Fourier Transform

Contents

- Signals as functions (1D, 2D)
- Tools
- Continuos Time Fourier Transform (CTFT)
- Discrete Time Fourier Transform (DTFT)
- Discrete Fourier Transform (DFT)
- Discrete Cosine Transform (DCT)
- Sampling theorem

Signals as functions

1. Continuous functions of real independent variables

- 1D: $f=f(x)$
- 2D: $f=f(x, y) x, y$
- Real world signals (audio, ECG, images)

2. Real valued functions of discrete variables

- 1D: $f=f[k]$
- 2D: $f=f[i, j]$
- Sampled signals

3. Discrete functions of discrete variables

- 1D: $y=y[k]$
- 2D: $y=y[i, j]$
- Sampled and quantized signals
- For ease of notations, we will use the same notations for 2 and 3

Images as functions

- Gray scale images: 2D functions
- Domain of the functions: set of (x, y) values for which $f(x, y)$ is defined : 2D lattice $[i, j]$ defining the pixel locations
- Set of values taken by the function : gray levels
- Digital images can be seen as functions defined over a discrete domain $\{i, j$: $0<i<I, 0<j<J\}$
- I,J: number of rows (columns) of the matrix corresponding to the image
- $f=f[i, j]$: gray level in position [i,j]

Example 1: δ function

$$
\begin{aligned}
& \delta[i, j]=\left\{\begin{array}{cc}
1 & i=j=0 \\
0 & i, j \neq 0 ; i \neq j
\end{array}\right. \\
& \delta[i, j-J]= \begin{cases}1 & i=0 ; j=J \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Example 2: Gaussian

Continuous function

$$
f(x, y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Discrete version

$$
f[i, j]=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

Example 3: Natural image

Example 3: Natural image

Continuous Time Fourier Transform (CTFT)

Time is a real variable (t)
Frequency is a real variable (ω)
Signals: 1D

The idea

A signal can be interpreted as en electromagnetic wave. This consists of lights of different "color", or frequency, that can be split apart usign an optic prism. Each component is a "monochromatic" light with sinusoidal shape.
Following this analogy, each signal can be decomposed into its "sinusoidal" components which represent its "colors".

Of course these components in general do not correspond to visible monochromatic light. However, they give an idea of how fast are the changes of the signal.

CTFT: Concept

- A signal can be represented as a weighted sum of sinusoids.
- Fourier Transform is a change of basis, where the basis functions consist of sins and cosines (complex exponentials).

FIGURE 4.1 The function at the bottom is the sum of the four functions above it. Fourier's idea in 1807 that periodic functions could be represented as a weighted sum of sines and cosines was met with skepticism.
[Gonzalez Chapter 4]

Continuous Time Fourier Transform (CTFT)

- Define frequency
$=1 / T$
cycles per unit time cycles per unit distance
- Here $\mathrm{f}=1 \quad \mathrm{~T}=1$

Fourier Transform

- Cosine/sine signals are easy to define and interpret.
- Analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals.
- A complex number has real and imaginary parts: $z=x+j y$
- The Eulero formula links complex exponential signals and trigonometric functions

$$
\cos \alpha=\frac{e^{i \alpha}+e^{-i \alpha}}{2}
$$

$$
r \mathrm{e}^{j \alpha}=r(\cos \alpha+j \sin \alpha) \Longleftrightarrow \sin \alpha=\frac{e^{i \alpha}-e^{-i \alpha}}{2 i}
$$

CTFT

- Continuous Time Fourier Transform
- Continuous time a-periodic signal
- Both time (space) and frequency are continuous variables
- NON normalized frequency ω is used
- Fourier integral can be regarded as a Fourier series with fundamental frequency approaching zero
- Fourier spectra are continuous
- A signal is represented as a sum of sinusoids (or exponentials) of all frequencies over a continuous frequency interval

Fourier integral

$$
\begin{array}{ll}
F(\omega)=\int_{t} f(t) e^{-j \omega t} d t & \text { analysis } \\
f(t)=\frac{1}{2 \pi} \int_{\omega} F(\omega) e^{j \omega t} d \omega & \text { synthesis }
\end{array}
$$

CTFT of real signals

- Real signals: each signal sample is a real number
- Property: the CTFT is symmetric

$$
\hat{f}(-\omega)=f(\omega)
$$

$$
\begin{aligned}
& f(t) \rightarrow \hat{f}(\omega) \\
& f(-t) \rightarrow \hat{f}(-\omega)=\hat{f}^{*}(\omega)
\end{aligned}
$$

