Statistica Descrittiva III

Serie statistiche bi-variate

- Definizioni
- · Rappresentazioni tabellari e grafiche
- · Indici di posizione e di variabilità
- Dipendenza lineare: retta di regressione ed indice R.

Serie Bi-variate

• Serie bi-variate: serie statistica in cui da ogni unità statistica si rilevano due caratteri.

$$o_i = (x_i; y_i) \quad O = \{o_i\}$$

- Esempio 1:
 - Popolazione: 15 studenti di matematica.
 - Caratteri:

X: genere

Y: altezza

- Osservazioni:

(F; 155) (M; 173) (M; 191) (F; 163) (F; 159) (M; 178) (M; 183) (M; 169) (F; 169) (M; 170) (M; 183) (M; 177) (M; 175) (M; 176) (F; 170)

Serie Bi-variate: esempi - I

- Esempio 2:
 - Popolazione: 16 cavie di laboratorio.
 - Caratteri:

X: trattamento antibiotico Y: stato dell'infezione

{Si; No} {Espansa, Stabile, Ridotta}

- Osservazioni:

(S; E) (S; R) (S; R) (S; R) (S; R) (S; S) (S; R) (S; S)

(S; R) (N; S) (N; S) (N; E) (N; E) (N; S) (N; R) (S; E)

 Osservazione: i caratteri della serie possono essere non omogenei.

Serie Bi-variate: esempi - II

• Esempio 3:

3

- Popolazione: 15 studenti di matematica.
- Caratteri:

X: peso

Y: altezza

- Osservazioni:

(55; 155) (78; 173) (100; 191) (60; 163) (50; 159) (78; 178) (101; 183) (68; 169) (60; 169) (72; 170) (82; 183) (82; 177) (75; 175) (72; 176) (65; 170)

 Osservazione: se i caratteri sono omogenei (es. quantitativi continui) possiamo estendere il concetto alla serie bivariata (serie quantitativa continua).

Scatter plot (diagrammi a dispersione)

- Rappresentazione grafica usata per serie quantitative, in cui ogni osservazione viene riportata in un piano cartesiano come fosse un punto.
- Esempio 3:
 - Caratteri:
 - X: peso
 - Y: altezza

- Osservazioni:

(55; 155) (78; 173) (100; 191) (60; 163) (50; 159) (78; 178) (101; 183) (68; 169) (60; 169) (72; 170) (82; 183) (82; 177) (75; 175) (72; 176) (65; 170)

5

Modalità: definizione

- Osservazione il concetto di modalità è legato al carattere.
- Problema: è possibile estenderlo alla Serie?
 - in una monovariata serie e carattere coincidono.
 - una serie bi-variata è formata da due caratteri.
- · Conseguenza: vi sono 3 tipi di modalità
 - -M: modalità carattere X.
 - M_{v} : modalità carattere Y.
 - $M=M_{x}M_{y}$: modalità serie (# possibili coppie).

6

Modalità serie: esempio

- Esempio 2:
 - Popolazione: 16 cavie di laboratorio.
 - Modalità caratteri:

X: trattamento antibiotico

Y: stato dell'infezione

{Si; No}

{Espansa, Stabile, Ridotta}

 $M_{r}=2$

 $M_{v} = 3$

– Modalità serie:

$$M = M_{x}M_{y} = 6$$

		Infezione			
		Espansa	Stabile	Ridotta	
Tratta	Si	(S; E)	(S; S)	(S; R)	
mento	No	(N; E)	(N; S)	(N; R)	

Modalità serie: classi

- Esempio 1:
 - Popolazione: 15 studenti di matematica.
 - Modalità caratteri:

X: Genere

Y: altezza

{M; F}

{155;159;163;169;170;173; 175;176;177; 178;183;191}

 $M_{r}=2$

 $M_{v} = 12$

Modalità serie:

 $M = M_x M_y = 24$

 Osservazione: nel caso continuo spesso si introducono classi di modalità.

Modalità serie: classi

- Esempio 1:
 - Popolazione: 15 studenti di matematica.
 - Modalità caratteri:

X: Genere

Y: altezza

{M; F}

{155-165;165-175;175-185;185-195}

 $M_{r} = 2$

 $C_{..} = 4$

- Modalità serie: $M = M_x C_v = 8$

$$M = M_x C_y = 8$$

			Alte	ezza	
		155 - 165	165 - 175	175 - 185	185-195
Genere	М	m _{1,1}	m _{1,2}	m _{1,3}	m _{1,4}
	F	m _{2,1}	m _{2,2}	m _{2,3}	m _{2,4}

– Le diverse modalità si indicano con m_{ij}

Serie mono-variate: frequenza.

