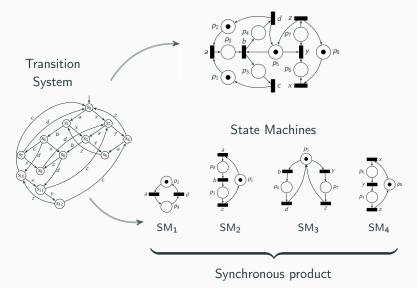

Decomposition of transition systems into sets of synchronizing Free-choice Petri Nets

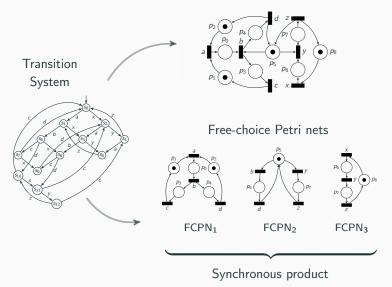
Viktor Teren¹, Jordi Cortadella² and Tiziano Villa¹

¹Università degli Studi di Verona, Verona, Italy ²Universitat Politècnica de Catalunya, Barcelona, Spain

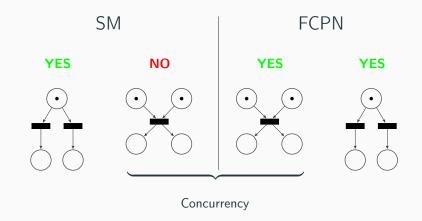
- Motivation
- Background theory
- Decomposition of Transition Systems
- Results
- Conclusions and future work


Motivation

Murata, Tadao. "Petri nets: Properties, analysis and applications." Proceedings of the IEEE 77.4 (1989): 541-580.

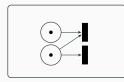

Motivation

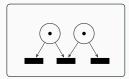
Monolithic Petri Net



Motivation

Monolithic Petri Net

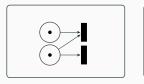

Why Free-choice Petri nets?



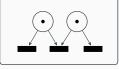
The sequential structure of State Machines is a limitation!!!

Why FCPNs and not any other subclass of PNs?

Structures forbidden in Free-choice Petri nets:



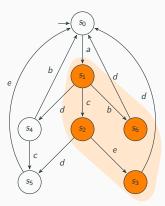
Asymmetric choice

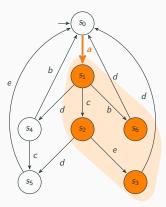

Confusion

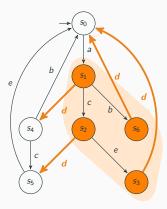
Why FCPNs and not any other subclass of PNs?

Structures forbidden in Free-choice Petri nets:

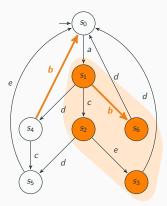
Asymmetric choice

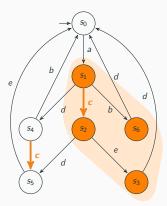


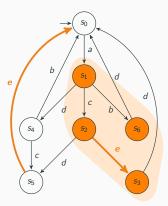

Confusion


Why FCPNs:

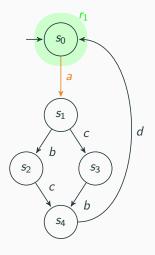
- Simple structures
- Good visual representation
- Explicit concurrency
- Reduced complexity for some PN problems


Background theory



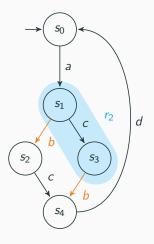


If a region r has the **exit** property with e we can say that r is a **pre-region** of e i.e. $r \in {}^{\circ}e$.



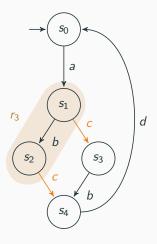
Excitation region of an event: set of states in which the event is activated.

If for each event:


 \bigcap pre-regions = excitation region

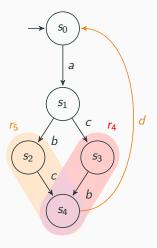
Excitation region of an event: set of states in which the event is activated.

If for each event:

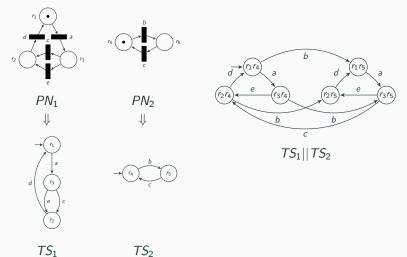

 \bigcap pre-regions = excitation region

Excitation region of an event: set of states in which the event is activated.