Proof
$\Im\{f(-t)\}=\int_{-\infty}^{+\infty} f(-t) e^{-j \omega t} d t=\int_{-\infty}^{+\infty} f\left(t^{\prime}\right) e^{j \omega t^{\prime}} d t^{\prime}=\hat{f}(-\omega)$

Sinusoids

- Frequency domain characterization of signals

$$
F(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t
$$

Signal domain

Frequency domain (spectrum, absolute value of the transform)

Gaussian

Time domain

rect

Time domain

Example

Example

Properties

Table 2.1	Fourier Transform Properties		
Property	Function	Fourier Transform	
	$f(t)$	$\hat{f}(\omega)$	
Inverse	$\hat{f}(t)$	$2 \pi f(-\omega)$	$\mathbf{(2 . 1 5)}$
Convolution	$f_{1} \star f_{2}(t)$	$\hat{f}_{1}(\omega) \hat{f}_{2}(\omega)$	$\mathbf{(2 . 1 6)}$
Multiplication	$f_{1}(t) f_{2}(t)$	$\frac{1}{2 \pi} \hat{f}_{1} \star \hat{f}_{2}(\omega)$	$\mathbf{(2 . 1 7)}$
Translation	$f(t-u)$	$\mathrm{e}^{-i u \omega} \hat{f}(\omega)$	$\mathbf{(2 . 1 8)}$
Modulation	$\mathrm{e}^{i \xi t} f(t)$	$\hat{f}(\omega-\xi)$	$\mathbf{(2 . 1 9)}$
Scaling	$f(t / s)$	$\|s\| \hat{f}(s \omega)$	$\mathbf{(2 . 2 0)}$
Time derivatives	$f^{(p)}(t)$	$(i \omega)^{p} \hat{f}(\omega)$	$\mathbf{(2 . 2 1)}$
Frequency derivatives	$(-i t)^{p} f(t)$	$\hat{f}^{(p)}(\omega)$	$\mathbf{(2 . 2 2)}$
Complex conjugate	$f^{*}(t)$	$\hat{f}^{*}(-\omega)$	$\mathbf{(2 . 2 3)}$
Hermitian symmetry	$f(t) \in \mathbb{R}$	$\hat{f}(-\omega)=\hat{f}^{*}(\omega)$	$\mathbf{(2 . 2 4)}$

CTFT

- Change of variables for simplified notations: $\omega=2 \pi \mathrm{u}$

$$
\begin{aligned}
& F(2 \pi u)=F(u)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi u x} d x= \\
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d(2 \pi u)=\int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d u
\end{aligned}
$$

- More compact notations (same as in GW)

$$
\begin{aligned}
& F(u)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi u x} d x \\
& f(x)=\int_{-\infty}^{\infty} F(u) e^{j 2 \pi u x} d u
\end{aligned}
$$

Images vs Signals

1D
2D

- Signals
- Frequency
- Temporal
- Spatial
- Time (space) frequency characterization of signals
- Reference space for
- Filtering
- Changing the sampling rate
- Signal analysis
-
- Images
- Frequency
- Spatial
- Space/frequency characterization of 2D signals
- Reference space for
- Filtering
- Up/Down sampling
- Image analysis
- Feature extraction
- Compression
-

2D Frequency domain

Large vertical frequencies correspond to horizontal lines

2D spatial frequencies

- 2D spatial frequencies characterize the image spatial changes in the horizontal (x) and vertical (y) directions
- Smooth variations -> low frequencies
- Sharp variations -> high frequencies

2D Continuous Fourier Transform

- 2D Continuous Fourier Transform (notation 2)

$$
\begin{aligned}
\hat{f}(u, v) & =\int_{-\infty}^{+\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\int_{-\infty}^{+\infty} \hat{f}(u, v) e^{j 2 \pi(u x+v y)} d u d v= \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(x, y)|^{2} d x d y & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\hat{f}(u, v)|^{2} d u d v \quad \text { Plancherel's equality }
\end{aligned}
$$

Delta

- Sampling property of the 2D-delta function (Dirac' s delta)

$$
\int_{-\infty}^{\infty} \delta\left(x-x_{0}, y-y_{0}\right) f(x, y) d x d y=f\left(x_{0}, y_{0}\right)
$$