- Frequenza: un valore associato ad ogni modalità
 - assoluta (n): # osservazioni della modalità i.
 - relativa (f): frazione delle osservazioni della modalità i. f = n/N
 - cumulata (F): frazione delle osservazioni delle modalità non più grandi di i. $(F_i = (n_1 + n_2 + ... + n_i)/N)$
- Come estendere il concetto alle serie bi-variate?
- Osservazione: nelle bi-variate la singola modalità viene definita da due indici (i, j).

Serie bi-variate: frequenza assoluta.

- Frequenza: un valore associato ad ogni modalità i, j
 - assoluta (n_i): # osservazioni della modalità i,j.
- Esempio 2
 - Osservazioni: (S;E) (S;R) (S;R) (S;R) (S;R) (S;R) (S;S) (S;R) (N;S) (N;S) (N;E) (N;E) (N;S) (N;R) (S;E)

			Infezione			
		Espansa Stabile Ric			Ridotta	
	Tratta	Si	n _{1,1}	n _{1,2}	n _{1,3}	
mento	No	n _{2,1}	n _{2,2}	n _{2,3}		

		Infezione			
		Espansa	Stabile	Ridotta	
Tratta		2	2	6	
mento	No	2	3	1	

Tabelle a doppia entrata.

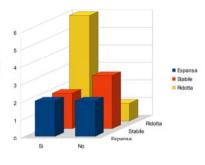
- Tabella a doppia entrata: tabella delle frequenze assolute completata con i totali di riga e colonna.
- Osservazione: alcuni autori usano il termine tabella di contingenza.
- Esempio 2
 - Osservazioni: (S;E) (S;R) (S;R) (S;R) (S;R) (S;R) (S;R) (S;S) (S;R) (N;S) (N;S) (N;E) (N;E) (N;S) (N;R) (S;E)



Serie bi-variate: diagramma a barre

- Diagramma a barre: rappresentazione 3 D di frequenze assolute per serie bi-variate.
- Osservazione: usato serie a caratteri qualitativi e/o discreti.
- Esempio 2
 - Osservazioni: (S;E) (S;R) (S;R)
 (S;R) (S;R) (S;S) (S;R) (S;S)
 (S;R) (N;S) (N;S) (N;E) (N;E)
 (N;S) (N;R) (S;E)

		Infezione			
		Espansa	Stabile	Ridotta	
Tratta	550-5777	2	2	6	
mento	No	2	3	1	



13

Serie bi-variate: frequenza relativa.

- Frequenza: un valore associato ad ogni modalità i, j
 - assoluta (n_i): # osservazioni della modalità i,j.
 - relativa ($f_{ij} = n_i/N$): frazione osservazioni modalità i,j.
- Esempio 2
 - Osservazioni: (S;E) (S;R) (S;R) (S;R) (S;R) (S;S) (S;R) (S;S) (S;R) (N;S) (N;S) (N;E) (N;E) (N;S) (N;R) (S;E)

		mezione				
		Espansa	Stabile	Ridotta		_
Tratta	Si	f _{1,1}	f _{1,2}	f _{1,3}	f _{1,+}	
mento	No	f _{2,1}	f _{2,2}	f _{2,3}	f _{2,+}	
		f _{+,1}	f _{+,2}	f _{+,3}	1	

		lı	Infezione			
		Espansa	Stabile	Ridotta		
Tratta	Si	2/16	2/16	6/16	5/8	
mento	No	2/16	3/16	1/16	3/8	
		1/4	5/16	7/16	1 1	

Serie mono-variate: indici di posizione.

- Indici di posizione: il valore "centrale" della serie *S*.
 - moda (mo): modalità con frequenza maggiore.
 (tutti i dati per dati continui si parla di classe/i modale)
 - mediana (me): osservazione che bipartisce la popolazione (solo dati ordinabili)
 - media (\overline{S}): media delle osservazioni. (solo dati quantitativi)

Come estendere il concetto alle serie bi-variate?

- Osservazione: in una bi-variata le osservazioni sono vettori.
- Proposta:cerco di estendere al caso multidimensionale il criterio di calcolo.
- Osservazione: debbo scegliere un indice che sia calcolabile, per ambo i caratteri.

Serie bi-variate: moda.

