Combinational logic

Basic logic

0 Boolean algebra, proofs by re-writing, proofs by perfect induction
0 logic functions, truth tables, and switches

0 NOT, AND, OR, NAND, NOR, XOR, .. ., minimal set
Logic realization

0 two-level logic and canonical forms

0 incompletely specified functions

Simplification

0 uniting theorem

0 grouping of terms in Boolean functions

Alternate representations of Boolean functions
QO cubes

0 Karnaugh maps

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Possible logic functions of two
variables

There are 16 possible functions of 2 input variables:
0 in general, there are 2**(2**n) functions of n inputs

Y — —F
X Y 16 possible functions (FO-F15)
o 0,0 0O O O OO O OT1T 1 1 1 1 1 1 1
o 1,0 o0 0 O0 1 1 1.1 0 O O O 1 1 1 1
1 0,0 0 1 1 0O 01 1 0 O 1 1 0o 0 1 1
1 1.0 4 0 -1 0_-1 1 1 N
0 X/ Y//O \G\ntYOLXG\ 1
XandY X xor'Y X=Y =7 X nand Y
XorY X norY not (X and Y)
not (X orY)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 2

Cost of different logic functions

Different functions are easier or harder to implement
0 each has a cost associated with the number of switches needed

0 0 (FO) and 1 (F15): require 0 switches, directly connect output to
low/high

X (F3) and Y (F5): require O switches, output is one of inputs

X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
XnorY (F4) and X nand Y (F14): require 4 switches

XorY (F7)and X and Y (F1): require 6 switches

X =Y (F9)and X I Y (F6): require 16 switches

o 0O 0O O O

0 thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 3

Minimal set of functions

Can we implement all logic functions from NOT, NOR, and NAND?

0 For example, implementing XandyY
Is the same as implementing not (X nand Y)

In fact, we can do it with only NOR or only NAND
0 NOT is just a NAND or a NOR with both inputs tied together

X Y | XnorY X Y | XnandY
0 0 1 0 0 1
1 1 0 1 1 0

0 and NAND and NOR are "duals",
that is, its easy to implement one using the other

X nand Y not ((not X) nor (not Y))

But lets not move-tbo fast "2 ((het %) nand (not Y))

0 lets look at the mathematical foundation of logic

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

An algebraic structure

An algebraic structure consists of

0 a set of elements B

0 binary operations { +, ¢ }

0 and a unary operation {’ }

0 such that the following axioms hold:

1. the set B contains at least two elements: a, b

2. closure: at+b isinB aeb
3. commutativity: a+tb=b+a asb
4. associativity: at(b+c)=(a+b)+c ae(b
5. identity: a+t0=a aesl
6. distributivity: at(bec)=(@+b)e(a+c) a-(
7. complementarity: a+a =1 aea’

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Boolean algebra

Boolean algebra

2 B={0, 1}

0 variables

0 +islogical OR, «is logical AND
0 "is logical NOT

All algebraic axioms hold

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can
be written as an expression in Boolean algebra using the
operators:’, +, and ¢

X Y [XeY X Y [X' [XY
O O (O 0O O 1 |0
0 1 |0 0 1 1 1
1 0 |0 1 0 |0 |O
1 1 1 1 1 |0 |O

K ¥ Xe¥Y KoY (XeY)+ (X Y")

(XeY)+ (X oY) = X=Y

== O OIX
= O K O|<

Boolean expression that is
true when the variables X

and Y have the same value
X, Y are Boolean algebra variables and false, otherwise

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Axioms and theorems of Boolean
algebra

identity

1. X+0=X 1D. Xe1l=X
null

2. X+1=1 2D. X+0=0
Idempotency:

3. X+X=X 3D. XeX=X
Involution:

4. (X) =X
complementarity:

5. X+X =1 5D. XX =0
commutativity:

6. X+Y=Y+X 6D. XeY =YX

associativity:
7. X+Y)+Z=X+(Y+2) 7/D. (XeY)eZ=Xe(Y*2)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Axioms and theorems of Boolean
algebra (cont’'d)

distributivity:
8. Xe(Y+2Z)=(XeY)+(XeZ) 8D. X+(Ye2)=(X+Y)es(X+2)
uniting:
9. XeY+XeY =X OD. (X+Y)e(X+Y)=X
absorption:
10. X+ XY =X 10D. X (X+Y)=X
11. (X+Y)eY=XeY 11D. (X Y)+Y=X+Y
factoring:
12. (X+Y)s (X +2) = 12D. XeY + X' o Z =
XeZ+X oY (X+2Z)s (X +Y)
concensus:
13. (XeY)+(Ye2)+ (X eZ2)= 13D.(X+Y)e(Y+2)e (X +2)=
XeY+ X oZ (X+Y)e (X +2)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 9