- Transform of the delta function

$$
\begin{gathered}
F\{\delta(x, y)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) e^{-j 2 \pi(u x+v y)} d x d y=1 \\
F\left\{\delta\left(x-x_{0}, y-y_{0}\right)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(x-x_{0}, y-y_{0}\right) e^{-j 2 \pi(u x+v y)} d x d y=e^{-j 2 \pi\left(u x_{0}+v y_{0}\right)}
\end{gathered} \quad \begin{aligned}
& \text { shifting } \\
& \text { property }
\end{aligned}
$$

Constant functions

- Inverse transform of the impulse function

$$
F^{-1}\{\delta(u, v)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(u, v) e^{j 2 \pi(u x+v y)} d u d v=e^{j 2 \pi(0 x+v 0)}=1
$$

- Fourier Transform of the constant (=1 for all x and y)

$$
\begin{aligned}
& k(x, y)=1 \quad \forall x, y \\
& F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j 2 \pi(u x+v y)} d x d y=\delta(u, v)
\end{aligned}
$$

Trigonometric functions

- Cosine function oscillating along the x axis
- Constant along the y axis

$$
\begin{aligned}
& s(x, y)=\cos (2 \pi f x) \\
& F\{\cos (2 \pi f x)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos (2 \pi f x) e^{-j 2 \pi(u x+v y)} d x d y= \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\frac{e^{j 2 \pi(f x)}+e^{-j 2 \pi(f x)}}{2}\right] e^{-j 2 \pi(u x+v y)} d x d y \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[e^{-j 2 \pi(u-f) x}+e^{-j 2 \pi(u+f) x}\right] e^{-j 2 \pi v y} d x d y= \\
& =\frac{1}{2} \int_{-\infty}^{\infty} e^{-j 2 \pi v y} d y \int_{-\infty}^{\infty}\left[e^{-j 2 \pi(u-f) x}+e^{-j 2 \pi(u+f) x}\right] d x=\frac{1}{2} 1 \int_{-\infty}^{\infty}\left[e^{-j 2 \pi(u-f) x}+e^{-j 2 \pi(u+f) x}\right] d x= \\
& \frac{1}{2}[\delta(u-f)+\delta(u+f)]
\end{aligned}
$$

Vertical grating

Double grating

Smooth rings

Vertical grating

2D box

2D sinc

CTFT properties

- Linearity
- Shifting
- Modulation
- Convolution
- Multiplication
- Separability

$$
a f(x, y)+b g(x, y) \Leftrightarrow a F(u, v)+b G(u, v)
$$

$$
f\left(x-x_{0}, y-x_{0}\right) \Leftrightarrow e^{-j 2 \pi\left(u x_{0}+v y_{0}\right)} F(u, v)
$$

$$
e^{j 2 \pi\left(u_{0} x+v_{0} y\right)} f(x, y) \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)
$$

$$
f(x, y)^{*} g(x, y) \Leftrightarrow F(u, v) G(u, v)
$$

$$
f(x, y) g(x, y) \Leftrightarrow F(u, v)^{*} G(u, v)
$$

$$
f(x, y)=f(x) f(y) \Leftrightarrow F(u, v)=F(u) F(v)
$$

Separability

1. Separability of the 2D Fourier transform

- 2D Fourier Transforms can be implemented as a sequence of 1D Fourier Transform operations performed independently along the two axis

$$
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y=
$$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} e^{-j 2 \pi v y} d x d y=\int_{-\infty}^{\infty} e^{-j 2 \pi v y} d y \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} d x=
$$

$$
=\int_{-\infty}^{\infty} F(u, y) e^{-j 2 \pi v y} d y=F(u, v)
$$

Separability

- Separable functions can be written as $f(x, y)=f(x) g(y)$

2. The FT of a separable function is the product of the FTs of the two functions

$$
\begin{aligned}
& F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y= \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x) g(y) e^{-j 2 \pi u x} e^{-j 2 \pi v y} d x d y=\int_{-\infty}^{\infty} g(y) e^{-j 2 \pi v y} d y \int_{-\infty}^{\infty} h(x) e^{-j 2 \pi u x} d x= \\
& =H(u) G(v) \\
& f(x, y)=h(x) g(y) \Rightarrow F(u, v)=H(u) G(v)
\end{aligned}
$$

Discrete Time Fourier Transform (DTFT)

