
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Sequential logic

 Sequential circuits
 simple circuits with feedback
 latches
 edge-triggered flip-flops

 Timing methodologies
 cascading flip-flops for proper operation
 clock skew

 Asynchronous inputs
 metastability and synchronization

 Basic registers
 shift registers
 simple counters

 Hardware description languages and sequential logic
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Sequential circuits

 Circuits with feedback
 outputs = f(inputs, past inputs, past outputs)
 basis for building "memory" into logic circuits
 door combination lock is an example of a sequential circuit

 state is memory
 state is an "output" and an "input" to combinational logic
 combination storage elements are also memory



VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn

Circuits with feedback

 How to control feedback?
 what stops values from cycling around endlessly



VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

"remember"
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Simplest circuits with feedback

 Two inverters form a static memory cell
 will hold value as long as it has power applied

 How to get a new value into the memory cell?
 selectively break feedback path
 load new value into cell
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Memory with cross-coupled gates

 Cross-coupled NOR gates
 similar to inverter pair, with capability to force output to 0 

(reset=1) or 1 (set=1)

 Cross-coupled NAND gates
 similar to inverter pair, with capability to force output to 0 

(reset=0) or 1 (set=0)
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State behavior or R-S latch

 Truth table of R-S latch behavior
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Theoretical R-S latch behavior

 State diagram
 states: possible values
 transitions: changes

based on inputs
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Observed R-S latch behavior

 Very difficult to observe R-S latch in the 1-1 state
 one of R or S usually changes first

 Ambiguously returns to state 0-1 or 1-0
 a so-called "race condition"
 or non-deterministic transition
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S R Q(t) Q(t+∆)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed characteristic equation
Q(t+∆) = S + R’ Q(t)

R-S latch analysis

 Break feedback path
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Activity: R-S latch using NAND gates

characteristic equation
Q(t+∆) = S + R’ Q(t)
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S R S’ R’ Q(t) Q(t+∆)
0 0 1 1 0 0
0 0 1 1 1 1
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1 1 0 0 1 X
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Gated R-S latch

 Control when R and 
S inputs matter
 otherwise, the 

slightest glitch on 
R or S while 
enable is low could 
cause 
change in value 
stored

Set Reset
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Q
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period

duty cycle (in this case, 50%)

Clocks

 Used to keep time
 wait long enough for inputs (R' and S') to settle
 then allow to have effect on value stored

 Clocks are regular periodic signals
 period (time between ticks)
 duty-cycle (time clock is high between ticks - expressed as % of 

period)
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clock’

R’  and  S’
changing stable changing stablestable

Clocks (cont’d)

 Controlling an R-S latch with a clock
 can't let R and S change while clock is active (allowing R and S to 

pass)
 only have half of clock period for signal changes to propagate
 signals must be stable for the other half of clock period

clock’

S’
Q’

Q
R’ R

S
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Cascading latches

 Connect output of one latch to input of another
 How to stop changes from racing through chain?

 need to be able to control flow of data from one latch to the next
 move one latch per clock period
 have to worry about logic between latches (arrows) that is too fast
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Master-slave structure

 Break flow by alternating clocks (like an air-lock)
 use positive clock to latch inputs into one R-S latch
 use negative clock to change outputs with another R-S latch

 View pair as one basic unit
 master-slave flip-flop
 twice as much logic
 output changes a few gate delays after the falling edge of clock 

but does not affect any cascaded flip-flops
master stage slave stage

P
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S Q

Q’ R

S Q

Q’R

S
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The 1s catching problem

 In first R-S stage of master-slave FF
 0-1-0 glitch on R or S while clock is high is "caught" by master stage
 leads to constraints on logic to be hazard-free

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S
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10 gates

D flip-flop

 Make S and R complements of each other
 eliminates 1s catching problem
 can't just hold previous value

(must have new value ready every clock period)
 value of D just before clock goes low is what is stored in flip-flop
 can make R-S flip-flop by adding logic to make D = S + R’ Q

D Q

Q’

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’
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negative edge-triggered D 
flip-flop (D-FF)