- Indici di posizione: il valore "centrale" della serie S.
 - moda (mo): modalità con frequenza maggiore.
 (tutti i dati per dati continui si parla di classe/i modale)
- In una serie bi-variata ho definito sia modalità che frequenza
- Posso applicare direttamente la definizione

	_50	JIIIP	Ю	ı	
1	no	$=(S_{i})$	i ; Ì	Ride	otta)

Ecompia 1

		Infezione			
		Espansa	Stabile	Ridotta	
Tratta		2	2	6	
mento	No	2	3	1	

• Esempio 2

$$mo = (M; 175-185)$$

	Altezza				
		155 - 165	165 - 175	175 - 185	185-195
Gene	F	3	2	0	0
re	М	0	3	6	1

Serie bi-variate: moda - osservazioni.

- Un una serie bivariata vi sono tre diverse mode.
- Esempio: data la serie a lato si hanno le seguenti
 - Moda della Serie mo = (C; 10)
 - Moda caratteri
 - $mo_X = A$
 - $mo_y = 30$
- X Totali В С **(6)** 2 10 1 3 20 4 (10) 30 5 3 2 (10) 9 Totali 27

•	Osservazione: la moda di	una serie	bi-variata	può no	n
	coincidere con la moda d	dei singoli	caratteri.		

17

Serie bi-variate: mediana.

- Indici di posizione: il valore "centrale" della serie S.
 - moda (mo): modalità con frequenza maggiore.
 (tutti i dati per dati continui si parla di classe/i modale)
 - mediana (me): osservazione che bipartisce la popolazione (solo dati ordinabili)
- Osservazione: le osservazioni sono vettori a 2 dimensioni.
- Osservazione: non è possibile ordinare in modo univoco vettori a due dimensioni.
- Osservazione: la mediana richiede l'ordinamento delle osservazioni.
- Conseguenza: la mediana non si applica a serie bi-variate.

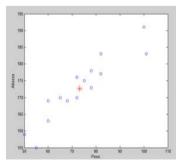
18

Serie bi-variate: media.

- Indici di posizione: il valore "centrale" della serie *S*.
 - media (\overline{S}): media delle osservazioni. (solo dati quantitativi)
- Per applicare la definizione debbo
 - sommare più vettori
 - dividere un vettore per un numero.
- Esempio 3

$$((55; 155) + (78; 173) + ... + (65; 170))/15 =$$

= $(55 + 78 + ... + 65; 155 + 173 + ... + 170)/15 =$
= $((55 + 78 + ... + 65)/15; (155 + ... + 170)/15) =$
= $(73.20; 172.73)$



Osservazione: la media della serie è data dalle medie dei caratteri

$$\overline{S} = (\overline{X}; \overline{Y})$$

Serie mono-variate: indici di variabilità.

- Indici di variabilità: quanto le osservazioni si discostano dal "centro" della serie *S*.
 - range : osservazione maggiore meno osservazione minore
 - distanza interquartile (D): differenza terzo, primo quartile
 - varianza (σ^2): media degli scarti dalla media
- Osservazione: calcolabili solo per dati quantitativi.

Come estendere il concetto alle serie bi-variate?

- Osservazione: non è possibile ordinare un gruppo di vettori a due dimensioni.
- Proposta: estendo solo la varianza.

Serie bi-variate: indice di variabilità-I.

- Osservazione: la variabilità in una serie bivariata può essere dovuta a tre fattori
 - Variabilità carattere X.
 - Variabilità carattere Y.
 - Mutua influenza dei due valori.
- Esempio:
 - Popolazione 4 persone
 - Caratteri
 - X =Altezza della persona in cm
 - Y =Altezza della persona in m
 - Osservazioni (150; 1.5) (170;1.7) (180;1.8) (160;1.6)
- Nota l'osservazione di X "ho" quella di Y, pertanto la variabilità d²Y è legata a quella di X.

Covarianza: idea base.

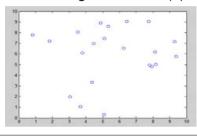
- Come misuro il "grado di legame" fra i due caratteri ?
- Proposta: data un osservazione (x_i, y_i) valuto il prodotto dei due scarti (distanza dai rispettivi valori medi \bar{x} e \bar{y}).