Applies to Discrete time (sampled) signals and time series
1D

Fourier Transform: 2D Discrete Signals

- Fourier Transform of a 2D discrete signal is defined as

$$
\begin{gathered}
F(u, v)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} \\
\text { where } \frac{-1}{2} \leq u, v<\frac{1}{2}
\end{gathered}
$$

■ Inverse Fourier Transform

$$
f[m, n]=\int_{-1 / 2} \int_{-1 / 2} F(u, v) e^{j 2 \pi(u m+v n)} d u d v
$$

Properties

- Periodicity: 2D Fourier Transform of a discrete a-periodic signal is periodic
- The period is 1 for the unitary frequency notations and 2π for normalized frequency notations.
- Proof (referring to the firsts case)

$$
\begin{aligned}
F(u+k, v+l) & =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi((u+k) m+(v+l) n)} \\
& =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} e^{-j 2 \pi k m} e^{-j 2 \pi l n}
\end{aligned}
$$

integers

$$
\begin{aligned}
& =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} \\
& =F(u, v)
\end{aligned}
$$

Fourier Transform: Properties

■ Periodicity: Fourier Transform of a discrete signal is periodic with period 1.

$$
\begin{aligned}
& F(u+k, v+l)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi((u+k) m+(v+l) n)} \\
&=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} e^{-\gamma 2 \pi k m} e^{-j 2 \pi l n} \\
&=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)} \\
& \text { rbitrary } \\
&=F(u, v)
\end{aligned}
$$

Fourier Transform: Properties

■ Linearity, shifting, modulation, convolution, multiplication, separability, energy conservation properties also exist for the 2D Fourier Transform of discrete signals.

DTFT Properties

- Linearity $\quad a f[m, n]+b g[m, n] \Leftrightarrow a F(u, v)+b G(u, v)$
- Shifting $\quad f\left[m-m_{0}, n-n_{0}\right] \Leftrightarrow e^{-j 2 \pi\left(u m_{0}+v n_{0}\right)} F(u, v)$
\square Modulation $\quad e^{j 2 \pi\left(u_{0} m+v_{0} n\right)} f[m, n] \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)$
- Convolution $\quad f[m, n]^{*} g[m, n] \Leftrightarrow F(u, v) G(u, v)$
- Multiplication $\quad f[m, n] g[m, n] \Leftrightarrow F(u, v)^{*} G(u, v)$
- Separable functions $\quad f[m, n]=f[m] f[n] \Leftrightarrow F(u, v)=F(u) F(v)$
- Energy conservation $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}|f[m, n]|^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|F(u, v)|^{2} d u d v$

Fourier Transform: Properties

- Define Kronecker delta function

$$
\delta[m, n]=\left\{\begin{array}{l}
1, \text { for } m=0 \text { and } n=0 \\
0, \text { otherwise }
\end{array}\right\}
$$

- Fourier Transform of the Kronecker delta function

$$
F(u, v)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\left[\delta[m, n] e^{-j 2 \pi(u m+v n)}\right]=e^{-j 2 \pi(u 0+v 0)}=1
$$

DTFT Properties

- Fourier Transform of 1
$f(m, n)=1 \Leftrightarrow F(u, v)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\left[1 e^{-j 2 \pi(u n+v n)}\right]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u-k, v-l)$

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1.

Impulse Train

- Define a comb function (impulse train) as follows

$$
\begin{gathered}
\operatorname{comb}_{M, N}[m, n]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-k M, n-l N] \\
\text { where } M \text { and } N \text { are integers }
\end{gathered}
$$

Impulse Train

$$
\begin{aligned}
& \operatorname{comb}_{M, N}[m, n] \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-k M, n-l N] \\
& \operatorname{comb}_{M, N}(x, y) \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-k M, y-l N)
\end{aligned}
$$

- Fourier Transform of an impulse train is also an impulse train:

$$
\underbrace{\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-k M, n-l N]}_{\operatorname{comb}_{M, N}[m, n]} \Leftrightarrow \frac{1}{M N} \underbrace{\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(u-\frac{k}{M}, v-\frac{l}{N}\right)}_{\operatorname{comb}_{\frac{1}{M}, \frac{1}{N}}(u, v)}
$$

Impulse Train

Impulse Train

$$
\operatorname{comb}_{M, N}(x, y)=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-k M, y-l N)
$$

