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2D Discrete Fourier Transform 

•  Fourier transform of a 2D signal defined over a discrete finite 2D grid 
of size MxN 

or equivalently 

•  Fourier transform of a 2D set of samples forming a bidimensional 
sequence  

•  As in the 1D case, 2D-DFT, though a self-consistent transform, can 
be considered as a mean of calculating the transform of a 2D 
sampled signal defined over a discrete grid. 

•  The signal is periodized along both dimensions and the 2D-DFT can 
be regarded as a sampled version of the 2D DTFT 
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2D Discrete Fourier Transform (2D DFT) 

•  2D Fourier (discrete time) Transform (DTFT)  [Gonzalez] 
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•  2D Discrete Fourier Transform (DFT) 

2D DFT can be regarded as a sampled version of 2D DTFT. 

a-periodic signal 
periodic transform 

periodized signal 
periodic and sampled 
transform 
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2D DFT: Periodicity 
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•  A [M,N] point DFT is periodic with period [M,N] 
–  Proof 

[ , ]F k l=

(In what follows: spatial coordinates=k,l, frequency coordinates: u,v) 
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2D DFT: Periodicity 

•  Periodicity 

•  This has important consequences on the implementation and 
energy compaction property 
–  1D 
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The two inverted periods meet here 

f[k] real→F[u] is symmetric 
M/2 samples are enough 
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Periodicity: 1D 

F[u] 

u M/2 M 0 
It is more practical to have one complete period positioned in [0, M-1] 
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changing the sign of every other 
sample of the DFT puts F[0] at 
the center of the interval [0,M] 

The two inverted periods meet here 
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Periodicity in 2D 

1/M↔128 
1/N↔128 

I 4 semiperiodi si incontrano ai vertici I 4 semiperiodi si incontrano al centro 
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Periodicity 

0,127=1/M,1/N 0,0 

0,0 

fft2 

fftshift(fft2) 
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Periodicity: 2D 

DFT periods 

MxN values 

4 inverted 
periods meet 
here 

M/2 
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-N/2 

F[u,v] 

(0,0) 
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Periodicity: 2D 

DFT periods 

MxN values 

4 inverted 
periods meet 
here 
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Periodicity: 2D 
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4 inverted 
periods meet 
here 
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Periodicity in spatial domain 
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•  [M,N] point inverse DFT is periodic with period [M,N] 
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Angle and phase spectra 
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For a real function 
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Translation and rotation 
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mean value 
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Separability 

•  The discrete two-dimensional Fourier transform of an image array is 
defined in series form as 

•  inverse transform 

•  Because the transform kernels are separable and symmetric, the two 
dimensional transforms can be computed as sequential row and column 
one-dimensional transforms.  

•  The basis functions of the transform are complex exponentials that may be 
decomposed into sine and cosine components. 
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2D DFT: summary 
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2D DFT: summary 
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2D DFT: summary 
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2D DFT: summary 



other formulations 
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2D Discrete Fourier Transform 

•  Inverse DFT 
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•  2D Discrete Fourier Transform (DFT) 
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where 
0,1,..., 1k M= −
0,1,..., 1l N= −
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2D Discrete Fourier Transform 

•  Inverse DFT 
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•  It is also possible to define DFT as follows 
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where 0,1,..., 1k M= −
0,1,..., 1l N= −
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2D Discrete Fourier Transform 

•  Inverse DFT 
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•  Or, as follows 
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where                               and  0,1,..., 1k M= − 0,1,..., 1l N= −
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2D DFT 

•  The discrete two-dimensional Fourier transform of an image array is 
defined in series form as 

•  inverse transform 



2D DCT 

Discrete Cosine Transform 
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2D DCT 

•  based on most common form for 1D DCT 

u,x=0,1,…, N-1 

“mean” value 
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1D basis functions 

Cosine basis functions are orthogonal 

Figure 1 
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2D DCT 

•  Corresponding 2D formulation 

u,v=0,1,…., N-1 

direct 

inverse 
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2D basis functions 

•  The 2-D basis functions can be generated by multiplying the 
horizontally oriented 1-D basis functions (shown in Figure 1) with 
vertically oriented set of the same functions.  

•  The basis functions for N = 8 are shown in Figure 2.  
–  The basis functions exhibit a progressive increase in frequency both in 

the vertical and horizontal direction.  
–  The top left basis function assumes a constant value and is referred to 

as the DC coefficient. 
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2D DCT basis functions 
Figure 2 



36 

Separability 

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the 
corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one 
dimension at a time 
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Block-based implementation 

The source data (8x8) is transformed to a 
linear combination of these 64 frequency 
squares.  

Block size 
N=M=8 

Block-based transform 

Basis function 
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Energy compaction 
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Energy compaction 
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Appendix 

•  Eulero’s formula 