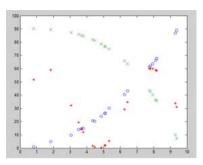
$$(x_i - \overline{x})(y_i - \overline{y})$$

- Osservazione: il singolo prodotto è:
 - positivo: gli scarti sono concordi (hanno lo stesso segno) proporzionalità diretta: ad una osservazione di x sopra media corrisponde una y sopra media e viceversa
 - negativo in caso contrario (proporzionalità inversa).
- Se i due caratteri sono legati, tutti i contributi sono concordi.
- Sperabilmente, se i caratteri sono indipendenti, si avranno sia contributi negativi che positivi.

Mutua influenza: classificazione

- Due caratteri possono essere legati in diversi modi
 - Proporzionalità diretta:
 al crescere di x
 cresce y. (o)
 - Proporzionalità inversa:
 al crescere di x
 decresce y. (x)





 Due caratteri possono essere indipendenti

22

Covarianza: definizione I.

 Definizione: data un serie bi-variata avente N osservazioni (x, y) definisco covarianza

$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

- Esempio
 - Osservazioni (150; 1.5) (170;1.7) (180;1.8) (160;1.6)
 - Media = (165,1.65)
 - Varianza $X = (150^2 + 170^2 + 180^2 + 160^2)/4 165^2 = 125$
 - Varianza $Y = (1.5^2 + 1.7^2 + 1.8^2 + 1.6^2)/4 1.65^2 = 0.0125$
 - Contributi = (-15*-0.15) (5*0.05) (15*0.15) (-5*-0.05)
 - Covarianza = (2.25 + 0.25 + 2.25 + 0.25)/4 = 1.25
- Osservazione: la definizione non usa le frequenze relative

2/

Covarianza: definizione II.

• Definizione: data un serie bi-variata (x_i, y_i) avente $M = M_x M_y$ modalità, con frequenza relativa $f_{i,j}$ definisco covarianza

$$\sigma_{XY} = \sum_{i=1}^{M_x} \sum_{j=1}^{M_y} (x_i - \overline{x})(y_j - \overline{y}) f_{i,j}$$

- Esempio 4
 - S: numero di teste lanciando due monete
 - -N = 80

		Lancio 1 (X)		
		0	1	
Lancio	0	22/80	20/80	42/80
2 (Y)	1	18/80	20/80	38/80
		40/80	40/80	1

$$\begin{split} \overline{x} &= 0\frac{40}{80} + 1\frac{40}{80} = \frac{1}{2} \qquad \overline{y} = 0\frac{42}{80} + 1\frac{38}{80} = \frac{19}{40} \qquad \sigma_{XY} = \sum_{i=1}^{2} \sum_{j=1}^{2} (x_i - \frac{1}{2})(y_j - \frac{19}{40})f_{i,j} \\ \sigma_{XY} &= (0 - \frac{1}{2})(0 - \frac{19}{40})\frac{22}{80} + (0 - \frac{1}{2})(1 - \frac{19}{40})\frac{18}{80} + (1 - \frac{1}{2})(0 - \frac{19}{40})\frac{20}{80} + (1 - \frac{1}{2})(1 - \frac{19}{40})\frac{20}{80} \\ \sigma_{XY} &= \frac{19}{80}\frac{22}{80} - \frac{21}{80}\frac{18}{80} - \frac{19}{80}\frac{20}{80} + \frac{21}{80}\frac{20}{80} = 0.0125 \end{split}$$

Serie bi-variate: indice di variabilità-II.

- Osservazione: la variabilità in una serie bivariata può essere dovuta a tre fattori
 - Variabilità carattere X.
 - Variabilità carattere Y.
 - Mutua influenza dei due valori.
- la variabilità viene definita mediante la seguente matrice detta matrice varianze/covarianza:

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix}$$

- Osservazione: Σ è sempre simmetrica.
- Osservazione: si dimostra che Σ è sempre definita positiva 26

Covarianza: osservazione.

Cosa succede se aumento la variabilità dei caratteri?

- Desiderio: σ_{XY} dovrebbe descrivere <u>solo</u> la mutua variabilità fra i caratteri quindi vorrei non variasse.
- Verifica: modifico la variabilità delle precedenti osservazioni.
 - Precedenti [150; 1.5] [170;1.7] [180;1.8] [160;1.6]
 - Osservazioni (140; 1.4) (170;1.7) (190;1.9) (160;1.6)
 - Media = (165,1.65) [(165,1.65)]
 - Varianza X = 325 [125]
 - Varianza Y = 0.0325 [0.0125]
 - Contributi = (-25*-0.25) (5*0.05) (25*0.25) (-5*-0.05)
 - Covarianza = (6.25 + 0.25 + 6.56 + 0.25)/4 = 3.25[1.25]
- Osservazione: il valore della covarianza è legato alla variabilità. 27

Correlazione (di Pearson): definizione.