Axioms and theorems of Boolean
algebra (cont’'d)

de Morgan’s:

14 (X+Y+..)=XeY'e... 1AD. (XeYe.)=X+Y"+ ...
generalized de Morgan’s:

15. (X, X,,...,X.,0,1,+,2) = f(X.,X,,....X.",1,0,0,4)

establishes relationship between « and +

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 10

Axioms and theorems of Boolean
algebra (cont’'d)

Duality

0 adual of a Boolean expression is derived by replacing
by +,+bye 0by1, and 1 by O, and leaving variables unchanged

0 any theorem that can be proven is thus also proven for its duall
0 a meta-theorem (a theorem about theorems)
duality:
16. X+Y + ... o XeYo |
generalized duality:
17.F (X, X,0., X ,0,1,+,0) = (X, X,,...,X ,1,0,¢,+)

Different than deMorgan’s Law
0 this is a statement about theorems
0 this is not a way to manipulate (re-write) expressions

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 11

Proving theorems (rewriting)

Using the axioms of Boolean algebra:

Q0 e.g., prove the theorem: XeY+XeY = X
distributivity (8) XeY+ XY = Xe(Y+Y)
complementarity (5) Xe(Y+Y') = X (1)
identity (1D) X * (1) = X0O

0 e.g., prove the theorem: X+ XeY = X
identity (1D) X+ XeY = X1l + XY
distributivity (8) Xel + XeY = Xeo(1+4Y)
identity (2) Xe(l4+Y) = X< (1)
identity (1D) X (1) = XO

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 12

Activity

Prove the following using the laws of Boolean algebra:
O XeY)+(YeZ)+ (X ¢Z)= XeY+X oZ

(XeY)+(Y2Z)+ (X *2)
identity (XeY)+(1)e(Ye2Z)+ (X *2)

complementarity XeY)+ (X +X)e(YeoZ)+ (X *2)

distributivity (XeY)+ (X eYeZ)+ (XY eZ)+ (X «2)
commutativity (XeY)+(XeYeoeZ)+ (X oY eeZ)+ (X *2)
factoring XeY)e (1 +2Z)+ (X ¢Z)(1+Y)

null (XeoY)e(1)+ (X «2Z) (1)

identity (XeY)+ (X" »2Z)O

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

13

Proving theorems (perfect induction)

Using perfect induction (complete truth table):
0 e.g., de Morgan’s:

X+Y) =X oY é(g)1(\1((X-1|-Y) XlY
NOR is equivalent to AND O 1 1 0 0 0
with inputs complemented 1 0 0 1 0 0

1 1 0 O 0 0

(XY =X +Y z)(g >1(\1((XlY) X1+Y
NAND is equivalent to OR 0 1 1 0 1 1
with inputs complemented 1 0 0 1 1 1

1 1 0 O 0 0

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 14

A simple example: 1-bit binary adder

Cout Cin
Inputs: A, B, Carry-in Al allall all o
Outputs: Sum, Carry-out B(IB||B|/B|B
siis||sls|s

L » S

A B Cin|l Cout S B—

0 0 O 0 0 Cin ——» — Cout

O O 1 0O 1

O 1 O O 1 ’ ’ . ’ L | ’ L .

0O 1 1 1 0 S=A"B'"Cin+A’"BCin"+ AB’' Cin” + AB Cin
1 0 01 % © Cout=ABCin+AB Cin+ABCin +ABCin
1 1 0 1 0

1 1 1 1 1

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 15

Apply the theorems to simplify
expressions

The theorems of Boolean algebra can simplify Boolean
expressions

0 e.qg., full adder’s carry-out function (same rules apply to any function)

Cout A'BCin+ AB'Cin+ ABCin” + ABCin
A'BCin + AB'Cin + ABCin” + ABCin + ABdin

A’'BCin + ABCin + AB'Cin + ABCin" + Al?jin

(A+A)BCin + AB'Cin + ABCin” + ABCin
(1) BCin + AB'Cin + ABCin” + ABCin

BCin + AB'Cin +ABCin” { ABCin + A B CUn

BCin + AB'Cin + ABCin + ABCin” + AB/Cin

BCin + A(B"+B)Cin + ABCin” + ABCin

BCin + A(1)Cin + ABCin” + ABCin

BCin + ACin + AB (Cin" + Cin)

