
CODE
GENERATION

Monday, May 31, 2010

Activation record

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Activation record (A.R.): data about an execution of a
procedure.

Compiler notes #7, 20070615, Tsan-sheng Hsu 3

memory management

commonly placed in registers (when possible)

A.R.

Code

Static

Heap

Free Memory

Stack

Monday, May 31, 2010

For some compiler, the intermediate code is a
pseudo-code of a virtual machine.

Interpreter of the virtual machine is invoked to execute the intermediate code.
No machine-dependent code generation is needed.
Usually with great overhead.

Example:
◁ Pascal: P-code for the virtual P machine.
◁ JAVA: Byte code for the virtual JAVA machine.

Monday, May 31, 2010

Machine-dependent issues

 Input and output formats:
The formats of the intermediate code and the target program.

 Memory management:
Alignment, indirect addressing, paging, segment, . . .
Those you learned from your assembly language class.

 Instruction cost:
Special machine instructions to speed up execution.
Example:

Increment by 1.

Multiplying or dividing by 2.

Bit-wise manipulation.

Operators applied on a continuous block of memory space.

Pick a fastest instruction combination for a certain target machine.

Monday, May 31, 2010

Machine-dependent issues

Register allocation: in-between machine dependent and
independent issues.

C language allows the user to management a pool of registers.
Some language leaves the task to compiler.
Idea: save mostly used intermediate result in a register. However, finding

an optimal solution for using a limited set of registers is NP-hard.

t=a+b

load R0,a
load R1,b
add R0,R1
store R0,T
load R0,a
add! R0,b
store R0,T

Heuristic solutions: similar to the ones used for the swapping problem.

Monday, May 31, 2010

Machine-independent issues

Techniques.

Analysis of dependence graphs.
Analysis of basic blocks and flow graphs.
Semantics-preserving transformations.
Algebraic transformations.

Monday, May 31, 2010

Machine dependend issues

the target language: RISC (+ a little of CISC)

LD R0, y //R0 = y
ADD R0, R0, z //R0 = y
ST x, R0 // x = R0

Monday, May 31, 2010

A Simple Target Machine Model

byte-addressable machine with n general-purpose registers, R0, R1, ... ,Rn - 1

OPERATIONS FORMAT

Load LD r,x (r=x)

Store ST x,r (x=r)

Computation OP r1, r2,r3 (SUB r1, r2,r3 // r1=r2-r3)

 Unconditional jumps BR L

 Conditional jump Bcond r, L (BLTZ r, L)

Monday, May 31, 2010

addressing modes

format addr examples

x // Lval(x) name

a(r) // Lval(a)+ Rval(r) LD R1 a(R2)

const(r) // const+Rval(r) LD R1, 100(R2)

*r // Rval(Rval(r)) LD R1, *(R2)

*const(r) // Rval(const+Rval(r)) LD R1, *100(R2)

#const // immediate op nil LD R1, #100

Monday, May 31, 2010

x = y-z

LD R1, y //R1=y
LD R2, z //R2=z
SUB R1,R1,R2 //R1=R1=R2
ST x, R1 //x=R1

b = a[i]

LD R1, i //R1=i
MUL R1,R1,8 //R1= R1*8

LD R2,a(R) //R2 = Rval(a+Rval(R1))
ST b, R2 //b=R2

Monday, May 31, 2010

x = *i

LD R1, i //R1=i
LD R2,0(R1) //R2 = Rval(O + Rval(R1))
ST b, R2 //b=R2

a[j] = c

LD R1, c //R1 = c
LD R2, j //R2 = j
MUL R2, R2, 8 //R2 = R2 * 8
ST a(R2), R1 //Rval(a+Rval(R2)) = R1

Monday, May 31, 2010

*p = y

LD R1, p //R1=p
LD R2, y //R2=y
ST 0(R1),R2 //Rval(O + Rval(R1)) = R2

if x < y goto L

LD R1, x // R1 = x
LD R2, y // R2 = y
SUB R1, R1, R2 // R1 = R1 - R2
BLTZ R1, M // if R1 < 0 jump to M

M is the label that represents the first machine instruction generated from the three-address
instruction that has label L

Monday, May 31, 2010

Program and Instruction Costs

we shall assume each target-language instruction has an associated cost

we take the cost of an instruction to be one plus the costs associated
with the addressing modes of the operands

cost(LD R0, R1)=1
This instruction has a cost of one because no additional memory words
are required.

cost(LD R0, M)=2
The cost is two since the address of memory location M is in the word
following the instruction.

cost(LD R1, *100(R2))=3
 The cost is three because the constant 100 is stored in the word
following the instruction.