 Definizione: data un serie bi-variata (x_i; y_i) definisco correlazione (di Pearson) il valore

$$R = \frac{\sigma_{XY}}{\sigma_x \sigma_y}$$

- Osservazione: spesso di una serie dispongo della varianza invece che della deviazione standard.
- Alcuni autori preferiscono utilizzare la versione "quadrata" del coefficiente di correlazione per motivi pratici.

$$R^2 = \frac{\sigma_{XY}^2}{\sigma_x^2 \sigma_y^2}$$

Correlazione (di Pearson): esempi - I.

- Esempio:
 - Osservazioni (150; 1.5) (170;1.7) (180;1.8) (160;1.6)
 - Varianza X = 125
 - Varianza Y = 0.0125 $R^2 = \frac{\sigma_{XY}^2}{\sigma_x^2 \sigma_y^2} = \frac{1.25^2}{125 \cdot 0.00125} = 1$
 - Covarianza = 1.25
- Esempio modificato
 - Osservazioni (140; 1.4) (170;1.7) (190;1.9) (160;1.6)
 - Varianza X = 325
 - Varianza Y = 0.0325 $R^2 = \frac{\sigma_{XY}^2}{\sigma_{x}^2 \sigma_{x}^2} = \frac{3.25^2}{325 \cdot 0.00325} = 1$
 - Covarianza = 3.25
- Osservazione: R sembra meno influenzato dalla variabilità

Correlazione (di Pearson): esempi - II.

- Osservazione: la definizione di R si applica direttamente anche al caso avessi frequenze relative.
- Esempio 4
 - S: numero di teste lanciando due monete

$\overline{x} = \frac{1}{2}$	$\bar{y} = \frac{19}{20}$	$\sigma_{XY} = 0.0125$
_	20	

		Lancio 1 (X)		
		0	1	
Lancio 2 (Y)	0	22/80	20/80	42/80
	1	18/80	20/80	38/80
		40/80	40/80	1

$$\sigma_X^2 = 0^2 \frac{1}{2} + 1^2 \frac{1}{2} - \left(\frac{1}{2}\right)^2 = \frac{1}{4} \qquad \sigma_Y^2 = 0$$

$$R = \frac{\sigma_{XY}}{\sqrt{\sigma^2 \sigma^2}} = 0.05$$

$$\sigma_X^2 = 0^2 \frac{1}{2} + 1^2 \frac{1}{2} - \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$
 $\sigma_Y^2 = 0^2 \frac{21}{40} + 1^2 \frac{19}{40} - \left(\frac{19}{40}\right)^2 = \frac{399}{1600} \approx \frac{1}{4}$

• Osservazione: a bassi valori di R (o R²) sembrano corrispondere legami deboli fra i caratteri.

Correlazione (di Pearson): proprietà.

- Si dimostrano le seguenti proprietà:
 - a) $-1 \le R \le 1$
 - b) Se per ogni osservazione y = a x + b allora |R| = 1.
 - c) Se (x; y) sono ottenute da realizzazioni di vv. cc. X ed Yindipendenti allora
 - Rè una v.c.
 - E/R/ = 0.
- Osservazione: la proprietà b) non implica che se $R = \pm 1$ i caratteri della serie sono affini (o in ogni caso legati).
- Osservazione: la proprietà c) non implica che se $R = \theta$ i caratteri della serie sono indipendenti.
- Deduzione: *R* è un indicatore, non fornisce alcuna certezza.

Variabili dipendenti:esempio I - I.

- Esempio:
 - Siano X ed Y due vv. cc. tali che $Y = 2X^2$
 - Supponiamo che
 - si abbiano 4 estrazioni di

$$x_1 = 1$$
 ; $x_2 = 2$; $x_3 = -2$; $x_4 = -1$

cui corrispondono 4 osservazioni della bivariata (x,y)

$$(1;2)$$
 $(2;4)$ $(-2;4)$ $(-1;2)$

- Come sarà il coefficiente R²?
- Osservazione: Le osservazioni sono dipendenti.
- Osservazione: Il legame fra le osservazioni è di tipo misto.
- Deduzione: ?