BCin + ACin + AB (1)

BCin + ACin + AB adding extra terms

creates new

factoring

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | opportunities 16

Activity

Fill in the truth-table for a circuit that checks that a 4-bit number
Is divisible by 2, 3, or 5

X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0

Write down Boolean expressions for By2, By3, and By5

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 17

Activity By2 = X8X4'X2'X1' +
X8'X4'X2X1'
+ X8'X4X2'X1' +
X8'X4X2 X1’
X8 X4 X2 X1 By2 By3 By5 + X8X4'X2'X1" +
g g g (1’ (1) (1) (1) X8X4'X2X1'
0 o 1 o 1 o 0 + X8X4X2'X1" +
0 0 1 1 0 1 0 X8X4X2X1'
0 1 0 0 1 0 0 = X1’
0 1 0 1 0 0 1
0 1 1 0 1 1 0 N AT Y
o 1 1 1 ls o o By3= X8'X4'X2'X1" +
1 0 0 0 1 0 0 X8'X4'X2X1
1 0 0 1 0 1 0 + X8'X4X2X1'" +
i g i ‘1) (1) g (1) X8X4'X2'X1
1 1 0 0 1 1 0 + X8X4X2'X1" +
1 1 0 1 0 0 0 X8X4X2X1
1 1 1 0 1 0 0
1 1 1 1 0 1 1 By5= X8'X4'X2'X1’ +
X8'X4X2'X1
+ X8X4'X2X1" +
X8X4X2X1

II - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy |

18

From Boolean expressions to logic

gates

NOT X X =X x4>o_Y

AND XeY XY XOY 77] 2

Xgy - xS
=k

OR X+Y

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

[l)
o

PR OOX RRFROOI[IX

HOROK HROHOK

RFFRPFONRPFRLROOO|IN

19

From Boolean expressions to logic
gates (cont’'d)

X Y |Z
NAND X v 0 0 |1
Y — O 1 |1
1 0 |1
1 1 '0
X Y |Z
NOR X 0 0 |1
v Z 0 1 |0
1 0 |0
1 1 '0
XOR X Y |7
X Y X D 0 0 |0 XxorY=XY + XY
Y 7D_ z o 1 |1 X orY but not both
1 0 |1 ("inequality", "difference")
1 1 '0
XNOR x Y |3z
X=Y v 5 0o o0 |1 XxnorY=XY+XY
Y _)D— z o 1 |0 X and Y are the same
1 0 |0 ("equality”, "coincidence")
1 1 '1

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 20

From Boolean expressions to logic
gates (cont’'d)

More than one way to map expressions to gates

2 eg., Z=A B+ (C+D)=(A"+(B'* (C +D)))

T1

A—1
8 —D

0
0

s~

II - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy |

use of 3-input gate

(3_2 A——>
T1 B >o
T2 B ::D__

1)=z

21

Waveform view of logic functions

Just a sideways truth table
0 but note how edges don't line up exactly
0 it takes time for a gate to switch its output!

time

v

.
Y I _
Mot ¥ | |
W& | |
Mot (% &) | |
E]

]

At [
Mot 05 + Y1) 1
R | I | :
Mot (X xar %) | | "

change in Y takes time to "propagate" through gates

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 22

Choosing different realizations of a

function

A B C | Z

0 0 0 0 A B [0

0 0 1 |1 sisls

0 1 0O |0

0 1 1 1

1 0 0|0 o

1 0 1 1 D— two-level realization

1 1 0|1 - (we don’t count NOT gates)
1 1 1 0 H;’;

multi-level realization

.

] (gates with fewer inputs)

gt

Dﬁ - XOR gate (easier to draw
1> but costlier to build)

I

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 23

Which realization Is best?

Reduce number of inputs

0 literal: input variable (complemented or not)
can approximate cost of logic gate as 2 transitors per literal
why not count inverters?

0 fewer literals means less transistors
smaller circuits

0 fewer inputs implies faster gates
gates are smaller and thus also faster

0 fan-ins (# of gate inputs) are limited in some technologies

Reduce number of gates

0 fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 24

Which is the best realization?
(cont’'d)

Reduce number of levels of gates

0 fewer level of gates implies reduced signal propagation delays

0 minimum delay configuration typically requires more gates
wider, less deep circuits

How do we explore tradeoffs between increased circuit delay

and size?

