
1!

Real-Time
Operating Systems

1

OS space: where are we?

System
complexity

generality

RTOS
plane

Embedded OS

Conventiona
OS
 multiprocessor

OS

Cluster
OS

network/
distributed

OS
Conventional

OS
 multiprocessor

OS

Cluster
OS

network/
distributed

OS

Smart card sist.embedded desktop sist.multiproc. cluster reti Embedded OS

Conventiona
OS
 multiprocessor

OS

Cluster
OS

network/
distributed

OS
Conventional

OS
 multiprocessor

OS

Cluster
OS

network/
distributed

OS

2

2!

Summary
•  Introduction
•  Basic Concepts
•  Real Time Scheduling

– Aperiodic Task Scheduling
– Periodic Task Scheduling
– Mixed Task Scheduling

•  Priority Servers
•  Reference:

– G.Buttazzo, “Hard Real-Time Computing
Systems”Kluwer Academic Publishers, 2002

3

Introduction
•  Real-time system:

–  “A real-time system is a computer system in
which the correctness of the system behavior
depends not only on the logical results of the
computation, but also on the physical instant at
which these results are produced ”

–  “A real-time system is a system that is required to
react to stimuli from the environment (including
the passage of physical time) within time intervals
dictated by the environment ”

4

3!

“Real” and “Time”

•  Time
– main difference to other classes of

computation
•  Real

–  reaction to external events must occur during
their evolution

5

Concept of deadline
•  Maximum time within which the task must be

completed
•  After deadline, a computation is not just late,

it is wrong!
•  System time (internal time) has to be

measured with the same time scale used to
measure the controlled environment (external
time)
– Real time does not mean fast but predictable

6

4!

Examples of real time systems
•  plant control
•  control of production

processes / industrial
automation

•  environmental
acquisition and
monitoring

•  railway switching
systems

•  automotive applications

•  flight control systems
•  telecommunication

systems
•  robotics
•  military systems
•  space missions
•  household appliances
•  virtual / augmented

reality

7

Hard vs. soft time
•  Hard RT task

–  if missing its deadline may cause catastrophic
consequences on the environment under control

•  Soft RT task
–  if meeting its deadline is desirable (e.g. for

performance reasons) but missing does not
cause serious damage

•  OS that is able to handle hard RT tasks is
called hard real-time OS

8

5!

Hard vs. soft time
•  Typical hard real time activities

–  sensory data acquisition
–  detection of critical conditions
–  low-level control of critical system components

•  Areas of application
– Automotive

•  power-train control, air-bag control,
steer by wire, brake by wire

– Aircraft
•  engine control, aerodynamic control

9

Hard vs. soft time
•  Typical soft real time activities

–  command interpreter of user interface
–  keyboard handling
–  displaying messages on screen
–  transmitting streaming data

•  Areas of application
– Communication systems

•  voice over IP, cellular telephony
•  user interaction
•  comfort electronics (body electronics in cars)

10

6!

RTOS

11

Conventional operating systems
•  Conventional OS kernels are inadequate w.r.t. RT

requirements
–  Multitasking/scheduling

•  provided through system calls
•  does not take time into account (introduces unbounded delays)

–  Interrupt management
•  achieved by setting interrupt priority > than process priority
•  increase system reactivity but may cause unbounded delays on

process execution even due to unimportant interrupts
–  Basic IPC and synchronization primitives

•  may cause priority inversion (high priority task blocked by a low
priority task)

–  No concept of RT clock/deadline

12

7!

Real-time operating systems
•  Desirable features of a RTOS

–  Timeliness
•  OS has to provide mechanisms for

–  time management
–  handling tasks with explicit time constraints

–  Predictability
•  to guarantee in advance the deadline satisfaction
•  to notify when deadline cannot be guaranteed

–  Fault tolerance
•  HW/SW failures must not cause a crash

–  Design for peak load
•  All scenarios must be considered

–  Maintainability

13

Real-time operating systems
•  Timeliness

–  Achieved through proper scheduling algorithms
•  Core of an RTOS!

•  Predictability
–  Affected by several issues

•  Characteristics of the processor (pipelinig, cache, DMA, ...)
•  I/O & interrupts
•  Synchronization & IPC
•  Architecture
•  Memory management
•  Applications
•  Scheduling!

14

8!

Achieving predictability: DMA
•  Direct Memory Access

–  to transfer data between a device and the main memory
–  Problem: I/O device and CPU share the same bus

•  2 solution
–  Cycle stealing

•  The DMA steals a CPU memory cycle to execute a data transfer
•  The CPU waits until the transfer is completed
•  Source of non-determinism!

–  Time-slice method
•  Each memory cycle is split in two adjacent time slots

–  One for the CPU
–  One for the DMA

•  More costly, but more predictable!

15

Achieving predictability: cache

•  To obtain a high predictability it is better to
have processors without cache

•  Source of non-determinism
– cache miss vs. cache hit
– writing vs. reading

It is necessary
to consider the

worst case

16

9!

Achieving predictability: interrupts
•  One of the biggest problem for predictability

–  Typical device driver
<enable device interrupt>
<wait for interrupt>
<transfer data>

–  In most OS
•  interrupts served with respect to fixed priority scheme
•  interrupts have higher priorities than processes
•  How much is the delay introduced by interrupts?

–  How many interrupts occur during a task?
– Æ problem in real-time systems

•  processes may be of higher importance than I/0 operation!

17

Interrupts: 1° solution
•  Disable all interrupts, but timer interrupts
•  Characteristics

–  All peripheral devices have to be handled by tasks
–  Data transfer by polling
–  Great flexibility, time for data transfers can be

estimated precisely
–  No change of kernel needed when adding devices

•  Problems
–  Degradation of processor performance (busy wait)
–  Task must know low level details of the drive

18

10!

Interrupts: 2° solution
•  Disable all interrupts but timer interrupts, and handle

devices by special, timer-activated kernel routines
•  Advantages

–  unbounded delays due to interrupt driver eliminated
–  periodic device routines can be estimated in advance
–  hardware details encapsulated in dedicated routines

•  Problems
–  degradation of processor performance (still busy waiting -

within I/0 routines)
–  more inter-process communication than first solution
–  kernel has to be modified when adding devices

19

Interrupts: 3° solution
•  Enable external interrupts and reduce the drivers to

the least possible size
–  Driver only activates proper task to take care of device
–  The task executes under direct control of OS, just like any

other task
–  Control tasks then have higher priority than device task

20

11!