Variabili dipendenti:esempio I - II

Osservazioni:

$$(1;2)$$
 $(2;4)$ $(-2;4)$ $(-1;2)$

· Calcolo momenti dei singoli caratteri

$$\bar{x} = \frac{1+2-2-1}{4} = 0$$

$$\overline{x} = \frac{1+2-2-1}{4} = 0$$
 $\sigma_X^2 = \frac{1+4+4+1}{4} - 0^2 = \frac{5}{2}$

$$\overline{y} = \frac{2+4+4+2}{4} = \frac{1}{2}$$

$$\overline{y} = \frac{2+4+4+2}{4} = 3$$
 $\sigma_y^2 = \frac{4+16+16+4}{4} - 3^2 = 1$

Calcolo covarianza

$$\sigma_{XY} = \frac{1}{4} [(1-0)(2-3) + (2-0)(4-3) + (-2-0)(4-3) + (-1-0)(2-3)]$$

$$R^2 = \frac{\sigma_{XY}}{\sigma_X^2 \sigma_Y^2} = \frac{\sigma_{XY}}{\sigma_X^2 \sigma_Y^2}$$

$$\sigma_{XY} = \frac{-1 + 2 - 2 + 1}{4} = 0$$
 $R^2 = \frac{\sigma_{XY}}{\sigma_X^2 \sigma_Y^2} = \frac{0^2}{\frac{5}{2} \cdot 1} = 0$

$$R^{2} = \frac{\sigma_{XY}}{\sigma_{X}^{2} \sigma_{Y}^{2}} = \frac{0^{2}}{\frac{5}{2} \cdot 1} =$$

• Osservazione: nel caso di variabili con legame non lineare R può dare delle false certezze.

Variabili dipendenti:esempio II - I.

- Esempio 5:
 - Siano X ed Y due vv. cc. tali che Y = 2X + 0.5Z
 - Dove Z è la v.c. Normale standard
 - Supponiamo che
 - si abbiano 4 estrazioni di X e Z

$$(x_1 = 1; z_1 = 0.1)$$
; $(x_2 = 2; z_2 = -0.1)$ $(x_3 = -2; z_3 = -0.2)$ $(x_4 = -1; z_2 = 0.2)$

- cui corrispondono 4 osservazioni della bivariata (x,y) (1;2.05) (2;3.95) (-2;-4.1) (-1;-1.9)
- Come sarà il coefficiente R²?
- Osservazione: Le osservazioni sono dipendenti.
- Osservazione: L'influenza di X su Y è prevalente rispetto a quella di Z su Y. (Z può considerarsi un rumore o disturbo).

Variabili dipendenti:esempio II - II

Osservazioni:

$$(1;2.05)$$
 $(2;3.95)$ $(-2;-4.1)$ $(-1;-1.9)$

· Calcolo momenti dei singoli caratteri

$$\overline{x} = \frac{1+2-2-1}{4} = 0$$

$$\bar{x} = \frac{1+2-2-1}{4} = 0$$
 $\bar{y} = \frac{2.05+3.95-4.1-1.9}{4} = 0$

$$\sigma_X^2 = \frac{1+4+4+1}{4} - 0^2 = \frac{5}{2}$$

$$\sigma_X^2 = \frac{1+4+4+1}{4} - 0^2 = \frac{5}{2}$$
 $\sigma_y^2 = \frac{4.2025+15.6025+16.81+4.41}{4} - 0^2 = 10.05625$

Calcolo covarianza

$$\sigma_{\mathit{XY}} \! = \! \frac{1}{4} \big[(1 \! - \! 0)(2.05 \! - \! 0) + (2 \! - \! 0)(3.95 \! + \! 0) + (-2 \! - \! 0)(-4.1 \! - \! 0) + (-1 \! - \! 0)(-1.9 \! - \! 0) \big]$$

$$\sigma_{XY} = \frac{2.05 + 7.9 + 8.2 + 1.9}{4} = \frac{20.05}{4} = 5.0125$$

· Calcolo correlazione

$$R^2 = \frac{\sigma_{XY}}{\sigma_X^2 \sigma_Y^2} = \frac{5.0125^2}{2.5 \cdot 10.05625} = 1$$

Legami fra caratteri.

Come riconoscere in maniera quantitativa il legame fra i due caratteri di una bivariata?

- Idea: scelgo un tipo di legame utile e cerco quello che meglio approssima i dati.
- Per poter concretizzare l'idea debbo definire
 - Che cosa sia un legame
 - Che cosa voglia dire un legame utile
 - Come misuro la bontà dell'approssimazione.

Legami fra caratteri: modelli.

Come descrivere in maniera quantitativa un legame fra i due caratteri?