Monday, May 31, 2010

Procedure call, return:

no parameters:

procedure call:
call callee

return:
return
halt (return of the main)

action a generic sequence of three addr instructions

Monday, May 31, 2010

here :ST callee.static.area, #(here+20) // save return address here+20
 // in location with
 // address callee.static.area
here+16 :BR callee.codeArea! // call procedure
here+20 : ...

end :HALT // return to operating system

callee.codeArea :action2

ret :BR *callee.static.area! // return to address saved in location
 // callee.static.area

Monday, May 31, 2010

// code for c
100: ACTION1 // code for action1
120: ST 364, #140 // save return address 140 in location 364
132: BR 200! // call p
140: ACTION2
160: HALT! // return to operating system
__
// code for p
200: ACTION3
220: BR *364! // return to address saved in location 364
__
// 300-363 hold activation record for c
300:! // return address
304! // local data for c
 ...
__
// 364-451 hold activation record for p
364:! // return address
368:! // local data for p

452:

// code for c
action1
call p
action2
halt
// code for p
action3
return

Monday, May 31, 2010

LD SP, #stackStart! // initialize the stack code for the
 // first procedure
HALT! // terminate execution

ADD SP, SP, # caller. recordSize! // increment stack pointer
ST *SP, #here + 16 // save return address
BR callee.codeArea // return to caller

BR *0 (SP)! // return to caller

Monday, May 31, 2010

 // code for m

100: LD SP, #600 // initialize the stack

108: ACTION1 // code for action1

128: ADD SP, SP, #msize // call sequence begins

136: ST *SP, #152 // push return address

144: BR 300 // call q

152: SUB SP, SP, #msize // restore SP

160: ACTION1 2

180: HALT

 .. .

 ! // code for p ! // code for p ! // code for p

200: ACTION3

220: BR *0(SP) // return

 . ..

 ! // code for q ! // code for q ! // code for q

300: ACTION4 // contains a conditional jump to 456

320: ADD SP, SP, #qsize

328: ST *SP, #344 // push return address

 336: BR 200 // call p

 344: SUB SP, SP, #qsize

 352: ACTION5

 372: ADD SP, SP, #qsize

 380: BR *SP, #396 // push return address

 388: BR 300 // call q

 396: SUB SP, SP, #qsize

 404: ACTION6

 424: ADD SP, SP, #qsize

 432: ST *SP, #440 // push return address

 440: BR 300 // call q

 448: SUB SP, SP, #qsize

 456: BR *0(SP) // return

 . ..

 600: // stack starts here

 ! // code for m ! // code for m

action1

call q

action2

halt
 ! // code for p ! // code for p

action3

return
 ! // code for q ! // code for q

action4

call p

action5

call q

action6

call q

return

Monday, May 31, 2010

Register allocation:
in-between machine dependent and

independent issues.
• C language allows the user to management a pool of registers.
• Some language leaves the task to compiler.
• Idea: save mostly used intermediate result in a register.

finding an optimal solution for using a limited set of registers isNP-hard.

t=a+b
load R0,a
load!R1,b
add R0,R1
store R0,T

load R0,a
add!R0,b
store R0,T

Monday, May 31, 2010

Machine-independent issues

Techniques.

Analysis of dependence graphs.
Analysis of basic blocks and flow graphs.
Semantics-preserving transformations.
Algebraic transformations.

Monday, May 31, 2010

basic blocks:
maximal sequences of consecutive three-address instructions s.t.:

The flow of control can only enter the basic block through the first instruction in

the block (no jumps into the middle of the block)

Control will leave the block without halting or branching, except possibly at the
last instruction in the block.

Partition the intermediate code into basic blocks

The basic blocks become the nodes of a flow graph, whose edges indicate

which blocks can follow which other blocks.

Monday, May 31, 2010

Algorithm 8.5:
INPUT:

A sequence of three-address instructions.
OUTPUT:

A list of the basic blocks for that sequence in which each instruction is assigned to
exactly one basic block.

