Ancora su $\text{SO}(n)$

Riprendiamo

$$ f^*|_A (H) = A^T H + H^T A $$

Qual è la condizione per la quale H è "tangente" a $\text{SO}(n)$ in A?

[M aggiunto]

Sia \mathbf{x}_0 tale che $f(\mathbf{x}_0) = 0$.

$$ f \text{ liscia, sommaviva...} $$

$$ \mathbf{x} = \mathbf{x}(t) \quad t \in I $$

$$ \mathbf{x}(0) = \mathbf{x}_0 \quad \mathbf{x}(\mathbf{x}) = 0 \quad t \in I $$

da

$$ f(\mathbf{x}(t)) = 0 \quad t \in I $$

Supponendo

$$ f(\mathbf{x}(t)) = 0 $$

Ossia

$$ \sum_{i} \frac{\partial f}{\partial x_i} \mathbf{x}_i = 0 $$

In particolare in \(\mathbf{x}_0\):

$$ \sum_{i} f_{x_i} \mathbf{x}_i = 0 $$

I.e.

$$ \mathbf{f} \in \ker f^*|_{\mathbf{x}_0} $$

Questo è la "spazio tangente" a $f^{-1}(0)$ (da \mathbf{x}_0 e $f(0)$).

Osservazioni sui casi particolari, v. corsi di Analisi.

\[\begin{align*}
\mathbf{f}_{\mathbf{x}} (\mathbf{x}; \mathbf{y}) = 0 & \quad \text{valle tangente in } \mathbf{x}_0 \quad \mathbf{f}(y; \mathbf{y}) = 0 \\
\mathbf{f}_{\mathbf{x}} (\mathbf{x} - \mathbf{x}_0; \mathbf{y} - \mathbf{y}_0) = 0
\end{align*} \]
The text in the image is a mathematical expression.

\[\begin{align*}
&\sum_{i=1}^{3} f_i (x - x_0) + f_y (y - y_0) + f_z (z - z_0) = 0 \\
&\sum_{i=1}^{3} g_i (x - x_0) + g_y (y - y_0) + g_z (z - z_0) = 0 \\
\end{align*} \]

\[
\begin{pmatrix}
 f_x & f_y & f_z \\
 g_x & g_y & g_z
\end{pmatrix}
\begin{pmatrix}
 x_0 \\
 y_0 \\
 z_0
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0
\end{pmatrix}
\]
Torniamo all'equazione (8n SO(n))

sia \(A = A(t) \) come sopra, ma con \(A(t) \in SO(n) \) \(\forall t \in \mathbb{R} \)

da
\[
A(t)A(t) - I_n = 0
\]

è noto

\[
SO(n) \quad A^T A + A A^T \leq 0
\]

(o, \((A^T) = (A)^T \))

in \(A \) \(\dot{A}(0) = H \)

\[
f_x^*_A (H) = H^T A + A^T H = 0
\]

ovvero, in accordo con la discussione generale

\[
H \in \ker f_x^*_A
\]

In particolare, se \(A = I_n \), è

\[
H^T + H = 0 \quad \text{i.e.} \quad H^T = -H
\]

\(H \) antissimmetrica

Dunque:

le matrici antissimmetriche (sotto il sottospazio tangente a \(SO(n) \) nel l'identità \(I_n \)).
La superficie "immersa" nell'iperspazio.

\[f_\alpha: \mathcal{U}_\alpha \subset \mathbb{R}^2 \rightarrow \mathcal{V} \ni S \subset \mathbb{R}^3 \]

1) \(f_\alpha: \text{omotopia a destra} \quad \text{della} \quad \text{immersione} \)

2) \((f_\alpha)_*: T_q(U_\alpha) \rightarrow \mathbb{R}^3 \)

\[f_\alpha: \text{parametrizzazione} \]

Fatto importante: \(\forall x \in f_\alpha: \mathcal{X}_\alpha \rightarrow S \]

sono due por. t. che

\[f_\alpha(U_\alpha) \cap f_\beta(U_\beta) = W \neq \emptyset \]

\[f_\beta^{-1} \circ f_\alpha : f_\alpha(W) \rightarrow \mathbb{R}^2 \]

\[f_\alpha^{-1} \circ f_\beta : f_\beta(W) \rightarrow \mathbb{R}^2 \]

sono due immersioni (bisce)

[sono le "linee" dell'"area"

\[f_\beta^{-1} \circ f_\alpha \]
Osservazione Importante

nel corso di Geometria si è svolto
sull'indipendenza di vari concetti dalla
parametrizzazione scelta [questo perché si è inserito
nel lavoro con superficie e
parametrizzi]

(che è comunque intuitivamente chiara)

Es: La curvatura Gaussiana K è indipendente
dalla parametrizzazione scelta per Σ ?