Interrupts: 3° solution

•  Advantages
– busy wait eliminated
– unbounded delays due to unexpected device

handling dramatically reduced (not
eliminated !)

–  remaining unbounded overhead may be
estimated relatively precisely

•  State of the art!

21

RTOS timing figures
•  Interrupt latency (TIL)

–  the time from the start of the physical
interrupt to the execution of the first
instruction of the interrupt service routine

•  Scheduling latency
(interrupt dispatch latency) (TSL)

–  the time from the execution of the last
instruction of the interrupt handler to the first
instruction of the task made ready by that
interrupt

•  Context-switch time (TCS)
–  the time from the execution of the last

instruction of one user-level process to the
first instruction of the next user-level process

•  Maximum system call time
–  should be predictable & independent of the

of objects in the system

22

12!

RTOS and interrupts - example

23

Achieving predictability:
system calls

•  All system calls have to be characterized
by bounded execution time
– each kernel primitive should be preemptable!
– non-preemtable calls could delay the

execution of critical activities à fault to hard
deadline

24

13!

Achieving predictability:
semaphore

•  Usual semaphore mechanism not suited
for real time applications
– Priority inversion problem

•  High priority task is blocked by low priority task for
unbounded time

– Solution: use special protocols
•  Priority Inheritance
•  Priority ceiling

25

Priority inversion
•  Priority(P1) > Priority (P2)
•  P1, P2 share a critical section (CS)
•  P1 must wait until P2 exits CS even if P(P1) > P(P2)
•  Maximum blocking time equals the time needed by P2 to

execute its CS
–  It is a direct consequence of mutual exclusion

•  In general the blocking time cannot be bounded by CS of the
lower priority process

CS CS

CS P1

P2

P1 blocked
p
r
i
o
r
i
t
y

time 26

14!

Priority inversion
•  Typical characterization of priority inversion

–  A medium-priority task preempts a lower-priority task that
is using a shared resource on which a higher-priority task
is pending

–  If the higher-priority task is otherwise ready to run, but a
medium-priority task is currently running instead, a priority
inversion is said to occur

CS CS

CS P1

P3

J1 blocked
p
r
i
o
r
i
t
y

time

CS

P2

How long?

27

Priority inheritance [Sha 90]

•  A job J uses its assigned priority,
– unless it is in its CS and blocks higher priority

jobs
•  In which case, J inherits PH , the highest priority of

the jobs blocked by J
•  When J exits the CS, it resumes the priority it had

at the point of entry into the CS

•  Priority inheritance is transitive

28

15!

Priority inheritance

•  Advantage
– Transparent to scheduler

•  Disadvantage
– Deadlock possible in the case of bad use of

semaphores
– Chained blocking: if P accesses n resources

locked by processes with lower priorities, P
must wait for n CS

29

Priority inheritance - example

CS CS

CS P1

P3

J1 blocked p
r
i
o
r
i
t
y

time

CS

P2

P2 arrives, but P3 cannot
be preempted by P2,

because P3 inherited the
priority of P1.

Thus, P2 must wait until P3
exits CS and P1 finishes

P1 requires CS, but it must
wait because P3 locks CS.

Thus, P3 inherits the
priority of P1 and it can

resume its execution

30

16!

Priority ceiling [Sha 90]
•  Each resource Sk has a priority ceiling C(Sk)

equal to the priority of the highest-priority job
that can lock it

•  Let Ji the job with the highest priority among
jobs ready to run, Ji is assigned to the CPU

•  Let S* the resource such that C(S*) > C(Sj)
for all Sj locked by Jn ≠ Ji

•  Ji acquires Sk iff P(Ji) > C(S*)
If P(Ji)<=C(S*), Ji is blocked on S* and it
cannot acquire Sk

31

Priority ceiling
•  When Ji is blocked on a resource, it transmits its

priority to the job that locks the resource, let it Jk
Then, Jk resumes and executes its CS with P(Ji)

•  When Jk exits CS, it unlocks the resource and the
highest priority job blocked on it is awakened
–  The priority of Jk is updated as follows

•  if no other jobs are blocked by Jk, the priority of Jk is set to
the nominal one

•  otherwise the priority is set to the highest priority of the jobs
blocked by Jk

•  Priority inheritance is transitive

32

17!

Priority ceiling
•  Properties

–  A high-priority process can be blocked at most once
during its execution by lower-priority processes

–  Deadlocks are prevented
–  Transitive blocking is prevented

•  Advantage
–  Mutual exclusive access to resources is ensured, by

the protocol itself (no semaphores etc. required)
–  Tasks can share resources simply by changing their

priorities, thus eliminating the need for semaphores

33

Priority ceiling - example

S2 S2 S2

P0

P2

p
r
i
o
r
i
t
y

time

S1

P1

S1

S1

S2

S0

t1 t2 t3 t4 t5 t6 t7 t8 t9 t0

P0 needs S0 e S1

P1 needs S2

P2 needs S2 and S1(nested in S2)

C(S0) = P(P0)

C(S1) = P(P0)

C(S2) = P(P1)

P1 blocked since
!(p1 > C(S2))

Then P2 resumes with
priority p1

p0 > P(P2)=p1
then P2 is

preempted by P0

P0 blocked since !
(p0>C(S1))

Then P2 resumes
with priority p0

P2 unlock S1, P0 is
awakened, P2

assumes priority p1.
p0>C(S2) then P0

enters S0

P2 exits S2, its
priority became

p2, thus it is
preempted by P1

P(P0) = p0

P(P1) = p1

P(P2) = p2

34

18!

Achieving predictability:
memory management

•  Avoid non-deterministic delays
–  No conventional demand paging (page fault handling!)

•  Page fault & page replacement may cause unpredictable delays
•  May use selective page locking to increase determinism

•  Typically used
–  Memory segmentation
–  Static partitioning

•  if applications require similar amounts of memory
•  Problems

–  flexibility reduced in dynamic environment
•  careful balancing required between predictabiliy and flexibility

35

Achieving predictability:
applications

•  Current programming languages not expressive enough to
prescribe precise timing
–  Need of specific RT languages

•  Desirable features
–  no dynamic data structures

•  prevent the possibility of correctly predict time needed to create and
destroy dynamic structures

–  no recursion
•  impossible estimation of execution time for recursive programs

–  only time-bound loops
•  to estimate the duration of cycles

•  Example of RT programming language
–  Real-Time Concurrent C
–  Real-Time Euclid

36

19!