- Osservazione: ogni dato è una coppia di misure (x ed y).
- In "matematichese" un legame fra due elementi di un insieme è definito funzione.
- Soluzione: considero legame una funzione $m:X \to Y$.
- Ad ogni misura x, di X il legame "predice" una possibile misura $\hat{v}_i = m(x_i)$ chiamata predizione.
- Poiché *m(.)* "descrive" il legame viene chiamato modello.

Modelli: tassonomia.

Quanti modelli esistono?

- Osservazione: il numero di funzioni possibili è enorme
- Il problema di identificazione è troppo complesso!
- Osservazione: esistono diversi tipi di funzioni

 - Polinomiali - Trigonometriche
 - Esponenziali
- Spezzo il problema in due:
 - Trovo il tipo di funzione (scelta umana)
 - es. polinomi di secondo grado
 - Trovo la funzione "migliore" fra le scelte. (data driven)
 - es. $\hat{y}_i = 14 x_i^2 + 12 x_i + 5$

Modelli: cosa vuol dire migliore?.

- In generale si predilige la semplicità.
- Modelli "semplici"
 - Affine $\hat{y}_i = a x_i + b$
 - Parabolico $\hat{y}_i = a x_i^2 + b x_i + c$
- Osservazione:ogni famiglia di modelli possiede un insieme di parametri
 - affine: {a, b}
 - parabolico: $\{a, b, c\}$.
- Osservazione: scelto il tipo di modello, la relazione viene definita una volta identificati i parametri.
- I parametri si identificano con un criterio di "bontà".

Criterio di bontà di un modello - I.

Come si quantifica la bontà di un modello?

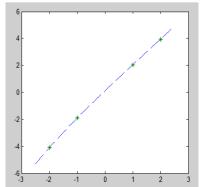
 Osservazione: poiché un modello realizza predizioni un criterio ragionevole è che le predizioni siano accurate.

$$\hat{y}_i = y_i$$

$$m(x_i) = y_i$$

- Esempio 5: (errori di misura) $(x_1 = 1; y_1 = 2.05)$; $(x_2 = 2; y_2 = 3.95)$ $(x_2 = -2; y_2 = -4.1); (x_4 = -1; y_4 = -1.9)$
- · Famiglia: polinomi
 - Polinomio interpolante

$$\hat{y}_i = 0.0125x_i^3 - 0.05x_i^2 + 1.9625x_i + 0.1250$$

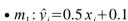


Funzione interpolante: osservazioni

- Si dimostra che dati N punti la funzione interpolante ha (nel caso generale) grado N-1.
- Osservazione: per avere risultati attendibili si usano tanti dati
- Conseguenza: modello interpolante complesso.
- Osservazione: nel caso di errori di misura la funzione interpolante descrive anche il rumore (cosa che non vorrei)
- Conseguenza: si preferiscono modelli di grado basso
- Si dice che le variabili "regrediscono" a
 - Rette (retta di regressione)
 - Parabole (parabola di regressione)
- Considerazione: serve un nuovo criterio per individuare il modello migliore nella famiglia di modelli.

SSR: esempio

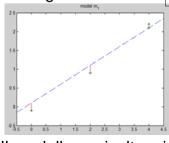
- Esempio: Data la bi-variata in tabella
 - Considerare i modelli

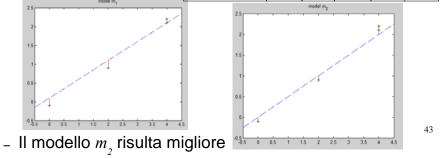


•
$$m_2$$
: $\hat{y}_i = 0.5 x_i$

– graficamente è r, è il segmento rosso

i			m ₁			m ₂		
1	X,	y _i	m ₁ (x _i)	r	r _i ²	m ₂ (x _i)	r,	r _i ²
L	0	-0.1	0.1	0.2	0.04	0	0.1	0.01
	4	2.1	2.1	0	0	2	-0.1	0.01
	4	2.2	2.1	-0.1	0.01	2	-0.2	0.04
	2	0.9	1.1	0.2	0.04	1	0.1	0.01
	Totali		0.3	0.09		-0.1	0.07	





Criterio di bontà di un modello - II.

- Dato un modello *m(x)*, definisco residuo $r_i = \hat{y}_i - y_i$
- · Osservazione: Un buon modello avrà dei residui non nulli (mi rappresentano l'errore di misura).
- Osservazione: Un buon modello avrà residui piccoli. (deve descrivere i dati)
- Proposta: i due risultati potrebbero essere ottenuti minimizzando la somma dei quadrati dei residui.

$$SSR = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

SSR: sum squared residual

Retta di regressione.