4-5 gate delays

must respect setup and hold time 
constraints to successfully

capture input

characteristic equation
Q(t+1) = D

holds D’ when
clock goes low

holds D when
clock goes low

Edge-triggered flip-flops

 More efficient solution: only 6 gates
 sensitive to inputs only near edge of clock signal (not while high)
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Edge-triggered flip-flops (cont’d)

 Step-by-step analysis

Q

new D
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R
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D
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new D ≠ old D
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positive edge-triggered FF

negative edge-triggered FF

D

CLK

Qpos
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Qneg
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100

Edge-triggered flip-flops (cont’d)

 Positive edge-triggered
 inputs sampled on rising edge; outputs change after rising edge

 Negative edge-triggered flip-flops
 inputs sampled on falling edge; outputs change after falling edge
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Timing methodologies

 Rules for interconnecting components and clocks
 guarantee proper operation of system when strictly followed

 Approach depends on building blocks used for memory 
elements
 we'll focus on systems with edge-triggered flip-flops

 found in programmable logic devices
 many custom integrated circuits focus on level-sensitive latches

 Basic rules for correct timing:
 (1) correct inputs, with respect to time, are provided to the flip-

flops
 (2) no flip-flop changes state more than once per clocking event
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there is a timing "window" 
around the clocking event 
during which the input must 
remain stable and unchanged 
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing methodologies (cont’d)

 Definition of terms
 clock: periodic event, causes state of memory element to change

can be rising edge or falling edge or high level or low level
 setup time: minimum time before the clocking event by which the

input must be stable (Tsu)
 hold time: minimum time after the clocking event until which the

input must remain stable (Th)
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behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and flip-flops
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Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)

master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of latches and flip-flops 
(cont’d)
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all measurements are made from the clocking event (the rising edge of the clock)

Typical timing specifications

 Positive edge-triggered D flip-flop
 setup and hold times
 minimum clock width
 propagation delays (low to high, high to low, max and typical)

D 

Clk 

Q 

T su 

1.8
ns 

T h 

0.5
ns 

T w 

3.3 
ns 

T pd

3.6 ns 
1.1 ns 

T su 

1.8
ns 

T h 

0.5 
ns 

T pd

3.6 ns 
1.1 ns 

T w 

3.3 
ns 
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IN

Q0

Q1

CLK

100

Cascading edge-triggered flip-flops

 Shift register
 new value goes into first stage
 while previous value of first stage goes into second stage
 consider setup/hold/propagation delays (prop must be > hold)

CLK

IN
Q0 Q1

D Q D Q OUT
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timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast 
distribution of the clock

Cascading edge-triggered flip-flops 
(cont’d)
 Why this works

 propagation delays exceed hold times
 clock width constraint exceeds setup time
 this guarantees following stage will latch current value before it 

changes to new value

Tsu

1.8ns

Tp

1.1-3.6ns

Th

0.5ns

In

Q0

Q1

CLK

Tsu

1.8ns

Tp

1.1-3.6ns

Th

0.5ns
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original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In

Q0

Q1

CLK0

CLK1

100

Clock skew

 The problem
 correct behavior assumes next state of all storage elements

determined by all storage elements at the same time
 this is difficult in high-performance systems because time for clock

to arrive at flip-flop is comparable to delays through logic
 effect of skew on cascaded flip-flops:
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Summary of latches and flip-flops

 Development of D-FF
 level-sensitive used in custom integrated circuits

 can be made with 4 switches
 edge-triggered used in programmable logic devices
 good choice for data storage register

 Historically J-K FF was popular but now never used
 similar to R-S but with 1-1 being used to toggle output (complement state)
 good in days of TTL/SSI (more complex input function: D = J Q’ + K’ Q
 not a good choice for PALs/PLAs as it requires 2 inputs
 can always be implemented using D-FF

 Preset and clear inputs are highly desirable on flip-flops
 used at start-up or to reset system to a known state
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Metastability and asynchronous 
inputs
 Clocked synchronous circuits

 inputs, state, and outputs sampled or changed in relation to a
common reference signal (called the clock)

 e.g., master/slave, edge-triggered
 Asynchronous circuits

 inputs, state, and outputs sampled or changed independently of a
common reference signal (glitches/hazards a major concern)

 e.g., R-S latch
 Asynchronous inputs to synchronous circuits

 inputs can change at any time, will not meet setup/hold times
 dangerous, synchronous inputs are greatly preferred
 cannot be avoided (e.g., reset signal, memory wait, user input)
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small, but non-zero probability 
that the FF output will get stuck 