What RTOS?
•  Proprietary

–  VxWorks by WindRiver
–  LynxOS by Lynx
–  Windows CE

•  Free/Academical/Open-source
–  RedHat’s eCos
–  RTLinux
–  QNX Neutrino
–  Spring
–  RTX
–  CoCoOS
–  …

http://en.wikipedia.org/wiki/List_of_real-time_operating_systems 37

REAL-TIME
PROCESS MANAGEMENT
& SCHEDULING

38

20!

Processes

•  Called tasks in the RT community
•  Basic concepts

– Task scheduling
– Scheduling problems & anomalies

39

Scheduling – preliminaries

•  Key fact:
– Any RT scheduling policy must be preemptive

•  Tasks performing exception handling may need to
preempt running tasks to ensure timely reaction

•  Tasks may have different levels of criticalness.
This can be mapped to a preemption scheme

•  More efficient schedules can be produced with
preemption

40

21!

Scheduling – definition
•  Given a set of tasks J = {J1 , ...Jn} a schedule is an

assignment of tasks to the processor so that each
task is executed until completion

•  Formally
–  A schedule is a function s : R+ → N such that

•  ∀ t ∈ R+, ∃ t1, t2 ∈ R+ | ∀ t′ ∈ [t1, t2) s (t) = s (t′)
•  In practice, s is an integer step function

–  s (t) = k means task Jk is executing at time t
–  s (t) = 0 means CPU is idle

•  Each interval [ti, ti+1) with s (t) constant for
t ∈ [ti, ti+1) is called a time slice

41

Scheduling – example

42

22!

Scheduling – properties

•  A schedule is called feasible if all tasks
can be completed according to a set of
specified constraints

•  A set of tasks is called schedulable if there
exist at least one algorithm that can
produce a feasible schedule

43

Scheduling constraints

•  The following types of constraints are
considered
– Timing constraints

•  meet your deadline
– Precedence constraints

•  respect prerequisites
– Resource constraints

•  access only available resources

44

23!

Timing constraints
•  Real-time systems are characterized mostly

by timing constraints
– Typical timing constraint: deadline

•  Deadline missing separates two classes of
RT systems
– Hard

•  missing of deadline can cause catastrophic
consequences

– Soft
•  missing of deadline decreases performance of system

45

Task characterization
•  Arrival time ai

–  the time Ji becomes ready for execution
–  Also called release time ri

•  Computation time Ci
–  time necessary for execution without interruption

•  Deadline di
–  time before which task has to complete its execution

•  Start time si
–  time at which Ji start its execution

•  Finish time fi
–  time at which Ji finishes its execution

t

Ji

si

Ci

fi di ai
46

24!

Task characterization
•  Lateness Li

–  Li = fi - di (it is < 0 if task finishes before deadline)
–  delay of task completion with respect to di

•  Laxity or slack time Xi
–  Xi = di - ai - Ci
–  maximum time a task can be delayed on first

activation to complete before its deadline

t

Ji

si

Li

fi di ai

47

Task models

•  Time-driven activation
– Periodic tasks

•  Event-driven activation
– Aperiodic tasks
– Sporadic tasks

48

25!

Periodic tasks
•  Periodic task τi consists of infinite sequence of

identical activities, called instances
–  Regularly activated at a constant rate
–  Activation time of first instance of τ is called phase (φi)
–  Ti = period of the task
–  Each task ti can be characterized by Ci , Ti, , Di (deadline)

•  Ci, Ti , Di constant for each instance
•  In most cases: Ti =Di

49

Aperiodic tasks
•  Aperiodic task Ji consists of infinite sequence of

identical activities (instances)
–  Their activations are not regular
–  Usually small number of instances

•  Sporadic tasks similar to aperiodic, but inter-arrival
time is bounded

I1,2

Aperiodic: I1,2 unknown
Sporadic: I1,2 > ITmin

50

26!

Precedence constraints
•  Task have often to respect some precedence

relations
–  Described by a DAG G

•  Nodes N(G) = tasks
•  Edges E(G) = precedence relations

–  G induces partial order on task set
•  Notation

–  Ja < Jb means Ja is a predecessor of Jb
•  There exists a path from task (node) Ja to task Jb in G

–  Ja à Jb means Ja is an immediate predecessor of Jb
•  There exist an edge (Ja, Jb) in E(G)

51

Precedence constraints – example
•  System for recognizing object on a

conveyer belt through two cameras
•  Tasks

–  For each camera
•  image acquisition acq1 and acq2
•  low level image processing edge1 and

edge2
–  Task shape to extract two-dimensional

features from object contours
–  Task disp to compute pixel disparities

from the two images
–  Task H that calculates object height from

results of disp
–  Task rec that performs final recognition

based on H and shape

52

27!

Resource constraints
•  Process view

– Resource
•  Any SW structure that can be used by process to

advance execution
–  Data structure, set of variables, memory area, files, registers

of a peripheral, …
– Distinction between private resources, shared

resources and exclusive resources
•  Critical section as for conventional systems

– Conventional semaphore-like structure suffer
from priority inversion problem

53

REAL-TIME SCHEDULING

54

28!

Scheduling – problem formulation
•  Given

–  a set of n tasks J = {J1 , ..., Jn}
–  a set of m processor P = {P1, ..., Pm}
–  a set of s resources R = {R1, ..., Rs}
–  precedences specified by using a precedence graph
–  timing constraints associated to each task

•  Scheduling means to assign processors from P
and resources from R to tasks from J in order to
complete all tasks under the imposed constraints
–  NP-complete!

55

Scheduling – classification
•  Preemptive/non-preemptive
•  Static

–  scheduling decisions based on fixed parameters assigned before
activation

•  Dynamic
–  scheduling decisions based on parameters that change during

system evolution
•  Off-line

–  scheduling algorithm is preformed on the entire task set before
start of system

•  On-line
–  scheduling decisions are taken at run-time every time a task

enters or leaves the system

56

29!

Scheduling – guarantee-based
algorithms

•  Hard RT systems require that
–  feasibility of schedule has to be guaranteed in

advance
•  Solutions

– Static RT systems
– Dynamic RT systems

57

Static RT systems

•  Static RT systems
– All task activations can be pre-calculated off-line
– Entire schedule can be stored in a table
– Simple
– Overhead for dispatching does not depend on the

scheduling algorithm à sophisticated algorithm
can be used to find optimal scheduling

– Not flexible

58

30!