0 automated tools to generate different solutions

0 logic minimization: reduce number of gates and complexity

0 logic optimization: reduction while trading off against delay

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 25

Are all realizations equivalent?

Under the same input stimuli, the three alternative

Implementations have
almost the same waveform behavior

0 delays are different
0 glitches (hazards) may arise — these could be bad, it depends
0 variations due to differences in number of gate levels and structure

The three implementations are functionally equivalent

: . 1 EIII:I : 200 .
A | o
E I | I _
C . — o — — .
21 | — ——H I L
72 | — ——H I I
3 —|—|—|—'1—| I I |

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 26

Implementing Boolean functions

Technology independent
0 canonical forms
0 two-level forms
0 multi-level forms

Technology choices

0 packages of a few gates

Q0 regular logic

0 two-level programmable logic
0 multi-level programmable logic

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Canonical forms

Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

0 standard forms for a Boolean expression

0 provides a unique algebraic signature

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

28

Sum-of-products canonical forms

Also known
Also known

as disjunctive normal form
as minterm expansion

F= 001 011 101 110 111
F =A'B'C+ A'BC+ AB'C + ABC’ + ABC

RPRPRRPRPRPRPOOOOD>
HFRFRPOORRREFOO|I™
RFORFRPRORFERORROIN

II - Combinational Logic

F'=A'B'C' + A'BC' + AB'C’

HFRROROROM

© Copyright 2004, Gaetano Borriello and Randy |

29

Sum-of-products canonical form
(cont’d)

Product term (or minterm)

0 ANDed product of literals — input combination for which output is
true

0 each variable appears exactly once, true or inverted (but not both)

A B C | minterms . .
0 0 0 |ABC mo F in canonical form:
0 0 1 |ABC ml F(A, B, C) =2>m(1,3,5,6,7)
0O 1 0 | ABC' m2 = ml+m3+m5+m6+ m7
0 1 1 | ABC m3 = A'B'C + A'BC + AB’'C + ABC’ + ABC
1 0 O | ABC m4 . .
1 0o 1 !|aBC ms canonical form # minimal form
1 1 o |ABC m6 F(A,B,C) =A'B'C+ A'BC + AB’'C + ABC + ABC’
1 1 1 | ABC m7 = (A’'B’ + A'B + AB’ + AB)C + ABC’
= ((A” + A)(B’ + B))C + ABC’
/ = C + ABC’
short-hand notation for = ABC" + C
minterms of 3 variables =AB + C

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 30

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

F = 000 010 100
F=(A+B+C)A+B +C)A"+B + ()

e

A B C |F
O 0 O |01
O 0 1 |1
O 1 0|0 1
O 1 1 |1
1 0 0 (0 1
1 0 1 (1 O
1 1 011 O
1 1 1 1 O

F=A+B+C)A+B" +C)A+B+C')(A+B"+C)(A'+B" +C)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 31

Product-of-sums canonical form
(cont’'d)

Sum term (or maxterm)
0 ORed sum of literals — input combination for which output is false
0 each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

O O O |A+B+C MO F(A, B, C) = nM(0,2,4)

O 0 1 |[A+B+C M1l = MO * M2 « M4

0 1 0 |A+B'+C M2 = (A+B+C)(A+B +C)(A"+B+0C)
O 1 1 |A+B'+C" M3

1 0 0 [A+B+C M4 canonical form # minimal form

1 0 1 JA+B+C" M5 F(A,B,C) =(A+B+C)(A+B +C)(A"+B+C)
1 1 0 |A+B'+C M6 =(A+B+C)(A+B +0C)

1 1 1 [A+B'+C MY (A+B+C) (A" +B+C)

/ =(A+C) (B +C)
short-hand notation f

maxterms of 3 variables

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 32

S-0-P, P-0-S, and de Morgan'’s
theorem

Sum-of-products

o FF=ABC +ABC + ABC’

Apply de Morgan’s

1 (Fy =(A'B'C’'+ ABC' + AB'C'y

O F=(A+B+C)(A+B +C)(A’+B +(C)

