Esercizi per il Corso di

Algebra Lineare ed Elementi di Geometria

Foglio 8

11 Gennaio 2019

- 1. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito da $f(x,y,z) = [x-z-y,3y-x+z,x-2z]^T$
 - (a) Scrivere la matrice A associata a f rispetto alla base canonica $\mathcal{E} = \{e_1, e_2, e_3\}$ su dominio e codominio.
 - (b) f è un isomorfismo?
 - (c) Si consideri la base $\mathcal{B} = \{e_1, e_1 + e_3, e_2 e_3\}$ di \mathbb{R}^3 . Scrivere la matrice associata a f rispetto alla base canonica sul dominio e la base \mathcal{B} sul codominio.

(6 punti)

2. Si consideri la base $\mathcal{B} = \{(1, 0, 1)^T, (0, 1, 0)^T, (1, 1, 2)^T\}$ di \mathbb{R}^3 . Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ che rispetto alla base \mathcal{B} su dominio e codominio ha matrice

$$\left[\begin{array}{cccc}
1 & 1 & 0 \\
1 & -1 & 1 \\
-1 & 1 & -1
\end{array}\right]$$

- (a) trovare la matrice di f rispetto alla base canonica su dominio e codominio
- (b) trovare la matrice di f rispetto alla base \mathcal{B} sul dominio e alla base canonica sul codominio
- (c) trovare la matrice di f rispetto alla base canonica sul dominio e alla base \mathcal{B} sul codominio
- (d) Trovare $\ker f \in \operatorname{Im} f$

(6 punti)

- 3. Sia $\mathcal{B}=\{v_1,v_2,v_3\}$ una base di \mathbb{R}^3 e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ l'applicazione lineare definita da $f(v_1)=v_1-v_3,\,f(v_2)=v_2-v_3,\,f(v_3)=v_1+2v_2.$
 - (a) trovare la matrice associata a f rispetto alla base \mathcal{B} su dominio e codominio.
 - (b) L'applicazione lineare f è iniettiva? È surettiva?
 - (c) Esiste una applicazione lineare $g:\mathbb{R}^3\to\mathbb{R}^3$ tale che $f\circ g$ sia l'applicazione identica? si trovi una matrice associata a g.
 - (d) Esiste una applicazione lineare $h: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $h \circ f$ sia l'applicazione identica? Si esprima $h(v_1), h(v_2)$ e $h(v_3)$ come combinazione lineare di v_1, v_2 e v_3 .

(6 punti)

- 4. (a) Si determini una applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $(0, 1, 1)^T \in \ker(f)$, $(2, 0, -1) \in \operatorname{Im} f, (0, 1, 2) \in \operatorname{Im} f$.
 - (b) Si scriva la matrice di f rispetto alla base canonica su dominio e codominio.
 - (c) Si trovi ker(f) e Im f

(6 punti)

- 5. Si consideri al variare di $\alpha \in \mathbb{R}$ la famiglia di applicazioni lineari $T_\alpha: \mathbb{R}^3 \longrightarrow M_{2 \times 2}(\mathbb{R})$ definite da $T_\alpha(x,y,z) = \begin{bmatrix} x + \alpha y & 0 \\ z & x \alpha y \end{bmatrix}$.
 - (a) Scrivere la matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
 - (b) Determinare, al variare di $\alpha \in \mathbb{R}$, $\ker(T_{\alpha})$ e $\operatorname{Im}(T_{\alpha})$.
 - (c) Data la matrice $B=\begin{bmatrix}1&0\\1&0\end{bmatrix}$, trovare un vettore $v\in\mathbb{R}^3$ tale che $T_{\alpha}(v)=B.$

(6 punti)

Consegna: venerdì 18 Gennaio