Dynamic RT systems
•  Activation of new (sporadic) tasks subject to

acceptance test
–  J = current task set, previously guaranteed
–  Jnew = newly arriving task
–  Jnew is accepted iff task set J’= J ∪ { Jnew} is

schedulable
•  Guarantee mechanism based on worst case

assumptions Æ pessimistic (task could
unnecessarily rejected, but potential overload
are known in advance)

59

Scheduling metrics
•  n tasks

–  Maximum lateness
•  Lmax = maxi=1…N (fi – di)

–  Maximum number of late tasks
•  Nlate = Σi=1…N miss (fi)
•  miss (fi)= 0 if fi ≤ di,1 otherwise

–  Average response time
•  tr = 1/n * Σi=1…N (fi – ai)

–  Total completion time
•  tc = maxi=1…N (fi) – mini=1…N (ai)

–  Weighted sum of completion times
•  tw = Σi=1…N wi * fi

minimize

60

31!

Scheduling metrics
•  Average response time/total completion time not

appropriate for hard real time tasks à loses
information about deadline satisfaction

•  Maximum lateness: useful for “exploration” but
minimizing maximum
lateness does not
minimize number
of tasks that miss
their deadlines

•  Max # of late task
more significant

61

Scheduling anomalies
•  [Graham 76]

–  If a task set is optimally scheduled on a
multiprocessor with some priority assignment, a
fixed number of processors, fixed execution
times, and precedence constraints, then

•  increasing the number of processors
•  reducing execution times
•  weakening the precedence constraints

–  can increase the schedule length

RT-computing is not equivalent to fast computing!

62

32!

Increasing the number of
processors

Precedence constraints

Computation time

Global completion time = 12

Global completion time = 15!

63

Decreasing computation times

Global completion time = 13!

64

33!

Weakening precedences

Global completion time = 16!

65

APERIODIC TASK
SCHEDULING

66

34!

Aperiodic task scheduling

•  Classification [Graham 79]
– Triple (α, β, γ)

• α = the environment on which the task set has to
be scheduled (typically # of processors)

• β = tasks and resource characteristics (preemptive,
precedence, synchronous activations etc.)

•  γ = cost function to be optimized

67

Aperiodic task scheduling

•  Examples:
– 1 | prec | Lmax

•  uniprocessor machine
•  task set with precedence constraints
•  minimize maximum lateness

– 2 | sync | Σi Latei
•  two processor machine
•  tasks have synchronous arrival time
•  minimize # of late tasks

68

35!

Aperiodic task scheduling

•  Typical scheduling space
– Task activation times

•  Synchronous activations (ai=0, ∀i)
•  Asynchronous activations (∃i, s.t. ai≠0)

– Task relations
•  With/without precedence relations

– Preemption
•  With/without preemption

69

Aperiodic task scheduling
algorithms

•  Without precedence constraints
– Jackson’s algorithm
– Horn’s algorithm

70

36!

Jackson’s algorithm [Jackson 55]
•  To solve 1 | sync | Lmax

–  Uniprocessor, synchronous arrivals, minimize
lateness

•  No other constraints are considered
–  tasks are independent

•  no precedence relations
•  no shared resources

•  Task set J = {Ji (Ci, Di) | i = 1…n}
–  Computation time Ci
–  Deadline Di

•  Principle: Earliest Due Date (EDD)

P.S.
Preemption is
not a issue
because of

sync!

71

Jackson’s algorithm
•  It can be proved that:

–  given a set of n independent tasks, any algorithm
that executes the tasks in order of non-
decreasing deadlines is optimal with respect to
minimize the maximum lateness

•  Complexity
–  sorting n values (O (n*log n))

•  EDD can not guarantee feasible schedule
It only guarantees that if a feasible schedule
exists it will find it

72

37!

Jackson’s algorithm - example

•  Example of feasible schedule

•  Example of unfeasible schedule
EDD minimizes Lmax
but the schedule is

not feasible

73

Horn’s algorithm [Horn 74]
•  To solve 1 | preem | Lmax
•  Principle: Earliest Deadline First (EDF)
•  It can be proved that

–  given a set of n independent tasks with arbitrary arrival times,
any algorithm that at any time executes the task with the earliest
absolute deadline among all the ready tasks is optimal with
respect to minimizing the maximum lateness

•  Complexity
–  O(n) per task

•  inserting a newly arriving task into an ordered list properly
–  n tasks => total complexity O(n2)

•  Non preemptive EDF is not optimal!

74

38!

Horn’s algorithm - example

L max=L2=L3=0

preemption

EDF can not guarantee feasible schedule
75

Scheduling with precedence
constraints

•  In General it is a NP-hard problem
– For special cases polynomial time algorithms

possible
•  Two schemes

– Latest Deadline First (LDF)
– Modified EDF

76

39!

LDF algorithm [Lawler 73]
•  To solve 1 | (prec, sync) | Lmax

–  Given:
•  set J of n tasks
•  a DAG describing their precedence relations

–  Arrival times assumed to be simultaneous
–  LDF builds the scheduling queue from tail to head

•  among the tasks without successors or with all successors
already selected, LDF selects the one with latest deadline to be
scheduled last

•  Iterate this scheme until all tasks are selected
•  Complexity

–  O(n2)
•  for each job, the precedence graph has to be visited

77

LDF algorithm- example

J1

J2 J3

J4 J5 J6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

1 2 4 3 5 6

1 3 2 4 5 6

LDF

EDF

Lmax = 0

Lmax =L4= 1

Precedence
graph

Not optimal when precedences are considered

First to be inserted by LDF

78

40!

EDF with precedence constraints
[Chetto et al. 90]

•  To solve 1 | (prec, preem) | Lmax
•  Modified EDF

– Transform set J of dependent tasks into set J* of
independent ones by an adequate modification of
timing parameters

– Then apply EDF
•  The transformation ensures

–  J* schedulable ⇔ J schedulable and prec
constraints satisfied

79

EDF with precedence constraints

•  Modification
– Change arrival times & deadlines such that

each task
•  cannot start before its predecessors
•  cannot preempt their successors (other tasks,

however, may be preempted)

80

41!