- In the case of continuous signals:

$$
\underbrace{\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-k M, y-l N)}_{\operatorname{comb}_{M, N}(x, y)} \Leftrightarrow \frac{1}{M N} \underbrace{\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(u-\frac{k}{M}, v-\frac{l}{N}\right)}_{\operatorname{comb}_{\frac{1}{M}, \frac{1}{N}}(u, v)}
$$

Impulse Train

2D DTFT: constant

- Fourier Transform of 1

$$
\begin{aligned}
f[k, l] & =1, \forall k, l \\
F[u, v] & =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty}\left[1 e^{-j 2 \pi(u k+v l)}\right]= \\
& =\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u-k, v-l)
\end{aligned}
$$

periodic with period 1 along u and v

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1 .

Margherita Hack

log amplitude of the spectrum

Einstein

log amplitude of the spectrum

Examples

Consequences

Sampling (Nyquist) theorem

Sampling

Sampling

Nyquist theorem: No aliasing if $\quad \frac{1}{M}>2 W$

Sampling

If there is no aliasing, the original signal can be recovered from its samples by low-pass filtering.

Sampling

$f(x) \operatorname{comb}_{M}(x)$

Sampling

$f(x) * h(x)$
$[f(x) * h(x)] \operatorname{comb}_{M}(x)$

63

Sampling

- Without anti-aliasing filter:

$$
f(x) \operatorname{comb}_{M}(x)
$$

- With anti-aliasing filter:

$$
\left[f(x)^{*} h(x)\right] \operatorname{comb}_{M}(x)
$$

Sampling in 2D (images)

Sampling

$$
f(x, y) \operatorname{comb}_{M, N}(x, y) \quad \Longleftrightarrow
$$

No aliasing if $\frac{1}{M}>2 W_{u}$ and $\frac{1}{N}>2 W_{v}$

Interpolation (low pass filtering)

Ideal reconstruction
filter:

$$
H(u, v)=\left\{\begin{array}{c}
M N, \text { for } u \leq \frac{1}{2 M} \text { and } \mathrm{v} \leq \frac{1}{2 N} \\
0, \text { otherwise }
\end{array}\right.
$$

Ideal Reconstruction Filter

$$
\begin{aligned}
h(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(u, v) e^{j 2 \pi(u x+v y)} d u d v=\int_{\frac{1}{2 N}}^{\frac{1}{2 N}} \frac{\frac{1}{2 M}}{\frac{1}{2 M}} M N e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{\frac{-1}{2 M}}^{\frac{1}{2 M}} M e^{j 2 \pi u x} d u \int_{\frac{-1}{2 N}}^{\frac{1}{2 N}} N e^{j 2 \pi v y} d v \\
& =M \frac{1}{j 2 \pi x}\left(e^{j 2 \pi x \frac{1}{2 M}}-e^{-j 2 \pi x \frac{1}{2 M}}\right) N \frac{1}{j 2 \pi y}\left(e^{j 2 \pi y \frac{1}{2 N}}-e^{-j 2 \pi y \frac{1}{2 N}}\right) \\
& =\frac{\sin \left(\frac{\pi}{M} x\right)}{\frac{\pi}{M} x} \frac{\sin \left(\frac{\pi}{N} y\right)}{\frac{\pi}{N} y}
\end{aligned}
$$

Anti-Aliasing

a=imread('barbara.tif’);
b=imresize(a,0.25);
c=imresize(b,4);

Anti-Aliasing

a=imread('barbara.tif’);
b=imresize(a,0.25);
c=imresize(b,4);
H=zeros(512,512);
H(256-64:256+64, 256-64:256+64)=1;
Da=fft2(a);
Da=fftshift(Da);
Dd=Da.*H;
Dd=fftshift(Dd);
d=real(ifft2(Dd));

Discrete Fourier Transform (DFT)

Applies to finite length discrete time (sampled) signals and time series

The easiest way to get to it
Time is a discrete variable $(\mathrm{t}=\mathrm{n})$
Frequency is a discrete variable ($\mathrm{f}=\mathrm{k}$)

DFT

- The DFT can be considered as a generalization of the CTFT to discrete series
- It is the FT of a discrete (sampled) function of one variable
- Here such a variable is called n while in GW it is called x. Similarly, the independent variable in the Fourier domain here is called k while in GW it is called u, and the number of samples is called N instead of M

$$
\begin{aligned}
& F[k]=\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j 2 \pi k n / N} \\
& f[n]=\sum_{k=0}^{N-1} F[k] e^{j 2 \pi k n / N}
\end{aligned}
$$

- The $1 / \mathrm{N}$ factor is put either in the analysis formula or in the synthesis one, or the $1 /$ sqrt (M) is put in front of both.
- Calculating the DFT takes about N^{2} calculations

In practice..