Product-of-sums

O P=(A+B+C)(A+B +C)(A’+B+C)(A+B +C)(A’+B +C)
Apply de Morgan’s

a (FYy=(A+B+C)A+B' +C)A+B+C)A'+B' +C)(A’+B' +C)))’
o F=ABC+ ABC + AB'C + ABC' + ABC

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

33

Four alternative two-level
implementations
of F=AB + C

-

D,

s

L

E:- F1 —

canonical sum-of-products

A —S
B i >
C L>c

>

s

|

minimized sum-of-products

canonical product-of-sums

T)rs —

II - Combinational Logic

© Copyright

) O
o

/minimized product-of-sums

2004, Gaetano Borriello and Randy | 34

Waveforms for the four alternatives

Waveforms are essentially identical
0 except for timing hazards (glitches)

0 delays almost identical (modeled as a delay per level, not type of
gate or number of inputs to gate)

Fi
F2
F2 | |
Fd

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Mapping between canonical forms

Minterm to maxterm conversion
0 use maxterms whose indices do not appear in minterm expansion

0 e.g., F(AB,C)=2m(1,3,5,6,7) =M(0,2,4)

Maxterm to minterm conversion

0 use minterms whose indices do not appear in maxterm expansion
0 e.g., F(A,B,C) = MM(0,2,4) = m(1,3,5,6,7)

Minterm expansion of F to minterm expansion of F’

0 use minterms whose indices do not appear

2 e.g., F(AB,C)==m(1,3,5,6,7) F'(A,B,C) = m(0,2,4)
Maxterm expansion of F to maxterm expansion of F’

0 use maxterms whose indices do not appear

2 e.g., F(A,B,C) = MM(0,2,4) F'(A,B,C) = MM(1,3,5,6,7)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 36

Incompleteley specified functions

Example: binary coded decimal increment by 1

0 BCD digits encode the decimal digits 0 — 9
In the bit patterns 0000 — 1001

A B C D|W X 'Y Z
O O O O (g o 0 1
o o o 1 (0.0 1 0 off-set of W
O O 1 O (g o0 1 1
o o 1 1100 1 O O on-set of W
O 1 O O {og 1 o
O 1 0 1 || 1 don’t care (DC) set of
O 1 1 0 (6 1 1 W
O 1 1 1 ([1 O O
1 0 0 O0 |1 0
1 0 0 1 |[O 0 .
1 0 1 0 |IX X X these inputs patterns should
1 0 1 1 ||X X X ever be encountered in practice
1 1 0 0 [[¥ X X X - "don’t care" about associated
1 1 0 1 ([X X X output values, can be exploited
1 1 1 o0 I X X X in minimization
1 1 1 1 X X X X
II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Notation for incompletely specified
functions

Don’t cares and canonical forms

0 so far, only represented on-set

0 also represent don’t-care-set

0 need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

9 Z=m0+m2+m4+m6+m8+dl0+dll +dl2+ di13 +dl1l4 + di5
0 Z=3[m(0,2,4,6,8) +d(10,11,12,13,14,15)]

0 Z=M1sM3eM5e¢M7+M9sD10¢ D11 e D12+ D13+ D14 D15
0 Z=N[M(1,3,5,7,9) » D(10,11,12,13,14,15)]

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 38

Simplification of two-level
combinational logic

Finding a minimal sum of products or product of sums realization
0 exploit don’t care information in the process

Algebraic simplification

0 not an algorithmic/systematic procedure

2 how do you know when the minimum realization has been found?
Computer-aided design tools

0 precise solutions require very long computation times, especially for
functions with many inputs (> 10)

0 heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
0 to understand automatic tools and their strengths and weaknesses
0 ability to check results (on small examples)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 39

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

0 find two element subsets of the ON-set where only one variable
changes its value — this single varying variable can be eliminated
and a single product term used to represent both elements

F=A'B'+AB’' = (A'+A)B’ = B’

B has the same value in both on-set rows
- B remains

0
1 A has a different value in the two rows

— A is eliminated

R |PL| O |Oo| >

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 40

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied

n input variables = n-dimensional "cube"

01 11
0 1 v
1-cube O————O 2-cube
X 00 10
X
111
3-cube Y 101
000 X

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

41

Mapping truth tables onto Boolean
cubes

Uniting theorem combines two "faces" of a cube
Into a larger "face"

Example:
F o faces of size 0 (nodes)
A B |F combine into a face of size 1(line)
01 11
O 0 |1
0 1 |0 B
1 0 |1 00 10
A
1 1 (0

varies within face, B does not
this face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 42