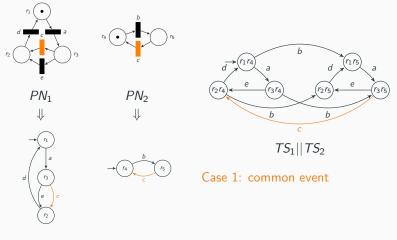
If for each event:


 \bigcap pre-regions = excitation region

Excitation region of an event: set of states in which the event is activated.


If for each event:

 \bigcap pre-regions = excitation region

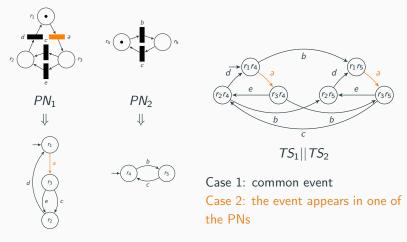

How does the synchronization between PNs work?

Intuitively, the PNs **cooperate** with the same rules of the **synchronous product** of transition systems.

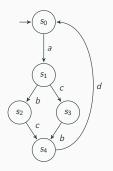
How does the synchronization between PNs work?

Intuitively, the PNs **cooperate** with the same rules of the **synchronous product** of transition systems.

 TS_1

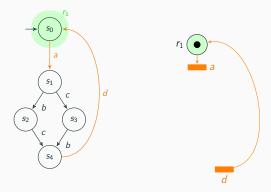

 TS_2

How does the synchronization between PNs work?

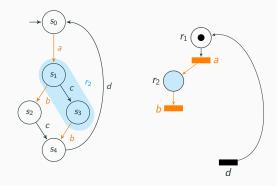

 TS_2

 TS_1

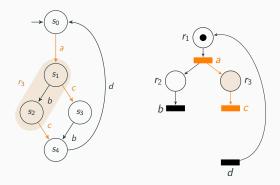
Intuitively, the PNs **cooperate** with the same rules of the **synchronous product** of transition systems.

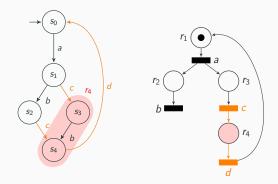


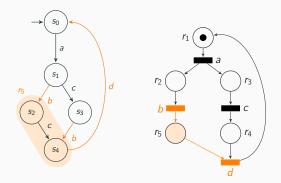
- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region

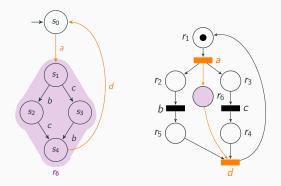


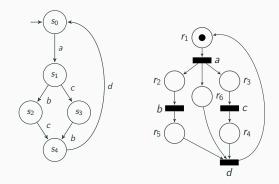
How to derive a PN from a set of regions?

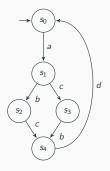

- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region

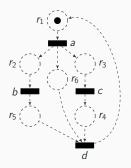

- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region


- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region

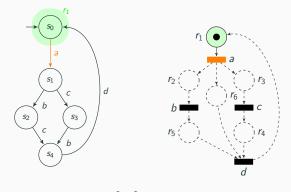

- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region


- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region

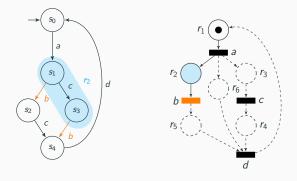

- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region



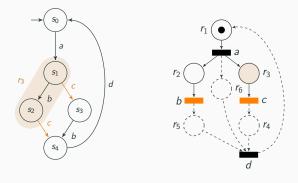
- 1. Create the place representing the region
 - 1.1 If the region contains the initial state the place will take part of the initial marking
- 2. Connect the place to transitions representing *enter/exit* events with respect to the region



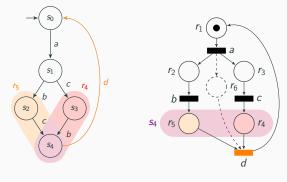
Excitation-closure



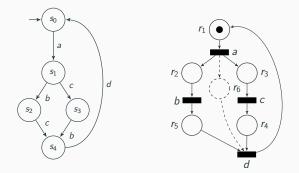
Excitation-closure


 $a: \{s_0\} = r_1$

Excitation-closure

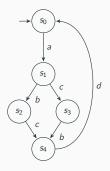

 $b: \{s_1, s_3\} = r_2$

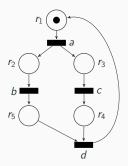
Excitation-closure


 $c: \{s_1, s_2\} = r_3$

Excitation-closure

 $d: \{s_4\} = r_4 \cap r_5$

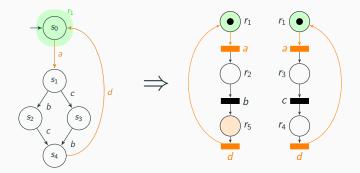

Excitation-closure



r₆ is not necessary!!!

