)=0$ for all R-modules B and for all $n>0$.
(b) Let $P_{\bullet}: \cdots P_{2} \xrightarrow{p_{2}} P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} A \longrightarrow 0$ be a projective resolution of an R-module A and $K_{n}=\operatorname{ker} p_{n}$ for each $n \geq 0$. Show that $\operatorname{Ext}_{R}^{1}\left(K_{n}, B\right) \cong \operatorname{Ext}_{R}^{n+2}(A, B)$ for all $n \geq 0$.
(c) Given $A \in R$ Mod, show that if $\operatorname{Ext}_{R}^{n+1}(A, B)=0$ for all R-modules B, then there is a projective resolution of A of the form $0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow A$.
(d) Given $B \in R$ Mod, show that if $\operatorname{Ext}_{R}^{n+1}(A, B)=0$ for all R-modules A, then there is an injective (co)resolution of B of the form $0 \rightarrow B \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n-1} \rightarrow$ $E^{n} \rightarrow 0$.
(e) Conclude that $\sup \{\operatorname{proj} \operatorname{dim} A \mid A \in R \operatorname{Mod}\}=\sup \{\operatorname{inj} \operatorname{dim} B \mid B \in R \operatorname{Mod}\}$.

Exercise 20. Let K be a field and Q the quiver

(a) Let $\Lambda_{1}=K Q / \mathcal{I}_{1}$, where $\mathcal{I}_{1}=(\alpha \gamma)$.
(i) Determine all indecomposable projective representations of Λ_{1}.
(ii) Compute the global dimension of Λ_{1}.
(b) Let $\Lambda_{2}=K Q / \mathcal{I}_{2}$, where $\mathcal{I}_{2}=(\alpha \gamma, \gamma \beta)$. Compute the global dimension of Λ_{2}.
(c) Let $\Lambda_{3}=K Q / \mathcal{I}_{3}$, where $\mathcal{I}_{3}=(\alpha \gamma, \gamma \beta, \beta \alpha)$. Compute the global dimension of Λ_{3}.