EDF with precedence constraints

•  Modification of arrival (release) times:
– Try to postpone release time
– Given two tasks Ja and Jb, Ja → Jb, the

following two conditions must be satisfied
•  sb ≥ rb

–  Jb cannot start earlier than its arrival time
•  sb ≥ ra + ca

–  Jb cannot start earlier than minimum finish time of Ja

– Then the new release time for Jb is
•  r*b =max (rb, ra + ca)

Complexity = O (n2) 81

EDF with precedence constraints
•  Modification of deadlines

– Try to anticipate the deadline
– Given two tasks Ja and Jb , Ja → Jb, the following

two conditions must be satisfied
•  fa ≤ da

–  Ja must finish before its deadline
•  fa ≤ db – cb

–  Ja must finish before latest start time of b

– The new deadline for Ja is
•  d*a = min (da, db - Cb)

Complexity = O (n2) 82

42!

EDF with precedence constraints -
example

J1 J2

C1

d1 r1

C2

d2 r2

J1

J2

r*1 = r1
r*2 = r1 + c1
d*1 = d2 – c2
d*2 = d2

r*2

d*1

83

Aperiodic task scheduling:
summary

84

43!

PERIODIC TASK SCHEDULING

85

Introduction

•  Periodic activities represent the major
computational demand in many
applications
– sensory data acquisition
– control loops
– system monitoring

•  Usually several periodic tasks running
concurrently

86

44!

Assumptions
1.  Instances of a task are regularly activated at constant rate.

Interval between two consecutive activations is the period of
the task

2.  All instances of a task have the same worst case execution
time Ci

3.  All instances of a task have the same deadline Di,
and Di = Ti (deadline = period)

4.  All periodic tasks are independent
(no precedence relations, no resource constraints)

5.  No task can suspend itself (e.g. for I/O)
6.  All tasks are released as soon as they arrive
7.  All overheads due to the RTOS are assumed to be zero

3,4: can be too tight for practical application
87

Characterization of periodic tasks
•  A periodic task τi can be characterized

(see assumptions 1-4) by
–  phase fi
–  period Ti
– worst case computation

time Ci

•  Additional parameters
– Response time Ri = fi – ri
– Critical instant (of a task)

•  Release time of a task instance resulting in the largest
response time

t

τi

si

Li

fi di ri

Ri

88

45!

Scheduling of periodic tasks

•  Static scheduling
•  Dynamic (process-based) scheduling

89

Static scheduling

•  Cyclic executive approach:
– With a fixed set of purely periodic tasks it is

possible to layout a schedule such that the
repeated execution of this schedule will cause
all processes to run at their correct rate

– Essentially a table of procedure calls, where
each procedure represents part of a code for
a “process”

•  Off-line

90

46!

Cyclic executive approach
•  Schedule structure:

–  Tasks are mapped onto a set of minor cycles
–  The set of minor cycles constitute a major cycle (the

complete schedule)
•  Cycle durations:

–  Minor cycle m = mini (Ti)
–  Major cycle M = LCM(Ti) Æ M = k·m

•  Example:
–  T = (7, 10, 21, 35)

•  m = 7
•  M = 2x3x5x7 = 210

LCM = Least
common
multiple

91

Cyclic executive approach:
example

•  Task set

•  Schedule

Process period,T Computation Time, C
--
 A 25 10
 B 25 8
 C 50 5
 D 50 4
 E 100 2

A B C D E

Minor cycle
(25)

Major cycle
(100)

A A A B B B C D

23 24 22 23

Minor cycle
(25)

Minor cycle
(25)

Minor cycle
(25)

92

47!

Cyclic executive approach:
example

•  Actual code that
implements the
above cyclic
executive schedule

loop
 wait_for_interrupt
 Procedure_For_A
 Procedure_For_B
 Procedure_For_C
 wait_for_interrupt
 Procedure_For_A
 Procedure_For_B
 Procedure_For_D
 Procedure_For_E
 wait_for_interrupt
 Procedure_For_A
 Procedure_For_B
 Procedure_For_C
 wait_for_interrupt
 Procedure_For_A
 Procedure_For_B
 Procedure_For_D
end loop
 93

Cyclic executive approach

•  Advantages
– No actual process exists at run-time;

each minor cycle is just a sequence of
procedure calls

– The procedures share common address
space and can pass data between themselves

•  No need for data protection, no concurrency

94

48!

Cyclic executive approach

•  Disadvantages
– Task periods must be multiple of minor cycle

time
(to make this manageable)

–  It only handles periodic tasks
•  Difficult to incorporate sporadic processes (major

cycle time)
– Difficult to construct cyclic executive

(equivalent to bin packing problem, NP-hard)
95

Dynamic (process-based)
scheduling

•  Fixed-priority scheduling
– Rate-monotonic (RM) scheduling
– Deadline-monotonic (DM) scheduling

•  Dynamic-priority scheduling
– EDF

96

49!

Processor utilization factor

•  Given a set Γ of periodic tasks the
utilization factor U:
–  is the fraction of processor time spent in the

execution of the task set
– determines the load of the CPU

•  Ci/Ti is the fraction of processor time spent
in executing ti

•  U = Σi=1…n Ci/Ti
97

Processor utilization factor

•  U can be improved by:
–  Increasing computation times of the tasks
– Decreasing the periods of the tasks

•  up to a limit below which Γ is not schedulable
•  Limit depends on:

–  task set (particular relations among task’s
periods)

–  algorithm used to schedule the tasks

98

50!

Processor utilization factor
•  Upper bound of U, Uub(Γ, A)

–  Value of U (for a given task set and scheduling algorithm)
for which the processor is fully utilized

–  Task set Γ is schedulable using A but any increase of
computation time in one of the tasks may make
the set infeasible

•  Least upper bound of U, Ulub
–  Minimum of Uub over all task sets Γ that fully utilize the

processor for a given algorithm

•  Ulub allows to easily test for schedulability of set
lub () min((,)), .ubU A U A= Γ ∀Γ

99

YES ? NO

Processor utilization factor
•  Schedulability test

–  UΓi <= Ulub(A) Æ Γi schedulable
–  UΓi > Ulub(A) Æ Γi may be schedulable, if the periods of the

tasks are suitable related
–  UΓi > 1 Æ Γi not schedulable

0 1

Γ1
Γ2
Γ3

Γ4

Γm

1ub
U

2ub
U

3ub
U

4ub
U

mub
U

lubU

U

100

51!