- In order to calculate the DFT we start with $\mathrm{k}=0$, calculate $\mathrm{F}(0)$ as in the formula below, then we change to $u=1$ etc

$$
F[0]=\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j 2 \pi 0 n / N}=\frac{1}{N} \sum_{n=0}^{N-1} f[n]=\bar{f}
$$

- $F[0]$ is the average value of the function $f[n]$ in $k=0$
- This is also the case for the CTFT
- The transformed function $\mathrm{F}[\mathrm{K}]$ has the same number of terms as $\mathrm{f}[\mathrm{n}]$ and always exists
- The transform is always reversible by construction so that we can always recover f given F

Example 1

DFT

- About N^{2} multiplications are needed to calculate the DFT
- The transform $\mathrm{F}[\mathrm{k}]$ has the same number of components of $\mathrm{f}[\mathrm{n}]$, that is N
- The DFT always exists for signals that do not go to infinity at any point
- Using the Eulero's formula

$$
\begin{gathered}
e^{j \theta}=\cos \theta+j \sin \theta . \\
F[k]=\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j 2 \pi k n / N}=\frac{1}{N} \sum_{n=0}^{N-1} f[n](\cos (j 2 \pi k n / N)-j \sin (j 2 \pi k n / N))
\end{gathered}
$$

frequency component k
discrete trigonometric functions

Going back to the intuition

- The FT decomposed the signal over its harmonic components and thus represents it as a sum of linearly independent complex exponential functions
- Thus, it can be interpreted as a "mathematical prism"

DFT

- Each term of the DFT, namely each value of F[k], results of the contributions of all the samples in the signal ($\mathrm{f}[\mathrm{n}]$ for $\mathrm{n}=1, . ., \mathrm{N}$)
- The samples of $\mathrm{f}[\mathrm{n}]$ are multiplied by trigonometric functions of different frequencies
- The domain over which $\mathrm{F}[\mathrm{k}]$ lives is called frequency domain
- Each term of the summation which gives $\mathrm{F}[\mathrm{k}]$ is called frequency component of harmonic component

DFT is a complex number

- $\mathrm{F}[\mathrm{k}]$ in general are complex numbers

$$
\begin{aligned}
& F[k]=\operatorname{Re}\{F[k]\}+j \operatorname{Im}\{F[k]\} \\
& F[k]=\mid F[k] \exp \{j \operatorname{RF} F k]\} \\
& \left\{\begin{array}{cl}
\mid F[k]=\sqrt{\operatorname{Re}\{F[k]\}^{2}+\operatorname{Im}\{F[k]\}^{2}} \\
\operatorname{RF}[k]=\tan ^{-1}\left\{-\frac{\operatorname{Im}\{F[k]\}}{\operatorname{Re}\{F[k]\}}\right\}
\end{array}\right\} \\
& \text { magnitude or spectrum } \\
& P[k]=\mid F[k]^{2}
\end{aligned} \begin{aligned}
& \text { phase or angle } \\
& \text { power spectrum }
\end{aligned}
$$

Stretching vs shrinking

ab
FIGURE 4.2 (a) A discrete function of M points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

Periodization vs discretization

- DT (discrete time) signals can be seen as sampled versions of CT (continuous time) signals
- Both CT and DT signals can be of finite duration or periodic
- There is a duality between periodicity and discretization
- Periodic signals have discrete frequency (sampled) transform
- Discrete time signals have periodic transform
- DT periodic signals have discrete (sampled) periodic transforms

Increasing the resolution by Zero Padding

- Consider the analysis formula

$$
F[k]=\frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-\frac{2 \pi i k n}{N}}
$$

- If $f[n]$ consists of n samples than $F[k]$ consists of N samples as well, it is discrete (k is an integer) and it is periodic (because the signal $f[n]$ is discrete time, namely n is an integer)
- The value of each $F[k]$, for all k, is given by a weighted sum of the values of $\mathrm{f}[\mathrm{n}]$, for $\mathrm{n}=1, . ., \mathrm{N}-1$
- Key point: if we artificially increase the length of the signal adding M zeros on the right, we get a signal $f_{1}[m]$ for which $m=1, \ldots, N+M-1$. Since

$$
f_{1}[m]=\left\{\begin{array}{c}
f[m] \text { for } \quad 0 \leq m<N \\
0 \text { for } \quad N \leq m<N+M
\end{array}\right.
$$