METHOD:
a) determine the leaders:

1. The first three-address instruction in the intermediate code is a leader.
2. Any instruction that is the target of a conditional or unconditional jump
! is a leader.
3. Any instruction that immediately follows a conditional or unconditional
jump is a leader.

b) for each leader, its basic block consists of itself and all instructions up to
but not including the next leader or the end of the intermediate program.

Partitioning three-address instructions into basic blocks.

Monday, May 31, 2010

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a [t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

leaders ?

Monday, May 31, 2010

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a [t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

Monday, May 31, 2010

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a [t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

1) i = 1

2) j = 1

3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)

10) i = i + 1
11) if i <= 10 goto (2)

12) i = 1

13) t5 = i - 1
14) t6 = 88 * t5
15) a [t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

Monday, May 31, 2010

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a [t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

 i = 1

 j = 1

 t1 = 10 * i
 t2 = t1 + j
 t3 = 8 * t2
 t4 = t3 - 88
 a[t4] = 0.0
 j = j + 1
 if j <= 10 goto B3

 i = i + 1
 if i <= 10 goto B2

 i = 1

 t5 = i - 1
 t6 = 88 * t5
 a [t6] = 1.0
 i = i + 1
 if i <= 10 goto B6

B1

B2

B3

B4

B5

B6

Monday, May 31, 2010

1) i = 1
2) j = 1
3) t1 = 10 * i
4) t2 = t1 + j
5) t3 = 8 * t2
6) t4 = t3 - 88
7) a[t4] = 0.0
8) j = j + 1
9) if j <= 10 goto (3)
10) i = i + 1
11) if i <= 10 goto (2)
12) i = 1
13) t5 = i - 1
14) t6 = 88 * t5
15) a [t6] = 1.0
16) i = i + 1
17) if i <= 10 goto (13)

 i = 1

 j = 1

 t1 = 10 * i
 t2 = t1 + j
 t3 = 8 * t2
 t4 = t3 - 88
 a[t4] = 0.0
 j = j + 1
 if j <= 10 goto B3

 i = i + 1
 if i <= 10 goto B2

 i = 1

 t5 = i - 1
 t6 = 88 * t5
 a [t6] = 1.0
 i = i + 1
 if i <= 10 goto B6

B1

B2

B3

B4

B5

B6

Monday, May 31, 2010

Next-Use Information
(inside a block)

Suppose three-address statement i assigns a value to x.
If

statement j has x as an operand,
and

control can flow from statement i to j along a path that
has no intervening assignments to x,

then
we say:

1) statement j uses the value of x
 computed at statement i.
2) x is live at statement i.

Our algorithm to determine liveness and next-use information makes a backward pass
over each basic block. We store the information in the symbol table. Since procedures
can have arbitrary side effects, we assume for convenience that each procedure call
starts a new basic block

Monday, May 31, 2010

Algorithm 8.7:
INPUT:

A basic block B of three-address statements. We assume that the symbol table
initially shows all nontemporary variables in B as being live on exit.

OUTPUT:
∀ x=y+z ∈ B, we attach to x=y+z the liveness and next-use information of x, y,
and z.

METHOD:
Starting with the last statement in B and scanning backwards
foreach x = y+z do

1. Attach to statement x = y+z the information currently found in the
symbol table

! regarding the next use and liveness of x, y, and y.
2. In the symbol table, set x to "not live" and "no next use."
3. In the symbol table, set y and z to "live" and the next uses
 of y and z to x=y+z.

Here we have used + as a symbol representing any operator. If the three-
address statement i is of the form x = + y or x = y, the steps are the same as
above, ignoring z. Note that the order of steps (2) and (3) may not be
interchanged because x may be y or z.

Determining the liveness and next-use

Monday, May 31, 2010

Optimization of Basic Blocks

•!Local optimization within each basic block

•!Global optimization

 focuses on the local optimization

Monday, May 31, 2010

DAG Representation of Basic Blocks

Target: Construct a DAG for a basic block

1. There is a node in the DAG for each of the initial values of the variables appearing in
the basic block.

2. ∀ statement s. we associate a node Ns.
The children of Ns are those nodes corresponding to statements that are the last
definitions, prior to s, of the operands used by s.

3. each node Ns is labeled by the operator applied at s.
Attached to Ns is the list of variables for which it is the last definition within the block.