Rate Monotonic (RM) Scheduling
•  Static priority scheduling
•  Rate monotonic Æ priorities are assigned to

tasks according to their request rates
•  Each process is assigned a (unique) priority

based on its period
– The shorter the period, the higher the priority
– Given tasks ti and tj, Ti < Tj Æ Pi > Pj

•  Intrinsically preemptive
– Currently executing task is preempted by a newly

released task with shorter period

101

RM scheduling

•  RM is proven to be optimal
–  If a set of processes can be scheduled (using

preemptive priority-based scheduling) with a
fixed priority-based assignment scheme, then
RM can also schedule the set of processes

102

52!

RM scheduling: Example

•  1 = lower priority
•  5 = higher priority

Process Period, T Priority, P

A 25 5

B 60 3
C 42 4
D 105 1
E 75 2

103

RM schedulability test
•  Considers only the utilization of the process

set [Liu&Layland 73]

•  Total utilization of the process set

Ci
Ti

!

"
##

$

%
&&

i=1

n

' (n(2
1
n)1)Ulub =

U(n)

n
0%

20%

40%

60%

80%

100%

0 10 20 30 40

N U(n)

1 1.000

2 0.828

3 0.780

4 0.757

5 0.743

6 0.735

7 0.729

8 0.724
9 0.721

10 0.718

104

53!

RM schedulability test
•  For large values of n, the bound asymptotically

reaches 69.3% (ln2)
•  Any process set with a combined utilization of less

than 69.3% will always be schedulable under RM
•  NOTE

–  This schedulability test is sufficient, but not necessary
•  If a process set passes the test, it will meet all deadlines; if it

fails the test, it may or may not fail at run-time
–  The utilization-based test only gives a yes/no answer

•  No indication of actual response times of processes!

105

RM schedulability test – example
Process Period,

T
Computation

time, C
Priority,
P

Utilization,
U

Task_1 50 12 1 0.24
Task_2 40 10 2 0.25
Task_3 30 10 3 0.33

Task_2

0 10 20 30 40 50 60 Time

Task_3

Task_1

U = 12/50 + 10/40 + 10/30 = 0.24 + 0.25 + 0.33 = 0.82
U > U(3) = 3 (21/3 –1) = 0.78

10

Task_1
misses
deadline

106

54!

RM schedulability test – example
Process Period,

T
Computation

time, C
Priority,
P

Utilization,
U

Task_1 50 25 1 0.5
Task_2 40 5 2 0.125
Task_3 30 4 3 0.133

Task_2

0 10 20 30 40 50 60 Time

Task_3

Task_1

U = 25/50 + 5/40 + 4/30 = 0.5 + 0.125 + 0.133= 0.758
U < U(3) = 3 (21/3 –1) = 0.78

21 4

4

5

4

5

U < Ulub

107

RM schedulability test - example
Process Period,

T
Computation

time, C
Priority,
P

Utilization,
U

Task_1 80 40 1 0.500
Task_2 40 10 2 0.250
Task_3 20 5 3 0.250

U = 1 > U(3) = 3 (21/3 –1) = 0.78

0 10 20 30 40 50 60

Task_3

Task_2

Task_1

Time 70 80

Even if
U > Ulub

108

55!

Response time analysis

•  Drawbacks of utilization-based tests:
– Not exact
– Overestimation of the processor load

•  Solution
– Response time analysis

109

Response time analysis

•  The analysis has two stages:
1.  The worst-case response time of each

process is obtained analytically
2.  The response times are then individually

compared with the process deadlines
•  Response time analysis provides sufficient

and necessary conditions for
schedulability

110

56!

Response time analysis

•  For any process i, the worst-case response
time is given by: Ri = Ci + Ii
–  Ii is the maximum interference that process i can

experience in any time during the interval [t, t+Ri)
–  Interference = preemption

•  For the highest priority process, its worst-case
response time will equal its own computation time (that
is, R = C)

•  Other processes will suffer interference from higher-
priority processes

111

Response time analysis

•  Let i, j be two processes where:
– priority(j) > priority(i)

•  During the interval [0,Ri) we have:
– Number of releases of j instances = ⎡Ri / Tj ⎤
– Max interference of j = ⎡Ri / Tj ⎤ Cj

()

i
i j

j hp i j

RI C
T∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎢ ⎥
∑hp(i) = set of tasks with

higher priority than i ()

i
i i j

j hp i j

RR C C
T∈

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑

112

57!

Response time analysis

•  Solving by forming a recurrence equation
– Where the set is

monotonically non-decreasing
0 1 2{ , , ,......, ,....}n
i i i iw w w w

1

()

n
n i
i i j

j hp i j

ww C C
T

+

∈

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑

113

Response time analysis

•  The equation is solved when wn+1 = wn

•  If the equation does not have a solution,
then the w values will continue to rise
– Stop when w > D à not schedulable

•  Value of w0 ?
– The smallest possible value for Ri is Ci

114

58!

Response time analysis - example
•  Task 1 => R1 = C1 = 3 <= 7 OK
•  Task 2 =>

–  w20 = C2 = 3
–  w21 = 3 + ⎡3/7⎤ 3 = 6
–  w22 = 3 + ⎡6/7⎤ 3 = 6 = w21 => R2 = 6 <= 12 OK

•  Task 3 =>
–  w30 = C3 = 5
–  w31 = 5 + ⎡5/12⎤ 3 + ⎡5/7⎤ 3 = 11
–  w32 = 5 + ⎡11/12⎤ 3 + ⎡11/7⎤ 3 = 14
–  w33 = 5 + ⎡14/12⎤ 3 + ⎡14/7⎤ 3 = 17
–  w34 = 5 + ⎡17/12⎤ 3 + ⎡17/7⎤ 3 = 20
–  w35 = 5 + ⎡20/12⎤ 3 + ⎡20/7⎤ 3 = 20
–  => R3 = 20 <= 20 OK

Process Period,
T

Computation
time, C

Priority,
P

Task_1 7 3 3

Task_2 12 3 2
Task_3 20 5 1

0

1 2 3 1 2

4 8 12 16 20
T

2 6 10 14 18

3 1 2 3

115

Response time analysis - example

•  Process set that failed the utilization-based test
•  U = 40/80+10/40+5/20 = 1/2+1/4+1/4 = 1 > 0.78
•  Response time test ok

–  R1 = 80 <= 80 OK
–  R2 = 15 <= 40 OK
–  R3 = 5 <= 20 OK

Process Period,
T

Computation
time, C

Priority,
P

Task_1 80 40 1

Task_2 40 10 2
Task_3 20 5 3

116

59!