Increasing the resolution through ZP

- Then the value of each $F[\mathrm{k}]$ is obtained by a weighted sum of the "real" values of $f[n]$ for $0 \leq k \leq N-1$, which are the only ones different from zero, but they happen at different "normalized frequencies" since the frequency axis has been rescaled. In consequence, $F[\mathrm{k}]$ is more "densely sampled" and thus features a higher resolution.

Increasing the resolution by Zero Padding

Zero paddingaugments the "resolution" of
zero padding
the transform since the samples of the DFT gets "closer"

Summary of dualities

SIGNAL DOMAIN
OOURIER DOMAIN

Discrete Cosine Transform (DCT)

Applies to digital (sampled) finite length signals AND uses only cosines.

The DCT coefficients are all real numbers

Discrete Cosine Transform (DCT)

- Operate on finite discrete sequences (as DFT)
- A discrete cosine transform (DCT) expresses a sequence of finitely many data points in terms of a sum of cosine functions oscillating at different frequencies
- DCT is a Fourier-related transform similar to the DFT but using only real numbers
- DCT is equivalent to DFT of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), where in some variants the input and/or output data are shifted by half a sample
- There are eight standard DCT variants, out of which four are common
- Strong connection with the Karunen-Loeven transform
- VERY important for signal compression

DCT

- DCT implies different boundary conditions than the DFT or other related transforms
- A DCT, like a cosine transform, implies an even periodic extension of the original function
- Tricky part
- First, one has to specify whether the function is even or odd at both the left and right boundaries of the domain
- Second, one has to specify around what point the function is even or odd
- In particular, consider a sequence abcd of four equally spaced data points, and say that we specify an even left boundary. There are two sensible possibilities: either the data is even about the sample a, in which case the even extension is dcbabcd, or the data is even about the point halfway between a and the previous point, in which case the even extension is dcbaabcd (a is repeated).

Symmetries

DCT

$$
\begin{aligned}
& X_{k}=\sum_{n=0}^{N_{0}-1} x_{n} \cos \left[\frac{\pi}{N_{0}}\left(n+\frac{1}{2}\right) k\right] \quad k=0, \ldots ., N_{0}-1 \\
& x_{n}=\frac{2}{N_{0}}\left\{\frac{1}{2} X_{0}+\sum_{k=0}^{N_{0}-1} X_{k} \cos \left[\frac{\pi k}{N_{0}}\left(k+\frac{1}{2}\right)\right]\right\}
\end{aligned}
$$

- Warning: the normalization factor in front of these transform definitions is merely a convention and differs between treatments.
- Some authors multiply the transforms by $\left(2 / \mathrm{N}_{0}\right)^{1 / 2}$ so that the inverse does not require any additional multiplicative factor.
- Combined with appropriate factors of $\sqrt{ } 2$ (see above), this can be used to make the transform matrix orthogonal.

Fourier Transform

- Different formulations for the different classes of signals
- Summary table: Fourier transforms with various combinations of continuous/ discrete time and frequency variables.
- Notations:
- CTFT: continuous time FT: t is real and f real ($\mathrm{f}=\omega$) (CT, CF)
- DTFT: Discrete Time FT: t is discrete $(\mathrm{t}=\mathrm{n})$, f is real $(\mathrm{f}=\omega)$ (DT, CF)
- CTFS: CT Fourier Series (summation synthesis): t is real AND the function is periodic, f is discrete ($\mathrm{f}=\mathrm{k}$), (CT, DF)
- DTFS: DT Fourier Series (summation synthesis): $\mathrm{t}=\mathrm{n}$ AND the function is periodic, f discrete ($\mathrm{f}=\mathrm{k}$), (DT, DF)
- P : periodical signals
- T : sampling period
- ω_{s} : sampling frequency $\left(\omega_{\mathrm{s}}=2 \pi / T\right)$
- For DTFT: $\mathrm{T}=1 \rightarrow \omega_{\mathrm{s}}=2 \pi$
- This is a hint for those who are interested in a more exhaustive theoretical approach

