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Combinational logic

 Basic logic
 Boolean algebra, proofs by re-writing, proofs by perfect induction
 logic functions, truth tables, and switches
 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

 Logic realization
 two-level logic and canonical forms
 incompletely specified functions

 Simplification
 uniting theorem
 grouping of terms in Boolean functions

 Alternate representations of Boolean functions
 cubes
 Karnaugh maps
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X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

X and Y
X Y

X or Y

not Y not X 1

X
Y F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two 
variables

 There are 16 possible functions of 2 input variables:
 in general, there are 2**(2**n) functions of n inputs
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Cost of different logic functions

 Different functions are easier or harder to implement
 each has a cost associated with the number of switches needed
 0 (F0) and 1 (F15): require 0 switches, directly connect output to 

low/high
 X (F3) and Y (F5): require 0 switches, output is one of inputs
 X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
 X nor Y (F4) and X nand Y (F14): require 4 switches
 X or Y (F7) and X and Y (F1): require 6 switches
 X = Y (F9) and X ⊕ Y (F6): require 16 switches

 thus, because NOT, NOR, and NAND are the cheapest they are the 
functions we implement the most in practice
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X Y X nand Y
0 0 1
1 1 0

X Y X nor Y
0 0 1
1 1 0

X nand Y ≡ not (  (not X) nor (not Y)  )
 X nor Y ≡ not ( (not X) nand (not Y) )

Minimal set of functions

 Can we implement all logic functions from NOT, NOR, and NAND?
 For example, implementing          X and Y

is the same as implementing   not (X nand Y)
 In fact, we can do it with only NOR or only NAND

 NOT is just a NAND or a NOR with both inputs tied together

 and NAND and NOR are "duals",
that is, its easy to implement one using the other

 But lets not move too fast . . . 
 lets look at the mathematical foundation of logic
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An algebraic structure

 An algebraic structure consists of
 a set of elements B
 binary operations { + , • }
 and a unary operation { ’ }
 such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b   is in B a • b   is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0
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Boolean algebra

 Boolean algebra
 B = {0, 1}
 variables
 + is logical OR, • is logical AND
 ’ is logical NOT

 All algebraic axioms hold
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X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X’ Y’ X • Y X’ • Y’ ( X • Y ) + ( X’ • Y’ )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X’ • Y’ )     ≡    X = Y

X Y X’ X’ • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

 Any logic function that can be expressed as a truth table can 
be written as an expression in Boolean algebra using the 
operators: ’, +, and •
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Axioms and theorems of Boolean 
algebra
 identity

1.   X + 0 = X 1D.   X • 1 = X
 null

2.   X + 1 = 1 2D.   X • 0 = 0
 idempotency:

3.   X + X = X 3D.   X • X = X
 involution:

4.   (X’)’ = X
 complementarity:

5.   X + X’ = 1 5D.   X • X’ = 0
 commutativity:

6.   X + Y = Y + X 6D.   X • Y = Y • X
 associativity:

7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
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Axioms and theorems of Boolean 
algebra (cont’d)

 distributivity:
8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

 uniting:
9.   X • Y + X • Y’ = X 9D.   (X + Y) • (X + Y’) = X

 absorption:
10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

 factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z = 

              X • Z + X’ • Y                (X + Z) • (X’ + Y)
 concensus:

13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =
             X • Y + X’ • Z                (X + Y) • (X’ + Z)
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Axioms and theorems of Boolean 
algebra (cont’d)

 de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

 generalized de Morgan’s:
15. f’(X1,X2,...,Xn,0,1,+,•) =  f(X1’,X2’,...,Xn’,1,0,•,+)

 establishes relationship between • and +
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Axioms and theorems of Boolean 
algebra (cont’d)

 Duality
 a dual of a Boolean expression is derived by replacing 

• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 any theorem that can be proven is thus also proven for its dual!
 a meta-theorem (a theorem about theorems) 

 duality:
16. X + Y + ... ⇔ X • Y • ...

 generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

 Different than deMorgan’s Law
 this is a statement about theorems
 this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)

 Using the axioms of Boolean algebra:
 e.g., prove the theorem: X • Y + X • Y’ =   X

 e.g., prove the theorem: X + X • Y =   X

distributivity (8) X • Y + X • Y’ =   X • (Y + Y’)
complementarity (5) X • (Y + Y’) =   X • (1)
identity (1D) X • (1) =   X ➼

identity (1D) X  +  X • Y =   X • 1  +  X • Y
distributivity (8) X • 1  +  X • Y =   X • (1 + Y)
identity (2) X • (1 + Y) =   X • (1)
identity (1D) X • (1) =   X ➼
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Activity

 Prove the following using the laws of Boolean algebra:
 (X • Y) + (Y • Z) + (X’ • Z) =  X • Y + X’ • Z

(X • Y) + (Y • Z) + (X’ • Z) 

identity (X • Y) + (1) • (Y • Z) + (X’ • Z) 

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z) 

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1) 

identity (X • Y) + (X’ • Z) ➼
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(X + Y)’ = X’ • Y’
NOR is equivalent to AND 
with inputs complemented

(X • Y)’ = X’ + Y’
NAND is equivalent to OR 
with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1     
0 1 1 0       
1 0 0 1     
1 1 0 0    

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1     
0 1 1 0    
1 0 0 1     
1 1 0 0    

Proving theorems (perfect induction)

 Using perfect induction (complete truth table):
 e.g., de Morgan’s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0
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A simple example: 1-bit binary adder

 Inputs: A, B, Carry-in
 Outputs: Sum, Carry-out

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0     
0 0 1       
0 1 0     
0 1 1
1 0 0     
1 0 1       
1 1 0     
1 1 1    

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

CinCout
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Apply the theorems to simplify 
expressions

 The theorems of Boolean algebra can simplify Boolean 
expressions
 e.g., full adder’s carry-out function (same rules apply to any function)

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin  +  A B Cin
=  A’ B Cin  +  A B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
=  (A’ + A) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
=  (1) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A B’ Cin  + A B Cin’  +  A B Cin  +  A B Cin
=  B Cin  +  A B’ Cin  +  A B Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A (B’ + B) Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A (1) Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A Cin  +  A B (Cin’ +  Cin)
=  B Cin  +  A Cin  +  A B (1)
=  B Cin  +  A Cin  +  A B adding extra terms 

creates new 
factoring 

opportunities
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Activity

 Fill in the truth-table for a circuit that checks that a 4-bit number 
is divisible by 2, 3, or 5

 Write down Boolean expressions for By2, By3, and By5

X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
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X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 1 1 0
0 1 1 1 0 0 0 
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 1
1 0 1 1 0 0 0 
1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 1

Activity By2 =  X8’X4’X2’X1’ + 
X8’X4’X2X1’

 + X8’X4X2’X1’ + 
X8’X4X2X1’

 + X8X4’X2’X1’ + 
X8X4’X2X1’

 + X8X4X2’X1’ + 
X8X4X2X1’

= X1’ 

By3=  X8’X4’X2’X1’ + 
X8’X4’X2X1

 + X8’X4X2X1’ + 
X8X4’X2’X1

 + X8X4X2’X1’ + 
X8X4X2X1

By5=  X8’X4’X2’X1’ + 
X8’X4X2’X1

 + X8X4’X2X1’ + 
X8X4X2X1
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X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic 
gates

 NOT X’ X ~X

 AND X • Y XY X ∧ Y

 OR X + Y X ∨ Y
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X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X

Y
Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both 

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same 

("equality", "coincidence")

From Boolean expressions to logic 
gates (cont’d)

 NAND

 NOR

 XOR
  X ⊕ Y

 XNOR
  X = Y
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T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean expressions to logic 
gates (cont’d)

 More than one way to map expressions to gates

 e.g.,  Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))
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time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

 Just a sideways truth table
 but note how edges don’t line up exactly
 it takes time for a gate to switch its output!
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A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a 
function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)
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Which realization is best?