EDF algorithm
•  Dynamic scheduling algorithm

–  Dynamic priority assignment
•  Idea as for aperiodic tasks

–  Tasks are selected according to their absolute deadlines
–  Tasks with earlier deadlines are given higher priorities
–  It is intrinsically preemptive

•  The currently executing task is preempted whenever another
instance with earlier deadline becomes active

•  More powerful than RM!
•  It works for periodic as well as aperiodic tasks

–  Optimality holds for periodic as well aperiodic tasks

117

EDF - example Process Period, T WCET, C
T1 5 2

T2 7 4

0 5 10 15 20 25 30 35

0 7 14 21 28 35

T1

T2

RM schedule

0 5 10 15 20 25 30 35

0 7 14 21 28 35

T1

T2

EDF schedule

Deadline miss
3 1

Worst case execution time

118

60!

EDF schedulability test

•  Schedulability of a periodic task set
scheduled by EDF can be verified through
the processor utilization factor U

•  Theorem [Liu&Layland 73]
– A set of periodic tasks is schedulable with

EDF iff

– This is a sufficient and necessary condition

1
1

n
i

i i

C
T=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑

119

EDF schedulability test: example

•  Processor utilization of the task set

– U = 2/5 + 4/7 = 34/35 = 0.97
– U > 0.82

•  schedulability not guaranteed under RM
– U <1

•  schedulability guaranteed under EDF

Process Period, T WCET, C
T1 5 2

T2 7 4

120

61!

Deadline monotonic
(DM) scheduling

•  Assumption up to now
–  relative deadline = period

•  DM scheduling weakens this assumption
–  Static algorithm with preemption

•  For DM each periodic tasks τi is characterized by
four parameters:
–  Relative deadline Di (equal for all instances)
–  Worst case computation time Ci (equal for all

instances)
–  Period Ti
–  Phase fi

121

DM scheduling
•  DM = generalization of RM

– RMA optimal for D = T
– DMA extends this optimality for D < T

•  Priority of a process inversely proportional to
its deadline (but still static!)
– Given tasks τi and τj, Di < Dj Æ Pi > Pj

t

τi Ci

Ti

Di

122

62!

DM scheduling: example

•  Task set not schedulable with RM but
schedulable with DM

Process Period,
T

Deadline,
D

Computation
time, C

Priority,
P

Response
time, R

Task_1 20 5 3 4 3
Task_2 15 7 3 3 6
Task_3 10 10 4 2 10
Task_4 20 20 3 1 20

0 10 20 30 40

Task_1

Task_2

Task_3

Task_4

123

DM schedulability analysis

•  Schedulability can be tested replacing the
period with the deadlines in the definition
of U

– Too pessimistic! (U overestimated)

U = Σi=1…n Ci/Di

124

63!

DM schedulability analysis

•  Actual guarantee test based on a modified
response time analysis
–  Intuitively: for each τi , the sum of its

processing time and the interference
(preemption) imposed by higher priority tasks
must be ≤ Di

Ci + Ii ≤ Di

∀i: 1 ≤ i ≤ n
Ii = Σ(j=1…i-1) ⎡ Ri / Tj ⎤ Cj

125

EDF for D<T
•  EDF applies also to the case D < T
•  Different schedulability test

– Based on the processor demand criterion
•  The processor demand of a task τi in any

interval [t, t+L] is the amount of processing
time required by τi in [t, t+L] that has to be
completed at or before t+L
– That is, that has to be executed with

deadlines ≤ t+L

126

64!

Processor demand for EDF

•  Applicable also to the case D=T
•  In general, the schedulability of the task

set is guaranteed iff the cumulative
processor demand in any interval [0, L] ≤ L
(the interval length):

1
(0,) .

n

P i
i i

LC L C
T=

⎢ ⎥
= ⎢ ⎥

⎣ ⎦
∑ ≤ L

127

Processor demand for EDF

•  In the case D<T

∀L ≥ 0

Number of completions
between 0 and L-Di

Number of checkpoints
is actually limited

128

65!

Processor demand for EDF -
example

•  Schedulability test (L=21)
–  (⎣(21-7)/8⎦+1) • 3 + (⎣(21-4)/8⎦+1) • 2 =

6 + 6 = 12 < 21 OK
•  Schedulability test (L=24)

–  (⎣(24-7)/8⎦+1) • 3 + (⎣(24-4)/8⎦+1) • 2 =
9 + 6 = 15 < 24 OK

τ1

τ 2
L

Task T D C
!1 8 7 3

!2 8 4 2

7 15 23

4 12 20

L

129

Periodic task scheduling:
summary

•  Rate Monotonic (RM) is optimal among fixed
priority assignments (with D=T)

•  Earliest Deadline First (EDF) is optimal among
dynamic priority assignments

•  Deadlines = Periods
–  guarantee test in O(n) using processor utilization,

applicable to EDF and RM (only sufficient condition)
•  Deadlines < periods

–  polynomial time algorithms for guarantee test
–  fixed priority (DM): response time analysis
–  dynamic priority (EDF): processor demand

130

66!

Periodic task scheduling:
summary

RMA

Processor utilization
approach

DMA

Response time approach

EDF

Processor utilization
approach

EDF

Processor demand approach

1

1
(2 1)

n
i n

i i

C n
T=

⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
∑ ()

, i
i i j i

j hp i j

Ri R C C D
T∈

⎡ ⎤
∀ = + ≤⎢ ⎥

⎢ ⎥⎢ ⎥
∑

1
1

n
i

i i

C
T=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑

1
0, 1

n
i

i
i i

L DL L C
T=

⎛ ⎞⎢ ⎥−
∀ > ≥ +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑

Dynamic
Priority

Static
Priority

i iD T= i iD T≤

131

PRIORITY SERVERS

132

67!

Introduction

•  In most real-time applications there are
– Both periodic and aperiodic tasks

•  typically periodic tasks are time-driven, hard real-time
•  typically aperiodic tasks are event-driven, soft or hard

RT

•  Objectives:
– Guarantee hard RT tasks
– Provide good average response time for soft RT

tasks

133

Handling periodic and
aperiodic tasks

•  Solutions
–  Immediate service
– Background scheduling
– Aperiodic servers

•  Static priority servers
•  Dynamic priority servers

134

68!