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

logic 0 logic 1 logic 0

logic 1

Synchronization failure

 Occurs when FF input changes close to clock edge
 the FF may enter a metastable state – neither a logic 0 nor 1 –
 it may stay in this state an indefinite amount of time
 this is not likely in practice but has some probability



VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

D DQ Q
asynchronous

input
synchronized

input

synchronous system

Clk

Dealing with synchronization failure

 Probability of failure can never be reduced to 0, but it can be reduced
 (1)  slow down the system clock 

this gives the synchronizer more time to decay into a steady state; 
synchronizer failure becomes a big problem for very high speed systems

 (2)  use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance

 (3) cascade two synchronizers 
this effectively synchronizes twice (both would have to fail)
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D Q

D Q

Q0

Clock

Clock

Q1

Async 
Input

D Q

D Q

Q0

Clock

Clock

Q1

Async 
Input D Q

Clocked  
Synchronous 

System

Synchronizer

Handling asynchronous inputs

 Never allow asynchronous inputs to fan-out to more than one flip-flop
 synchronize as soon as possible and then treat as synchronous signal
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In is asynchronous and 
fans out to D0 and D1

one FF catches the 
signal, one does not

inconsistent state may 
be reached!

In

Q0

Q1

CLK

Handling asynchronous inputs 
(cont’d)
 What can go wrong?

 input changes too close to clock edge (violating setup time 
constraint)
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Flip-flop features

 Reset (set state to 0) – R
 synchronous: Dnew = R' • Dold (when next clock edge arrives)
 asynchronous: doesn't wait for clock, quick but dangerous

 Preset or set (set state to 1) – S (or sometimes P)
 synchronous: Dnew = Dold + S (when next clock edge arrives)
 asynchronous: doesn't wait for clock, quick but dangerous

 Both reset and preset
 Dnew = R' • Dold + S (set-dominant)
 Dnew = R' • Dold + R'S (reset-dominant)

 Selective input capability (input enable or load) – LD or EN
 multiplexor at input: Dnew = LD' • Q + LD • Dold
 load may or may not override reset/set (usually R/S have priority)

 Complementary outputs – Q and Q'
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R S R S R S

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

R S

"0"

Registers

 Collections of flip-flops with similar controls and logic
 stored values somehow related (for example, form binary value)
 share clock, reset, and set lines
 similar logic at each stage

 Examples
 shift registers
 counters
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D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Shift register

 Holds samples of input
 store last 4 input values in sequence
 4-bit shift register:
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clear sets the register contents
and output to 0

s1 and s0 determine the shift function
 

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

left_in
left_out

right_out

clear
right_in

output

input

s0
s1

clock

Universal shift register

 Holds 4 values
 serial or parallel inputs
 serial or parallel outputs
 permits shift left or right
 shift in new values from left or right
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Nth cell

D

Q

CLK

Q[N-1]
(left)

Q[N+1]
(right)Input[N]

to N-1th 
cell

to N+1th 
cell

clears0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input

Design of universal shift register

 Consider one of the four flip-flops
 new value at next clock cycle:

s0 and s1
control mux

0 1 2 3

CLEAR
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parallel inputs

parallel outputs

serial transmission

Shift register application

 Parallel-to-serial conversion for serial transmission
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D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

OUT

Pattern recognizer

 Combinational function of input samples
 in this case, recognizing the pattern 1001 on the single input 

signal
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D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counters

 Sequences through a fixed set of patterns
 in this case, 1000, 0100, 0010, 0001
 if one of the patterns is its initial state (by loading or set/reset)
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Activity

 How does this counter work?