 Reduce number of inputs
 literal: input variable (complemented or not)

 can approximate cost of logic gate as 2 transitors per literal
 why not count inverters?

 fewer literals means less transistors
 smaller circuits

 fewer inputs implies faster gates
 gates are smaller and thus also faster

 fan-ins (# of gate inputs) are limited in some technologies
 Reduce number of gates

 fewer gates (and the packages they come in) means smaller circuits
 directly influences manufacturing costs
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Which is the best realization?  
(cont’d)

 Reduce number of levels of gates
 fewer level of gates implies reduced signal propagation delays
 minimum delay configuration typically requires more gates

 wider, less deep circuits

 How do we explore tradeoffs between increased circuit delay 
and size?
 automated tools to generate different solutions
 logic minimization: reduce number of gates and complexity
 logic optimization: reduction while trading off against delay
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Are all realizations equivalent?

 Under the same input stimuli, the three alternative 
implementations have 
almost the same waveform behavior
 delays are different
 glitches (hazards) may arise – these could be bad, it depends
 variations due to differences in number of gate levels and structure

 The three implementations are functionally equivalent
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Implementing Boolean functions

 Technology independent
 canonical forms
 two-level forms
 multi-level forms

 Technology choices
 packages of a few gates
 regular logic
 two-level programmable logic
 multi-level programmable logic
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Canonical forms

 Truth table is the unique signature of a Boolean function
 The same truth table can have many gate realizations
 Canonical forms

 standard forms for a Boolean expression
 provides a unique algebraic signature
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A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products canonical forms

 Also known as disjunctive normal form
 Also known as minterm expansion

F =  001      011      101       110       111

+ A’BC+ AB’C + ABC’ + ABCA’B’C
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short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3
1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’ 

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C

Sum-of-products canonical form 
(cont’d)

 Product term (or minterm)
 ANDed product of literals – input combination for which output is 

true
 each variable appears exactly once, true or inverted (but not both)
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A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =       000              010              100
F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

 Also known as conjunctive normal form
 Also known as maxterm expansion

(A + B + C)(A + B’ + C)(A’ + B + C)
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A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3
1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6
1 1 1 A’+B’+C’ M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
   (A + B + C) (A’ + B + C)
= (A + C) (B + C)

Product-of-sums canonical form 
(cont’d)

 Sum term (or maxterm)
 ORed sum of literals – input combination for which output is false
 each variable appears exactly once, true or inverted (but not both)
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S-o-P, P-o-S, and de Morgan’s 
theorem
 Sum-of-products

 F’ = A’B’C’ + A’BC’ + AB’C’
 Apply de Morgan’s

 (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
 F = (A + B + C) (A + B’ + C) (A’ + B + C)

 Product-of-sums
 F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

 Apply de Morgan’s
 (F’)’ = ( (A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’) )’
 F = A’B’C + A’BC + AB’C + ABC’ + ABC
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canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level 
implementations
of F = AB + C
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Waveforms for the four alternatives

 Waveforms are essentially identical
 except for timing hazards (glitches)
 delays almost identical (modeled as a delay per level, not type of 

gate or number of inputs to gate)
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Mapping between canonical forms

 Minterm to maxterm conversion
 use maxterms whose indices do not appear in minterm expansion
 e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

 Maxterm to minterm conversion
 use minterms whose indices do not appear in maxterm expansion
 e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) 

 Minterm expansion of F to minterm expansion of F’
 use minterms whose indices do not appear
 e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

 Maxterm expansion of F to maxterm expansion of F’
 use maxterms whose indices do not appear
 e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)
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A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should 
never be encountered in practice 
– "don’t care" about associated 
output values, can be exploited
in minimization