Ovviamente sì: si ricorda che (curvatura principale)

$$ K = \det (S) = k_1 k_2 $$

(l'operatore di forma
(opp. simmetrico in $\Gamma_T\Sigma$)

e det completo ad un endomorfismo $T \in \text{End}(V)$

poiché è invariant per similitudine

$$ \det T = \det \text{me}(T) $$

se cambiando base $\mathbf{m}' = \mathbf{me}'(T) = \mathbf{me}(T) \mathbf{me}(T) \mathbf{me}(T)^{-1} \mathbf{M} \mathbf{M}^{-1} $$$$ e \det \text{me}'(T) = \det \text{me}(T) $$

$$ \det(AB) = \det(A) \det(B) \quad \text{(Binet)} \quad \det(MAM^{-1}) = $$

$$ \det \quad (\det(AB)) = \det(AB) \quad (\text{Bianchi}) \quad \det(MAM^{-1}) = $$

$$ \det \quad (\det(AB)) = \det(AB) \quad (\text{Bianchi}) \quad \det(MAM^{-1}) = $$
In generale \[P_C^T = P_C^T(\lambda) \]

polinomio caratteristico di \(T \in \text{End}(V) \)

è invariante per similitudine

\[P_C^T(\lambda) = \det(\lambda - T) \]

Di conseguenza, se \(P_C^T(\lambda) \) è completo moltiplicato
di polinomi

\[P_C^T(\lambda) = \prod_{\lambda_i \text{ distinti}} (\lambda_i - \lambda) = \prod_{\lambda_i \text{ distinti}} (\lambda - \lambda_i) \]

mentre gli autovetori sono invarianti per similitudine

[spettri distinti]

[se gli operatori diagonalizzabili, lo spettri, con

le dovute moltiplicità, è un invarianti completo

per similitudine – almeno no (teoria di Jordan)]

Tornando alla discussione geometrica, combinarne coordinate, non accade nella propria pala \(B = dX \)
è definito in modo invariente, e così lo sono i suoi autovetori

(le autovetture principali) e il suo \(B \), la circonferenza trascinta \(K \).

Inoltre manca, si ricorda che, rispetto a \((e_1, e_2, \ldots) \), \(B \)

è rappresentato dalla matrice \(B \) di Weingarten, e cambiando

coordinate si ottiene una matrice simile a quella iniziale.
Def. (provisoia) \(I \) \\

Voricità di differenziabilità \(n \)-dimensionale \\

sia \(M \) un insieme, munito di \(f_a : U_a \subseteq \mathbb{R}^n \rightarrow M \) \\
operato \(f_a \) iniziale \(U_a \) \\

con \(1) \ U_a f_a(U_a) = M \) \(a \in A \) \\

2) \(\forall \alpha, \beta \ \text{tali che} \ f_a(U_a) \cap f_\beta(U_\beta) = W \neq \emptyset \) \\
\(f_a^{-1}(W) \) e \(f_\beta^{-1}(W) \) sono aperti in \(\mathbb{R}^n \) \\

tali che \(f_\beta \circ f_a \circ f_\beta^{-1} \) è aperto \\

[lo chiediamo!] \\

l'incluuzione \(f \) \\

equiv. che sono ben definite \\

3) la famiglia \(f \) è \(n \)-mimico
\[
\{ (U_d, f_d) \}_{d \in \mathbb{N}} \quad \text{Definizione differenziabile}
\]

\[
(U_d, f_d), \quad U_d \in \mathbb{P} \quad \text{funzione all'infinito}
\]

\[
x_d(U_d) : \text{interno coordinate di } \mathbb{P}.
\]

![Diagram]

Dovremo anche una definizione alternativa equivalente.

Resta indiscutibile una topologia su \(M \)

\[A \subset M \quad \text{aperto se } \quad f^{-1}_d (A \cap f_d(U_d)) \]

\[f \text{ aperto in } \mathbb{R}^n \quad \text{Emilio: } \text{dim. Or la def.}
\]

\[f \text{ ben posta.}
\]

![Note]

Verranno aggiunti altri due esempi:

1. Hausdorff
2. Box numerabile

- localmente euclideo ma non di Hausdorff

∀ \alpha \in \mathcal{A}

\phi \in \mathcal{F}

\phi \cap \mathcal{F} \ni \chi \mapsto \chi^{-1}([\phi \cap \mathcal{F}(U_\alpha)]) = \phi

\text{aperto in } \mathbb{R}^n

\forall \chi \in \mathcal{A}

f_\chi^{-1}(\mathcal{U} \cap f_\chi(U_\alpha)) = f_\chi^{-1}(U_\alpha) = U_\alpha

\text{aperto in } \mathbb{R}^n

\bigcup_{i} A_i \in \mathcal{F}

\chi \in \mathcal{A}

f_\chi^{-1}\left(\bigcup_{i} A_i \cap f_\chi(U_\alpha)\right)

= f_\chi^{-1}\left(\bigcup_{i} (A_i \cap f_\chi(U_\alpha))\right)