- Tecnica che prevede
 - Modello di tipo affine $m_1: \hat{y}_i = a x_i + b$
 - Parametri identificati rendendo minimo

$$SSR = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{N} (a x_i + b - y_i)^2$$

- In simboli $\underset{a \text{ } b}{arg \min} \sum_{i=1}^{N} \left(a x_i + b y_i\right)^2$
- Si dimostra che $a = \frac{\sigma_{xy}}{\sigma^2}$ $b = \overline{y} a \overline{x}$
- La minimizzazione della SSR fu proposta da Gauss con il nome di metodo dei minimi quadrati.

Retta di regressione: esempio

• Esempio 5: (errori di misura)

$$(x_1 = 1; y_1 = 2.05); (x_2 = 2; y_2 = 3.95)$$

 $(x_3 = -2; y_3 = -4.1); (x_4 = -1; y_4 = -1.9)$

- Da esercizio precedente

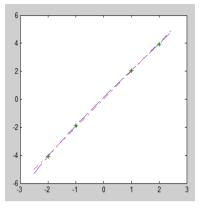
$$\bar{x}=0$$
 $\bar{y}=0$
 $\sigma_{xy}=5.0125$

$$\sigma_{x}^{2}=2.5$$

$$\sigma_{y}^{2}=10.05625$$

$$a = \frac{\sigma_{xy}}{\sigma_{x}^{2}} = \frac{5.0125}{2.5} = 2.005$$

$$b = \bar{y} - a\,\bar{x} = 0$$



- retta di regressione $\hat{y}_i = 2.005 x_i$
- funzione interpolante $\hat{y}_i = 0.0125x_i^3 0.05x_i^2 + 1.9625x_i + 0.1250$
- legame vero $y_i = 2x_i + 0.5z_i$

45

Retta di regressione: proprietà

- Sia m(x) una retta di regressione, si dimostra che
 - m passa sempre per la media della serie

$$\overline{y} = m(\overline{x})$$

- La somma degli scarti è nulla

$$\sum_{i=1}^{N} \hat{y}_i - y_i = \sum_{i=1}^{N} (a x_i + b - y_i) = 0$$

- Se y = a x + b (osservazioni disposte su una retta) allora
 - m(x) è la retta interpolante
 - SSR = 0.

46

Retta di regressione: validità

 Osservazione: date le osservazioni di una bivariata si può sempre calcolare la retta di regressione.

Come verificare la bontà del modello ?

- Criterio grafico: disegnare la retta insieme al diagramma a dispersione
- Criterio numerico: calcolare il coefficiente di Pearson
 - |R| < 0.3 scarsa probabilità di legame
 - 0.3 < |R| < 0.7 moderata probabilità di legame lineare
 - 0.7 < |R| ottima probabilità di legame lineare

Ricapitolando - I

- · Indici di posizione
 - Moda: modalità frequenza della serie maggiore
 - Media: unione delle medie delle modalità $\overline{S} = (\overline{X}; \overline{Y})$
- · Indici di variabilità
 - Covarianza (varianza congiunta)

•
$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$

•
$$\sigma_{XY} = \sum_{i=1}^{M_x} \sum_{j=1}^{M_y} (x_i - \overline{x})(y_j - \overline{y}) f_{i,j}$$

- Matrice varianza/covarianza

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix}$$

Ricapitolando - II

- · Retta di regressione
 - Modello di tipo affine $m: \hat{y}_i = a x_i + b$
 - Parametri identificati rendendo minimo

$$SSR = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{N} (a x_i + b - y_i)^2$$

$$a = \frac{\sigma_{xy}}{\sigma_{xy}^2}$$

- Parametri
$$a = \frac{\sigma_{xy}}{\sigma_{x}^{2}}$$
 $b = \overline{y} - a\overline{x}$

• Indice di correlazione di Pearson

$$R = \frac{\sigma_{XY}}{\sigma_x \sigma_y}$$

$$R^2 = \frac{\sigma_{XY}^2}{\sigma_{X}^2 \sigma_{XY}^2}$$

- Usato per verificare la presenza di un legame

- |R| < 0.3scarsa probabilità di legame
- 0.3 < |R| < 0.7 moderata probabilità di legame
- ottima probabilità di legame lineare • 0.7 < |R|