Incompleteley specified functions

 Example: binary coded decimal increment by 1
 BCD digits encode the decimal digits 0 – 9 

in the bit patterns 0000 – 1001

don’t care (DC) set of 
W

on-set of W
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Notation for incompletely specified 
functions

 Don’t cares and canonical forms
 so far, only represented on-set
 also represent don’t-care-set
 need two of the three sets (on-set, off-set, dc-set)

 Canonical representations of the BCD increment by 1 function:

 Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]

 Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
 Z = Π [ M(1,3,5,7,9) • D(10,11,12,13,14,15) ]
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Simplification of two-level 
combinational logic

 Finding a minimal sum of products or product of sums realization
 exploit don’t care information in the process

 Algebraic simplification
 not an algorithmic/systematic procedure
 how do you know when the minimum realization has been found?

 Computer-aided design tools
 precise solutions require very long computation times, especially for 

functions with many inputs (> 10)
 heuristic methods employed – "educated guesses" to reduce amount of 

computation and yield good if not best solutions
 Hand methods still relevant

 to understand automatic tools and their strengths and weaknesses
 ability to check results (on small examples)
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem

 Key tool to simplification: A (B’ + B) = A
 Essence of simplification of two-level logic

 find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be eliminated 
and a single product term used to represent both elements
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1-cube
X

0 1

Boolean cubes

 Visual technique for indentifying when the uniting theorem
can be applied

 n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W

X

Y
Z

0000

1111

1000

0111
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean 
cubes

 Uniting theorem combines two "faces" of a cube
into a larger "face"

 Example:

A

B

11

00

01

10

F
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A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by 
the combination (OR) of the subcubes 
of lower dimensionality - note that “111”
is covered three times

Three variable example

 Binary full-adder carry-out logic

A

B C

000

111

101
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F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable       
i.e., 3 dimensions  –  2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

 Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011

110
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m-dimensional cubes in a n-
dimensional Boolean space

 In a 3-cube (three variables):
 a 0-cube, i.e., a single node, yields a term in 3 literals
 a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

 In general,
 an m-subcube within an n-cube (m < n) yields a term

with n – m literals
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

 Flat map of Boolean cube
 wrap–around at edges
 hard to draw and visualize for more than 4 dimensions
 virtually impossible for more than 6 dimensions

 Alternative to truth-tables to help visualize adjacencies
 guide to applying the uniting theorem
 on-set elements with only one variable changing value are 

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B

0

1

1

0 0

1
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Karnaugh maps (cont’d)

 Numbering scheme based on Gray–code
 e.g., 00, 01, 11, 10
 only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C

0

1

6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D
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Adjacencies in Karnaugh maps

 Wrap from first to last column
 Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011

110
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obtain the
complement
of the function 
by covering 0s
with subcubes

Karnaugh map examples

 F =

 Cout =

 f(A,B,C) = Σm(0,4,5,7) 

0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C

B

A

B’

AB

AC

+ ACin+ BCin

+ B’C’+ AB’
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F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) = 

More Karnaugh map examples

0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C
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C + B’D’

find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

 F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A

B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD
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+ B’C’D

Karnaugh maps: don’t cares

 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 without don't cares

 f = 

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A’D
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Karnaugh maps: don’t cares (cont’d)

 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 f = A'D + B'C'D without don't cares
 f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more 
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed 
rather than a 1-cube to cover
this node

+ C'D
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Activity

 Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’
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Combinational logic summary

 Logic functions, truth tables, and switches
 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

 Axioms and theorems of Boolean algebra
 proofs by re-writing and perfect induction

 Gate logic
 networks of Boolean functions and their time behavior

 Canonical forms
 two-level and incompletely specified functions

 Simplification
 a start at understanding two-level simplification

 Later
 automation of simplification
 multi-level logic
 time behavior
 hardware description languages
 design case studies