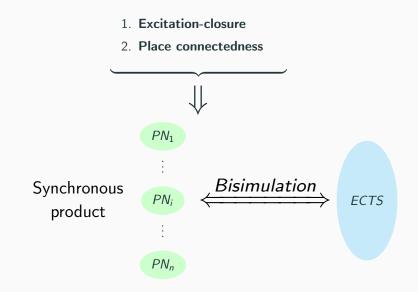
When do the regions represent an eligible PN?

Excitation-closure



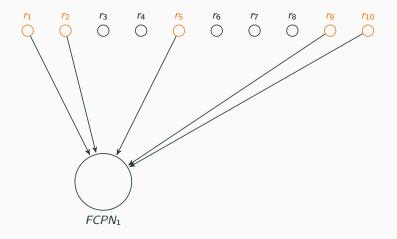
When do the regions represent a set of eligible PNs?

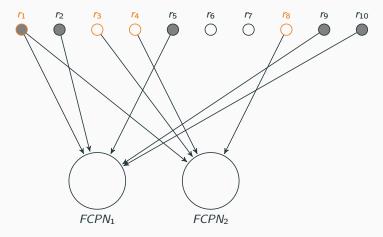
For a set of PNs excitation-closure is not enough, we also need:


Place connectedness

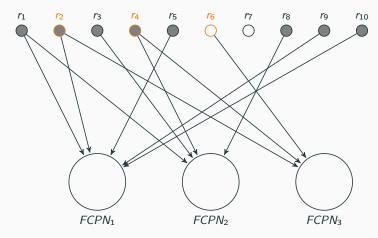
Given a region, all its incoming and outgoing events are also included.

Place connectedness guarantees **marking consistency** across all Petri nets. E.g., the TS on the left is decomposed into the two SMs on the right.

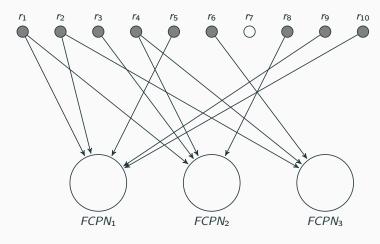

Theorem of equivalence (by bisimulation)


Decomposition of Transition Systems

SAT formula *F*: constraints (Place connectedness and maximization of new regions) and FCPN property



SAT formula *F*: constraints (Place connectedness and maximization of new regions) and FCPN property


Each component maximizes the number of new regions (**Pseudo-boolean optimization**).

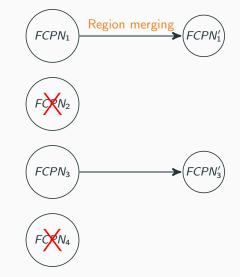
SAT formula *F*: constraints (Place connectedness and maximization of new regions) and FCPN property

Each component maximizes the number of new regions (**Pseudo-boolean optimization**).

SAT formula *F*: constraints (Place connectedness and maximization of new regions) and FCPN property

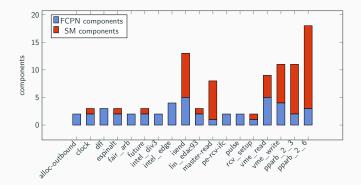
Not all regions are necessary!!!

Post-optimizations

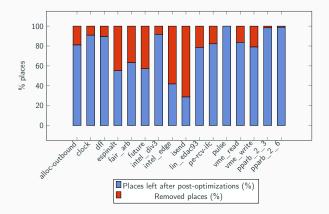


Post-optimizations

Greedy removal of FCPNs


Post-optimizations

Greedy removal of FCPNs


Results

Reduction in number of components (SMs vs FCPNs)

- Average decrease from 5.6 components to 2.6
- The new step did not require more computational effort
- Bottleneck: more of 90% of time spent in generation of regions
- Maximum TS size: 90k state and 320k transitions
- Computational times do not exceed 10 mins

Post-optimizations are important

39% of places removed on average

We extended the decomposition flow to include concurrent components.

Future work:

- Extension to other types of Petri nets
- Parallel computation to mitigate the cost of region generation
- Application to process mining