Image interpolation

A reinterpretation of low-pass filtering

Image Interpolation

- Introduction
- What is image interpolation? (D-A conversion)
- Why do we need it?
- Interpolation Techniques
- 1D zero-order, first-order, third-order
- 2D = two sequential 1D (divide-and-conquer)
- Directional(Adaptive) interpolation*
- Interpolation Applications
- Digital zooming (resolution enhancement)
- Image inpainting (error concealment)
- Geometric transformations (where your imagination can fly)

Introduction

- What is image interpolation?
- An image $f(x, y)$ tells us the intensity values at the integral lattice locations, i.e., when x and y are both integers
- Image interpolation refers to the "guess" of intensity values at missing locations, i.e., x and y can be arbitrary
- Note that it is just a guess (Note that all sensors have finite sampling distance)

Engineering Motivations

- Why do we need image interpolation?
- We want BIG images
- When we see a video clip on a PC, we like to see it in the full screen mode
- We want GOOD images
- If some block of an image gets damaged during the transmission, we want to repair it
- We want COOL images
- Manipulate images digitally can render fancy artistic effects as we often see in movies

Scenario II: Image Inpainting

\bigcirc
Non-damaged

Image Interpolation

- Introduction
- What is image interpolation?
- Why do we need it?
- Interpolation Techniques
- 1D linear interpolation (elementary algebra)
- 2D $=2$ sequential 1D (divide-and-conquer)
- Directional (adaptive) interpolation
- Interpolation Applications
- Digital zooming (resolution enhancement)
- Image inpainting (error concealment)
- Geometric transformations

Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach:
- repeat each row
- and column 10 times
- ("Nearest neighbor
- interpolation")

Image interpolation

$\mathrm{d}=1$ in this example

Recall how a digital image is formed

$$
F[x, y]=\text { quantize }\{f(x d, y d)\}
$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image interpolation

$d=1$ in this example

Recall how a digital image is formed

$$
F[x, y]=\text { quantize }\{f(x d, y d)\}
$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image interpolation

$$
d=1 \text { in this }
$$ example

- What if we don't know f ?
- Guess an approximatio \tilde{f} :
- Can be done in a principled way: filtering
- Convert F to a continuous function:
$f_{F}(x)=F\left(\frac{x}{d}\right)$ when $\frac{x}{d}$ is an integer, 0 otherwise
- Reconstruct by convolution with a reconstruction filter, h

$$
\tilde{f}=h * f_{F}
$$

Source: B. Curless

Ideal reconstruction

- The ideal reconstruction filter is a square window in the F-domain and a sinc function in the signal domain
- Its implementation is unpractical since it is prone to truncation artifacts and has relatively high computational complexity.
- Other low-pass filters can be used instead

Interpolation: LP filtering

1D Zero-order (Replication)

1D First-order Interpolation (Linear)

Linear Interpolation Formula

Heuristic: the closer to a pixel, the higher weight is assigned Principle: line fitting to polynomial fitting (analytical formula)

$$
f(n+a)=(1-a) \times f(n)+a \times f(n+1), 0<a<1
$$

Note: when $\mathrm{a}=0.5$, we simply have the average of two

Image interpolation

Original image:

$\times 10$

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Numerical Examples

$$
f(x)=[0,20,40,60,80,100,120,130,140,150,160,170,180, \ldots], x=n / 6
$$

1D Third-order Interpolation (Cubic)*

Numerical Examples

Numerical Examples (Con't)

Q : what is the interpolated value at Y ?
Ans.: $a b X(m, n)+(1-a) b X(m+1, n)+(1-a) b X(m, n+1)+a(1-b) X(m+1, n+1)$

Limitation with bilinear/bicubic

- Edge blurring
- Jagged artifacts

Jagged artifacts

Edge-Sensitive Interpolation

Step 1: interpolate the missing pixels along the diagonal

Since $|a-c|=|b-d|$
x has equal probability of being black or white
black or white?
Step 2: interpolate the other half missing pixels

$$
\begin{aligned}
& \text { Since }|a-c|>|b-d| \\
& x=(b+d) / 2=\text { black }
\end{aligned}
$$

Applications

- Introduction
- Interpolation Techniques
- 1D zero-order, first-order, third-order
- 2D zero-order, first-order, third-order
- Directional interpolation*
- Interpolation Applications
- Digital zooming (resolution enhancement)
- Image inpainting (error concealment)
- Geometric transformations (where your imagination can fly)

Pixel Replication

Bilinear Interpolation

low-resolution image (100×100)

high-resolution
image (400×400)

Bicubic Interpolation

low-resolution image (100×100)

low-resolution image (100×100)

Error Concealment*

Image Inpainting

REMOVE ANY UNWANTED ELEMENTS

WATERMARK

DATE STAMP Y

EXTRA OBJECTS Y

Geometric Transformation

Basic Principle

- $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ is a geometric transformation
- We are given pixel values at (x, y) and want to interpolate the unknown values at (x^{\prime}, y^{\prime})
- Usually (x^{\prime}, y^{\prime}) are not integers and therefore we can use linear interpolation to guess their values

MATLAB implementation: interp2

Rotation

MATLAB Example

```
z=imread('cameraman.tif');
% original coordinates
[x,y]=meshgrid(1:256,1:256);
% new coordinates
a=2;
for i=1:256;for j=1:256;
x1(i,j)=a*x(i,j);
y1(i,j=y(i,j)/a;
end;end
% Do the interpolation
z1=interp2(x,y,z,x1,y1,'cubic');
```


Rotation Example

Affine Transform Example

Shear Example

Projective Transform

square
quadrilateral

$$
\begin{aligned}
& x^{\prime}=\frac{a_{1} x+a_{2} y+a_{3}}{a_{7} x+a_{8} y+1} \\
& y^{\prime}=\frac{a_{4} x+a_{5} y+a_{6}}{a_{7} x+a_{8} y+1}
\end{aligned}
$$

Projective Transform Example

Polar Transform

$r=\sqrt{x^{2}+y^{2}}$
$\theta=\tan ^{-1} \frac{y}{x}$
$x=r \cos \vartheta$
$y=r \sin \vartheta$

Iris Image Unwrapping

Free Form Deformation

Seung-Yong Lee et al., "Image Metamorphosis Using Snakes and Free-Form Deformations,"SIGGRAPH'1985, Pages 439-448

Application into Image Metamorphosis

Summary of Image Interpolation

- A fundamental tool in digital processing of images: bridging the continuous world and the discrete world
- Wide applications from consumer electronics to biomedical imaging
- Remains a hot topic after the IT bubbles break