4. Certain nodes are designated output nodes. These are the nodes whose variables are
live on exit from the block; that is, their values may be used later, in another block of the
flow graph.

Monday, May 31, 2010

The DAG representation of a basic block lets us perform
•eliminating local common sub-expressions

•eliminating dead code

•reordering statements that do not depend on one another

•applying algebraic laws to reorder operands of three-address instructions

Monday, May 31, 2010

Monday, May 31, 2010

When we construct the node for the third statement
c=b+c, we know that the use of b in b+c refers to the
node labeled -, because that is the most recent
definition of b. Thus, we do not confuse the values
computed at statements one and three.

However, the node corresponding to the fourth statement
d=a-d has the operator - and the nodes with attached
variables a and d0 as children. Since the operator and
the children are the same as those for the node
corresponding to statement two, we do not create this
node, but add d to the list of definitions for the node
labeled

Monday, May 31, 2010

Dead Code Elimination

We delete from a DAG any root (node with no ancestors)
that has no live variables attached. Repeated application
of this transformation will remove all nodes from the
DAG that correspond to dead code.

If a and b are live but c and e are not:

Monday, May 31, 2010

Dead Code Elimination

We delete from a DAG any root (node with no ancestors)
that has no live variables attached. Repeated application
of this transformation will remove all nodes from the
DAG that correspond to dead code.

Monday, May 31, 2010

Dead Code Elimination

We delete from a DAG any root (node with no ancestors)
that has no live variables attached. Repeated application
of this transformation will remove all nodes from the
DAG that correspond to dead code.

Monday, May 31, 2010

Algebraic Simplifications

x+0=0+x=x x*1=l*x=x ...

intermediate code translation

associativity
The compiler writer should examine the language
reference manual carefully to determine what
rearrangements of computations are permitted, since
(because of possible overflows or underflows)
computer arithmetic does not always obey the
algebraic identities of mathematics

Monday, May 31, 2010

Algebraic Simplifications

reduction in strength

replacing a more expensive operator by a cheaper
one

EXPENSIVE CHEAPER
!X2! = x * x
!2*x = x+x
x/2! =! x * 0.5

Monday, May 31, 2010

Constant Folding

• Operations on constants can be computed at
compile time
– If there is a statement x = y op z
– And y and z are constants
– Then y op z can be computed at compile time
• Example: x = 2 + 2 ⇒ x = 4
• Example: if 2 < 0 goto L can be deleted

Monday, May 31, 2010

Flow of Control Optimizations

• Eliminate unreachable basic blocks:
 Code that is unreachable from the initial block

• E.g., basic blocks that are not the target of any jump or
“fall through” from a conditional

• Why would such basic blocks occur?

• Removing unreachable code makes the
program smaller ... and sometimes also faster

Monday, May 31, 2010

Single Assignment Form

• Some optimizations are simplified if each
register occurs only once on the left-hand side of
an assignment
• Rewrite intermediate code in single assignment
form

x = z + y b = z + y
a = x a = b
x = 2 * x x = 2 * b

(b is a fresh register)
 More complicated in general, due to loops

Monday, May 31, 2010

Common Subexpression Elimination
• If
– Basic block is in single assignment form
– A definition x := is the first use of x in a block
• Then
– When two assignments have the same rhs, they
compute the same value
• Example:
x = y + z
w = y + z

x = y + z
w = x

(the values of x, y, and z do not change in the … code)

Monday, May 31, 2010

Copy Propagation

• If w = x appears in a block, replace subsequent uses
of w with uses of x
– Assumes single assignment form
• Example:
b = z + y b = z + y
a = b a = b
x = 2 * a x = 2 * b

• Only useful for enabling other optimizations
– Constant folding
– Dead code elimination

Monday, May 31, 2010

Copy Propagation and Constant
Folding

a = 5 a = 5
x = 2 * a x = 10
y = x + 6 y = 16
t = x * y t = x << 4

Monday, May 31, 2010

Copy Propagation and Dead Code Elimination

If w = rhs appears in a basic block
w does not appear anywhere else in the program
then
the statement w = rhs is dead and can be
eliminated

– Dead = does not contribute to the programʼs
result
Example: (a is not used anywhere else)

x = z + y b = z + y b = z + y
a = x a = b x = 2 * b
x = 2 * a x = 2 * b

Monday, May 31, 2010