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

  Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 
0001, 0000

  Known as Mobius (or Johnson) counter
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D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

Binary counter

 Logic between registers (not just multiplexer)
 XOR decides when bit should be toggled
 always for low-order bit,

only when first bit is true for second bit,
and so on
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EN

D
C
B
A

LOAD

CLK

CLR

RCO

QD
QC
QB
QA

(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits 
are incremented

Four-bit binary synchronous up-
counter
 Standard component with many applications

 positive edge-triggered FFs w/ synchronous load and clear inputs
 parallel load data from D, C, B, A
 enable inputs: must be asserted to enable counting
 RCO: ripple-carry out used for cascading counters

 high when counter is in its highest state 1111
 implemented using an AND gate
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EN

D
C
B
A

LOAD

CLK

CLR

RCO

QD
QC
QB
QA

"1"

"0"
"0"
"0"
"0"

"0"

EN

D
C
B
A

LOAD

CLK

CLR

RCO

QD
QC
QB
QA

"1"

"0"
"1"
"1"
"0"

Offset counters

 Starting offset counters – use of synchronous load
 e.g., 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1111, 0110, . . .

 Ending offset counter – comparator for ending value
 e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

 Combinations of the above (start and stop value)
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Hardware Description Languages and 
Sequential Logic
 Flip-flops

 representation of clocks - timing of state changes
 asynchronous vs. synchronous

 Shift registers
 Simple counters
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module dff (clk, d, q);

input  clk, d;
output q;
reg    q;

always @(posedge clk)
q = d;

endmodule

Flip-flop in Verilog

 Use always block's sensitivity list to wait for clock edge
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module dff (clk, s, r, d, q);
input  clk, s, r, d;
output q;
reg    q;

always @(posedge clk)
if (r)      q = 1'b0;
else if (s) q = 1'b1;
else        q = d;

endmodule

module dff (clk, s, r, d, q);
input  clk, s, r, d;
output q;
reg    q;

always @(posedge r)
q = 1'b0;

always @(posedge s)
q = 1'b1;

always @(posedge clk)
q = d;

endmodule

More Flip-flops

 Synchronous/asynchronous reset/set
 single thread that waits for the clock
 three parallel threads – only one of which waits for the clock

Synchronous Asynchronous
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module dff (clk, d, q);

input  clk, d;
output q;
reg    q;

always @(clk)
q = d;

endmodule

Incorrect Flip-flop in Verilog

 Use always block's sensitivity list to wait for clock to change

Not correct!  Q will
change whenever the
clock changes, not
just on an edge.
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always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and Non-Blocking 
Assignments
 Blocking assignments (X=A)

 completes the assignment before continuing on to next statement
 Non-blocking assignments (X<=A)

 completes in zero time and doesn’t change the value of the 
target until a blocking point (delay/wait) is encountered

 Example: swap
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Register-transfer-level (RTL) 
Assignment
 Non-blocking assignment is also known as an RTL assignment

 if used in an always block triggered by a clock edge
 all flip-flops change together

// B,C,D all get the value of A
always @(posedge clk)
   begin
      B = A;
      C = B;
      D = C;
   end

// implements a shift register too
always @(posedge clk)
   begin
      B <= A;
      C <= B;
      D <= C;
   end
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Mobius Counter in Verilog

initial
   begin
      A = 1’b0;
      B = 1’b0;
      C = 1’b0;
      D = 1’b0;
   end

always @(posedge clk)
   begin
      A <= ~D;
      B <= A;
      C <= B;
      D <= C;
   end
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Binary Counter in Verilog

module binary_counter (clk, c8, c4, c2, c1);

input  clk;

output c8, c4, c2, c1;

reg [3:0] count;

initial begin

  count = 0;

end

always @(posedge clk) begin

  count = count + 4’b0001;

end

assign c8 = count[3];

assign c4 = count[2];
assign c2 = count[1];

assign c1 = count[0];

endmodule

module binary_counter (clk, c8, c4, c2, c1, rco);

input  clk;
output c8, c4, c2, c1, rco;

reg [3:0] count;

reg rco;

initial begin . . . end

always @(posedge clk) begin . . . end

assign c8 = count[3];

assign c4 = count[2];

assign c2 = count[1];

assign c1 = count[0];
assign rco = (count == 4b’1111);

endmodule
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Sequential logic summary

 Fundamental building block of circuits with state
 latch and flip-flop
 R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop

 Timing methodologies
 use of clocks
 cascaded FFs work because propagation delays exceed hold times
 beware of clock skew

 Asynchronous inputs and their dangers
 synchronizer failure: what it is and how to minimize its impact

 Basic registers
 shift registers
 counters

 Hardware description languages and sequential logic


