Image interpolation

A reinterpretation of low-pass filtering

1

Image Interpolation

- Introduction
 - What is image interpolation? (D-A conversion)
 - Why do we need it?
- Interpolation Techniques
 - 1D zero-order, first-order, third-order
 - 2D = two sequential 1D (divide-and-conquer)
 - Directional(Adaptive) interpolation*
- · Interpolation Applications
 - Digital zooming (resolution enhancement)
 - Image inpainting (error concealment)
 - Geometric transformations (where your imagination can fly)

Introduction

- What is image interpolation?
 - An image f(x,y) tells us the intensity values at the integral lattice locations, i.e., when x and y are both integers
 - Image interpolation refers to the "guess" of intensity values at missing locations,
 i.e., x and y can be arbitrary
 - Note that it is just a guess (Note that all sensors have finite sampling distance)

3

Engineering Motivations

- Why do we need image interpolation?
 - We want BIG images
 - When we see a video clip on a PC, we like to see it in the full screen mode
 - We want GOOD images
 - If some block of an image gets damaged during the transmission, we want to repair it
 - We want COOL images
 - Manipulate images digitally can render fancy artistic effects as we often see in movies

Scenario I: Resolution Enhancement Low-Res. High-Res.

Scenario III: Image Warping

7

Image Interpolation

- Introduction
 - What is image interpolation?
 - Why do we need it?
- Interpolation Techniques
 - 1D linear interpolation (elementary algebra)
 - 2D = 2 sequential 1D (divide-and-conquer)
 - Directional (adaptive) interpolation
- Interpolation Applications
 - Digital zooming (resolution enhancement)
 - Image inpainting (error concealment)
 - Geometric transformations

Upsampling

- This image is too small for this screen:
- · How can we make it 10 times as big?
- Simplest approach:
- repeat each row
- and column 10 times
- · ("Nearest neighbor
- interpolation")

Image interpolation

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- · It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image interpolation

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- · It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz

Image interpolation

d = 1 in this example

- What if we don't know f?
 - Guess an approximatio \tilde{f} :
 - · Can be done in a principled way: filtering
 - Convert F to a continuous function: $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise
 - Reconstruct by convolution with a reconstruction filter, h

$$\tilde{f} = h * f_F$$

Source: B. Curless

Ideal reconstruction

- The ideal reconstruction filter is a square window in the F-domain and a sinc function in the signal domain
- Its implementation is unpractical since it is prone to truncation artifacts and has relatively high computational complexity.
- · Other low-pass filters can be used instead

Interpolation: LP filtering

1D First-order Interpolation (Linear) f(n) f(x) x

Linear Interpolation Formula

Heuristic: the closer to a pixel, the higher weight is assigned Principle: line fitting to polynomial fitting (analytical formula)

 $f(n+a)=(1-a)\times f(n)+a\times f(n+1), 0< a<1$

Note: when a=0.5, we simply have the average of two

17

Image interpolation

Original image: x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Numerical Examples

$$f(n)=[0,120,180,120,0] \\ \downarrow \quad \text{Interpolate at 1/2-pixel} \\ f(x)=[0,60,120,150,180,150,120,60,0], \ x=n/2 \\ \downarrow \quad \text{Interpolate at 1/3-pixel}$$

f(x)=[0,20,40,60,80,100,120,130,140,150,160,170,180,...], x=n/6

19

1D Third-order Interpolation (Cubic)*

Q: what is the interpolated value at Y?

Ans.: abX(m,n)+(1-a)bX(m+1,n) + (1-a)bX(m,n+1)+a(1-b)X(m+1,n+1)

Limitation with bilinear/bicubic

- · Edge blurring
- Jagged artifacts

Edge-Sensitive Interpolation

Step 1: interpolate the missing pixels along the diagonal

Since |a-c|=|b-d|

x has equal probability of being black or white

black or white?

Step 2: interpolate the other half missing pixels

Since |a-c|>|b-d|

x=(b+d)/2=black

25

Applications

- Introduction
- Interpolation Techniques
 - 1D zero-order, first-order, third-order
 - 2D zero-order, first-order, third-order
 - Directional interpolation*
- Interpolation Applications
 - Digital zooming (resolution enhancement)
 - Image inpainting (error concealment)
 - Geometric transformations (where your imagination can fly)

Pixel Replication

low-resolution image (100×100)

high-resolution image (400×400)

27

Bilinear Interpolation

low-resolution image (100×100)

high-resolution image (400×400)

Bicubic Interpolation

low-resolution image (100×100)

high-resolution image (400×400)

29

Edge-Directed Interpolation (Li&Orchard'2000)

low-resolution image (100×100)

high-resolution image (400×400)

31

Image Example

Ad-hoc CFA Interpolation

Advanced CFA Interpolation

Error Concealment*

33

REMOVE ANY UNWANTED ELEMENTS WATERMARK * DATE STAMP * EXTRA OBJECTS *

36

Basic Principle

- $(x,y) \rightarrow (x',y')$ is a geometric transformation
- We are given pixel values at (x,y) and want to interpolate the unknown values at (x',y')
- Usually (x',y') are not integers and therefore we can use linear interpolation to guess their values

MATLAB implementation: interp2

MATLAB Example

```
z=imread('cameraman.tif');
% original coordinates
[x,y]=meshgrid(1:256,1:256);
% new coordinates
a=2;
for i=1:256;for j=1:256;
x1(i,j)=a*x(i,j);
y1(i,j=y(i,j)/a;
end;end
% Do the interpolation
z1=interp2(x,y,z,x1,y1,'cubic');
```

39

Rotation Example

Scale

a=1/2

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 1/a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Affine Transform Example

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} .5 & 1 \\ .5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Shear Example

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ .5 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

45

Projective Transform

square

quadrilateral

$$x' = \frac{a_1 x + a_2 y + a_3}{a_7 x + a_8 y + 1}$$
$$y' = \frac{a_4 x + a_5 y + a_6}{a_7 x + a_8 y + 1}$$

Projective Transform Example

47

Polar Transform

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Free Form Deformation

Seung-Yong Lee et al., "Image Metamorphosis Using Snakes and Free-Form Deformations," *SIGGRAPH'1985*, Pages 439-448

51

Application into Image Metamorphosis

Summary of Image Interpolation

- A fundamental tool in digital processing of images: bridging the continuous world and the discrete world
- Wide applications from consumer electronics to biomedical imaging
- Remains a hot topic after the IT bubbles break