Immediate service
•  Aperiodic requests are served as soon as they

arrive in the system
•  Minimum response times for aperiodic requests
•  Low guarantee of periodic tasks

Response time = 3
135

Background scheduling
•  Handle soft aperiodic tasks in the background behind

periodic tasks, that is, in the processor time left after
scheduling all periodic tasks

•  Aperiodic tasks just get assigned a priority lower than
any periodic one

•  Organization of background scheduling:

Periodic tasks

Aperiodic tasks

CPU
RM

FCFS

High priority queue

Low priority queue

136

69!

Background scheduling - example

Response time = 10

Task C T

τ1	
 1 4

τ2	
 3 6

137

Background scheduling

•  Utilization factor under RM < 1 Æ some
processor time is left, it can be used for
aperiodic tasks

•  High periodic load Æ bad response time
for aperiodic tasks

•  Applicable only if no stringent timing
requirements for aperiodic tasks

•  Major advantage: simplicity

138

70!

Priority servers
•  Alternative scheme to achieve more predictable aperiodic task

handling
–  A specific periodic task (server) services aperiodic requests
–  The server is assigned a period Ts and a computation time Cs

(capacity of the server)
–  The server is scheduled like any other periodic task,

not necessarily at lowest priority
•  Conceptual scheme

139

Priority servers
•  Priority server are classified according to the priority scheme

(of the periodic scheduler)
–  Static priority servers

•  Polling Server
•  Deferrable server
•  Priority exchange
•  Sporadic server
•  Slack stealing

–  Dynamic priority servers
•  Dynamic Polling Server
•  Dynamic Deferrable Server
•  Dynamic Sporadic Server
•  Total Bandwidth Server
•  Constant Bandwidth Server

140

71!

Polling server (PS)
•  At the beginning of its period

–  PS is (re)-charged at its full value Cs
–  PS becomes active and is ready to serve any pending

aperiodic requests within the limits of its capacity Cs
•  If no aperiodic request pending Æ PS “suspends”

itself until beginning of its next period
–  Processor time is used for periodic tasks
–  Cs is discharged to 0
–  If aperiodic task arrives just after suspension of PS it is

served in the next period
•  If there are aperiodic requests pending Æ PS serves

them until Cs>0

141

Polling server - example
Task C T

τ1	
 2 4

τ2	
 1 6

Server:
Ts = 5
Cs = 1

RM

P(τ1)>P(S)>P(τ2)

142

72!

Polling server analysis
•  In the worst-case, the PS behaves as a periodic

task with utilization Us = Cs/Ts
•  Usually associated to RM for periodic tasks
•  Aperiodic tasks execute at the highest priority if

–  Ts = min (T1, … ,Tn)
•  Utilization (For Us=0, reduces to URM)

143

Deferrable server
•  Basic approach like Polling Server
•  Differences

–  DS preserves its capacity if no requests are pending
at invocation of the server

–  Capacity is maintained until server period Æ
aperiodic requests arriving at any time are served as
long as the capacity has not been exhausted

•  At the beginning of any server period, the capacity
is replenished at its full value (as in PS)
–  But no cumulation!

144

73!

Deferrable server – example
Task C T

τ1	
 2 4

τ2	
 1 6

Server:
Ts = 5
Cs = 1

RM

145

Deferrable server analysis

•  Utilization

•  Comparing PS and DS

Keeping the budget improves
responsiveness, but decreases
the utilization bound.

146

74!

Schedulability analysis
and comparison (Up=0.69)

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25

A
ve

ra
g

e
re

sp
o

n
se

 t
im

e

Average aperiodic load

Background

Polling

SS (DS)

Stack stealing

147

Comparison of fixed priority servers
Performance Computational

complexity
Memory
requirement

Implementation
complexity

Background
server C A A A

Polling
Server

C A A A

Deferrable
Server

B A A A

Priority
Exchange

B B B B

Slack
Stealing

A C C C

A=excellent B=good C=poor
148

75!

Dynamic priority servers
•  Dynamic scheduling algorithms have higher

schedulability bounds than fixed priority ones
•  This implies higher overall schedulability
•  Example:

–  Suppose
•  Aperiodic server using Slack Stealing

–  Uss = 2(Up/2 + 1)-2 -1
•  Utilization factor of periodic tasks

Up = 0.6
•  Periodic task scheduling under RM

–  Uss = 0.18
•  Periodic task scheduling under EDF

–  Uss = 1 - Up = 0.4

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1Up

Us
s

Uss

Uss vs. Up

149

Dynamic priority servers
•  Goal

–  Decreasing average response time for aperiodic tasks and
preserving the schedulability of periodic tasks

•  Solutions
–  Adaptation of static servers (EDF instead of RM for

periodic tasks)
•  Dynamic priority exchange server
•  Improved priority exchange server
•  Dynamic sporadic server

–  Total Bandwidth Server
•  Whenever an aperiodic request enters the system the total

bandwidth of the server is immediately assigned to it, whenever
possible

150

76!

Total bandwidth server (TBS)
•  Dynamic priority server, used with EDF

–  Each aperiodic request is assigned a deadline so
that the server demand does not exceed a given
bandwidth Us

–  Aperiodic jobs are inserted in the ready queue and
scheduled together with the hard tasks

•  Conceptual view:

Periodic tasks are
guaranteed

if and only if
Up + Us ≤ 1

151

Total bandwidth server

•  Deadline assignment
–  Job Jk with computation time Ck arrives at time rk

is assigned a deadline
dk = rk + Ck / Us

•  To keep track of the bandwidth assigned to
previous jobs, dk must be computed as

dk = max (rk , dk-1) + Ck / Us

•  Deadline used to assign priority

152

77!

Total bandwidth server - example

153

Task C T

τ1	
 1 4

τ2	
 3 6

Us = 1-Up = 1-0.75 = 0.25

d1 = r1 + C1 / Us = 1 + 2/0.25 = 9
d2 = max(r2,d1) + C2 / Us = 9 + 1/0.25 = 13

THE END

154

If you liked the SOA class, please consider the possibility of:

1.  attending to other ESD courses (PSE, SSE, …)

2.  enjoying an exciting thesis/stage in the System
Architecture area (ESD Group)