= \bigcup_{i} f_\chi^{-1}(A_i \cap f_\chi(U_\alpha)) = \mathcal{F}

\text{aperto in } \mathbb{R}^n

A_1 \cap A_2 \in \mathcal{F}

\chi \in \mathcal{A}

f_\chi^{-1}(A_1 \cap A_2 \cap f_\chi(U_\alpha)) =

= f_\chi^{-1}\left((A_1 \cap f_\chi(U_\alpha)) \cap (A_2 \cap f_\chi(U_\alpha))\right)

= f_\chi^{-1}(A_1 \cap f_\chi(U_\alpha)) \cap f_\chi^{-1}(A_2 \cap f_\chi(U_\alpha)) = \mathcal{F}

\text{aperto in } \mathbb{R}^n

\text{Vediamo ora una costruzione alternativa, ma equivalente}
Una spazio topologico \(M \)
è definito varietà topologica
ole dimensione \(n \)
(topological \(n \)-manifold) se

1. \(M \) è di Housdorff
2. \(M \) ha una base numerabile
 countable base
 second countable

3. \(M \) è localmente euclidea :
 locally euclidean

\(\forall \, m \in M \), \(\exists \, U \in \mathcal{U} \) m, intorno
neighbourhood

\[\text{Morphismo a } x : \]

\[\text{aperto } \in \mathcal{U} \]

\(\forall \in U \subset M \)

\(m \) fisso, i.e. indipendente
fixed o/a \(m \)

\[\phi : U \to V \]

omeomorfismo
(local chart)

Data una quantità, una famiglia
\(B \) di sferette \(\Phi \) di \(M \)
centrate \(\phi \in X \) e tale
\(U_B = X \in B \) e \(B, B \in B \)

\(\phi B \subset B, \# \in \mathbb{B} \)

topologia su \(X \) tale
che \(\Phi \) ne sia una base:
Una varietà differenziabile M è dunque uno spazio topologico di Hausdorff, a base numerabile, provvisto di un atlante $\{ (U_{\alpha}, \varphi_{\alpha}) \}_{\alpha \in \Lambda}$ di carte locali insieme di index Λ.

ove

$$\bigcup_{\alpha} U_{\alpha} = M$$

$\alpha \in \Lambda$

φ_{α} riempimento (aperto)

$\varphi_{\alpha} : U_{\alpha} \longrightarrow V_{\alpha}$ omomorfismo

aperto di M^n

φ_{β} e φ_{α} $U_{\alpha} \cap U_{\beta} \neq \emptyset$

$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(W) \longrightarrow \varphi_{\beta}(W)$ è lissia

$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(W) \longrightarrow \varphi_{\alpha}(W)$ è lissia

XIII - 11
L'atlante si considera massimale:

data \(\varphi : \mathcal{U} \to \mathcal{V} \) c.e. \((\mathcal{U}, \varphi)\) compatibile
con \(\varphi \circ \varphi^{-1}, \varphi^{-1} \circ \varphi \) lisse, \((\mathcal{U}, \varphi)\)
allora \(\varphi = \varphi_\beta \) per qualche \(\beta \in \mathcal{A} \)

Due atlanti si dicono compatibili (o equivalenti), se la loro unione è nuovamente un atlante.

Un atlante massimale è l'unione di tutti gli atlanti compatibili con un atlante fisso.

In modo ancora più formale, una varietà dif. di dimensione \(n \) è

\[
\left(M, [\varphi] \right)
\]

sp. top. atlante (massimale)
locale Hausdorff atlante di equivalenza
locale metrica da
un atlante massimale

Equivantemente si dice \(M \) possiede una struttura
di varietà di Hana mollale (di classe \(C^{k} \)) se ecc...
con struttura liscia, nel caso \(C^{0} \)

\(C^{0} \rightarrow \) varietà analitica reale

se \(M \) sussiste \(\mathbb{R}^{n} \) e si richiede l'olomorfa
(i.e. analitica complessa), si ha la nozione di
varietà complessa di ordine \(n \) se \(n = 1 \) si parla di
superficie di Riemann

\[\text{XIII} \ 12\]
Motivazioni:

ellissoide terrestre
(eccentricità accennata !!)

Non è ovviamente massimale.

I criteri calcolati non
conformi di carta,
"inviabile" all’... utilizzatore finale.

Torna al soprapposizione

Carta d’Italia
di Gauss-Bonfigli

XIII - 13
$S^2 = \{ x^2 + y^2 + z^2 = 1 \}$

topologia relativa (moltitudine \mathbb{R}^3)

$z > 0$
$x^2 + y^2 < 1$

$L : (x, y, z)$
$\cap \overline{U}_N \cap \overline{U}_E$

φ_E^{-1}
$(2, x) \longrightarrow (x, y, z)$

φ_N
$(x, y, z) \longrightarrow (x, y, 0)$

$\varphi_N \circ \varphi_E^{-1}$
$(2, x) \longrightarrow (x, \sqrt{1 - z^2 - x^2})$

 Tale applicazione è liscia, con mappa
$(\varphi_E \circ \varphi_N^{-1})$ liscia

XIII-14