Three variable example

Binary full-adder carry-out logic

II - Combinational Logic

A B C(Cin Cout
O 0 O 0
O 0 1 0
O 1 O 0
O 1 1 1
1 0 O 0
1 0 1 1
1 1 O 1
1 1 1 1

(A'+A)BCin

\

AB(Cin'+Cin)
11
B 01
00055 T A(B+B")Cin

the on-set is completely covered by

the combination (OR) of the subcubes

of lower dimensionality - note that “111”
is covered three times

Cout = BCin+AB+ACin

© Copyright 2004, Gaetano Borriello and Randy | 43

Higher dimensional cubes

Sub-cubes of higher dimension than 2

F(A,B,C) = Em(4,5,6,7)

on-set forms a square

011 111 l.e., a cube of dimension 2
11 . . .
010 represents an expression in one variable
5 001 i.e., 3 dimensions - 2 dimensions
C 1 A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 44

m-dimensional cubes in a n-
dimensional Boolean space

In a 3-cube (three variables):

0 a 0-cube, I.e., a single node, yields a term in 3 literals

0 al-cube, i.e., aline of two nodes, yields a term in 2 literals

0 a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal

0 a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,

0 an m-subcube within an n-cube (m < n) yields a term
with n — m literals

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 45

Karnaugh maps

Flat map of Boolean cube
2 wrap—around at edges
2 hard to draw and visualize for more than 4 dimensions
2 virtually impossible for more than 6 dimensions
Alternative to truth-tables to help visualize adjacencies
2 guide to applying the uniting theorem

2 on-set elements with only one variable changing value are
adjacent unlike the situation in a linear truth-table

A A B |F

B_O0 1 0 0 |1

1l o]l o 1 0 |1
1 3

1 1|0

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 46

Karnaugh maps (cont’d)

Numbering scheme based on Gray—code

2 e.g., 00,01, 11,10

2 only a single bit changes in code for adjacent map cells

A
AB
c_ 00 01 11 10
0O 2 |6 14
1
¢ 1 |3 17 |5
B
A
O [2 [6 |4
C1 3 |7 |5
B

12

13

15

11

14

10

II - Combinational Logic

© Copyright 2004, Gaetano Borriello and Randy |

13 =1101= ABC'D

47

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

010f 110, 100

C| 001} 011f 111 101

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

Karnaugh map examples

f(A,B,C) = =m(0,4,5,

ol o [1\ 0 AB+ ACin+ BCin

cil o | |[KD| D

_E 01 0 d obtain the
complement

clo] ol|C]|\z
L , of the function
5 AC+BC><

by covering Os
with subcubes

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 49

More Karnaugh map examples

A

o | o[r] 1) G(A,B,C) = A
1

A

o [o]al

- F(A,B,C)=2m(0,4,5,7) =AC +B'C’
clo| o@D

0 {E 0 F' simply replace 1's with 0's and vice versa
F'(A,B,C) =2 m(1,2,3,6)=BC’ + A'C

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

50

Karnaugh map: 4-variable example

F(A,B,C,D) = 3m(0,2,3,5,6,7,8,10,11,14,15)

F=C+ A'BD + B'D’

. A 1111
[] ofo]lal
o rjojol,
C
1| 1] 1] 1) D
C ——/ O
1] 1] 1 [[1) 0000 B

find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 51

Karnaugh maps: don’t cares

f(A,B,C,D) = = m(1,3,5,7,9) + d(6,12,13)

O without don't cares
f= A'D+ B'C'D

!
Sk

B

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 52

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = = m(1,3,5,7,9) + d(6,12,13)

0 f=AD+B'CD without don't cares
o f=AD+CD with don't cares
A :
by using don't care as a "1"
/—O S e / a 2-cube can be formed
i — T x| 1] rather than a 1-cube to cover
D this node
I 1] 1J)lo] o0
C — don't cares can be treated as
‘ O X | 0|0 1s or Os
B depending on which is more
advantageous

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy | 53

Activity

Minimize the function F = 2 m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

54

Combinational logic summary

Logic functions, truth tables, and switches

0 NOT, AND, OR, NAND, NOR, XOR, . .., minimal set
Axioms and theorems of Boolean algebra

0 proofs by re-writing and perfect induction
Gate logic

0 networks of Boolean functions and their time behavior
Canonical forms

0 two-level and incompletely specified functions
Simplification

0 astart at understanding two-level simplification
Later
automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies

O 0 0 O O

II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy |

