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Real-Time  
Operating Systems 
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Summary 
•  Introduction 
•  Basic Concepts 
•  Real Time Scheduling 

– Aperiodic Task Scheduling 
– Periodic Task Scheduling  
– Mixed Task Scheduling 

•  Priority Servers 
•  Reference: 

– G.Buttazzo, “Hard Real-Time Computing 
Systems”Kluwer Academic Publishers, 2002 
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Introduction 
•  Real-time system: 

–  “A real-time system is a computer system in 
which the correctness of the system behavior 
depends not only on the logical results of the 
computation,  but also on the physical instant at 
which these results are produced ” 

–  “A real-time system is a system that is required to  
react to stimuli from the environment (including 
the passage of physical time) within time intervals  
dictated by the environment ” 
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“Real” and “Time” 

•  Time 
– main difference to other classes of 

computation 
•  Real 

–  reaction to external events must occur during 
their evolution 
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Concept of deadline 
•  Maximum time within which the task must be 

completed 
•  After deadline, a computation is not just late, 

it is wrong! 
•  System time (internal time) has to be 

measured with the same time scale used to 
measure the controlled environment (external 
time) 
– Real time does not mean fast but predictable 
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Examples of real time systems 
•  plant control 
•  control of production 

processes / industrial 
automation  

•  environmental 
acquisition and 
monitoring 

•  railway switching 
systems 

•  automotive applications 

•  flight control systems 
•  telecommunication 

systems 
•  robotics 
•  military systems 
•  space missions 
•  household appliances 
•  virtual / augmented 

reality 
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Hard vs. soft time 
•  Hard RT task 

–  if missing its deadline may cause catastrophic 
consequences on the environment under control 

•  Soft RT task 
–  if meeting its deadline is desirable (e.g. for 

performance reasons) but missing does not 
cause serious damage 

•  OS that is able to handle hard RT tasks is 
called hard real-time OS 
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Hard vs. soft time 
•  Typical hard real time activities 

–  sensory data acquisition 
–  detection of critical conditions 
–  low-level control of critical system components 

•  Areas of application 
– Automotive 

•  power-train control, air-bag control,  
steer by wire, brake by wire 

– Aircraft 
•  engine control, aerodynamic control 
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Hard vs. soft time 
•  Typical soft real time activities 

–  command interpreter of user interface 
–  keyboard handling 
–  displaying messages on screen 
–  transmitting streaming data 

•  Areas of application 
– Communication systems 

•  voice over IP, cellular telephony 
•  user interaction 
•  comfort electronics (body electronics in cars) 

10 
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RTOS 

11 

Conventional operating systems 
•  Conventional OS kernels are inadequate w.r.t. RT 

requirements 
–  Multitasking/scheduling 

•  provided through system calls 
•  does not take time into account (introduces unbounded delays) 

–  Interrupt management 
•  achieved by setting interrupt priority > than process priority 
•  increase system reactivity but may cause unbounded delays on 

process execution even due to unimportant interrupts 
–  Basic IPC and synchronization primitives 

•  may cause priority inversion (high priority task blocked by a low 
priority task) 

–  No concept of RT clock/deadline 
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Real-time operating systems 
•  Desirable features of a RTOS 

–  Timeliness 
•  OS has to provide mechanisms for 

–  time management 
–  handling tasks with explicit time constraints 

–  Predictability 
•  to guarantee in advance the deadline satisfaction 
•  to notify when deadline cannot be guaranteed 

–  Fault tolerance 
•  HW/SW failures must not cause a crash 

–  Design for peak load 
•  All scenarios must be considered 

–  Maintainability 
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Real-time operating systems 
•  Timeliness 

–  Achieved through proper scheduling algorithms 
•  Core of an RTOS! 

•  Predictability 
–  Affected by several issues 

•  Characteristics of the processor (pipelinig, cache, DMA, ...) 
•  I/O & interrupts 
•  Synchronization & IPC 
•  Architecture 
•  Memory management 
•  Applications 
•  Scheduling! 
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Achieving predictability: DMA 
•  Direct Memory Access 

–  to transfer data between a device and the main memory 
–  Problem: I/O device and CPU share the same bus 

•  2 solution 
–  Cycle stealing 

•  The DMA steals a CPU memory cycle to execute a data transfer 
•  The CPU waits until the transfer is completed 
•  Source of non-determinism! 

–  Time-slice method 
•  Each memory cycle is split in two adjacent time slots 

–  One for the CPU 
–  One for the DMA 

•  More costly, but more predictable! 
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Achieving predictability: cache 

•  To obtain a high predictability it is better to 
have processors without cache 

•  Source of non-determinism 
– cache miss vs. cache hit 
– writing vs. reading 

It is necessary 
to consider the 

worst case 
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Achieving predictability: interrupts 
•  One of the biggest problem for predictability 

–  Typical device driver 
<enable device interrupt> 
<wait for interrupt> 
<transfer data> 

–  In most OS 
•  interrupts served with respect to fixed priority scheme 
•  interrupts have higher priorities than processes 
•  How much is the delay introduced by interrupts? 

–  How many interrupts occur during a task? 
– Æ problem in real-time systems 

•  processes may be of higher importance than I/0 operation! 
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Interrupts: 1° solution 
•  Disable all interrupts, but timer interrupts 
•  Characteristics 

–  All peripheral devices have to be handled by tasks 
–  Data transfer by polling 
–  Great flexibility, time for data transfers can be 

estimated precisely 
–  No change of kernel needed when adding devices 

•  Problems 
–  Degradation of processor performance (busy wait) 
–  Task must know low level details of the drive 
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Interrupts: 2° solution 
•  Disable all interrupts but timer interrupts, and handle 

devices by special, timer-activated kernel routines 
•  Advantages 

–  unbounded delays due to interrupt driver eliminated 
–  periodic device routines can be estimated in advance 
–  hardware details encapsulated in dedicated routines 

•  Problems  
–  degradation of processor performance (still busy waiting - 

within I/0 routines) 
–  more inter-process communication than first solution 
–  kernel has to be modified when adding devices 
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Interrupts: 3° solution 
•  Enable external interrupts and reduce the drivers to 

the least possible size 
–  Driver only activates proper task to take care of device 
–  The task executes under direct control of OS, just like any 

other task 
–  Control tasks then have higher priority than device task 
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Interrupts: 3° solution 

•  Advantages 
– busy wait eliminated 
– unbounded delays due to unexpected device 

handling dramatically reduced (not 
eliminated !) 

–  remaining unbounded overhead may be 
estimated relatively precisely 

•  State of the art! 
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RTOS timing figures 
•  Interrupt latency (TIL) 

–  the time from the start of the physical 
interrupt to the execution of the first 
instruction of the interrupt service routine 

•  Scheduling latency  
(interrupt dispatch latency) (TSL) 

–  the time from the execution of the last 
instruction of the interrupt handler to the first 
instruction of the task made ready by that 
interrupt 

•  Context-switch time (TCS) 
–  the time from the execution of the last 

instruction of one user-level process to the 
first instruction of the next user-level process 

•  Maximum system call time 
–  should be predictable & independent of the 

# of objects in the system 
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RTOS and interrupts - example 

23 

Achieving predictability:  
system calls 

•  All system calls have to be characterized 
by bounded execution time 
– each kernel primitive should be preemptable! 
– non-preemtable calls could delay the 

execution of critical activities à fault to hard 
deadline 
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Achieving predictability:  
semaphore 

•  Usual semaphore mechanism not suited 
for real time applications 
– Priority inversion problem 

•  High priority task is blocked by low priority task for 
unbounded time 

– Solution: use special protocols 
•  Priority Inheritance 
•  Priority ceiling 
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Priority inversion 
•  Priority(P1) > Priority (P2) 
•  P1, P2 share a critical section (CS) 
•  P1 must wait until P2 exits CS even if P(P1) > P(P2) 
•  Maximum blocking time equals the time needed by P2 to 

execute its CS 
–  It is a direct consequence of mutual exclusion 

•  In general the blocking time cannot be bounded by CS of the 
lower priority process 

CS CS 

CS P1 

P2 

P1 blocked 
p 
r 
i 
o 
r 
i 
t 
y 

time 26 
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Priority inversion 
•  Typical characterization of priority inversion 

–  A medium-priority task preempts a lower-priority task that 
is using a shared resource on which a higher-priority task 
is pending 

–  If the higher-priority task is otherwise ready to run, but a 
medium-priority task is currently running instead, a priority 
inversion is said to occur 

CS CS 

CS P1 

P3 

J1 blocked 
p 
r 
i 
o 
r 
i 
t 
y 

time 

CS 

P2 

How long? 
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Priority inheritance [Sha 90] 

•  A job J uses its assigned priority, 
– unless it is in its CS and blocks higher priority 

jobs 
•  In which case, J inherits PH , the highest priority of 

the jobs blocked by J  
•  When J exits the CS, it resumes the priority it had 

at the point of entry into the CS 

•  Priority inheritance is transitive 

28 
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Priority inheritance 

•  Advantage 
– Transparent to scheduler 

•  Disadvantage 
– Deadlock possible in the case of bad use of 

semaphores 
– Chained blocking: if P accesses n resources 

locked by processes with lower priorities, P 
must wait for n CS 
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Priority inheritance - example 

CS CS 

CS P1 

P3 

J1 blocked p 
r 
i 
o 
r 
i 
t 
y 

time 

CS 

P2 

P2 arrives, but P3 cannot 
be preempted by P2, 

because P3 inherited the 
priority of P1. 

Thus, P2 must wait until P3 
exits CS and P1 finishes 

P1 requires CS, but it must 
wait because P3 locks CS. 

Thus, P3 inherits the 
priority of P1 and it can 

resume its execution 
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Priority ceiling [Sha 90] 
•  Each resource Sk has a priority ceiling C(Sk) 

equal to the priority of the highest-priority job 
that can lock it 

•  Let Ji the job with the highest priority among 
jobs ready to run, Ji is assigned to the CPU 

•  Let S* the resource such that C(S*) > C(Sj) 
for all Sj locked by Jn ≠ Ji 

•  Ji acquires Sk iff P(Ji) > C(S*) 
If P(Ji)<=C(S*), Ji is blocked on S* and it 
cannot acquire Sk 
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Priority ceiling 
•  When Ji is blocked on a resource, it transmits its 

priority to the job that locks the resource, let it Jk 
Then, Jk resumes and executes its CS with P(Ji) 

•  When Jk exits CS, it unlocks the resource and the 
highest priority job blocked on it is awakened 
–  The priority of Jk is updated as follows 

•  if no other jobs are blocked by Jk, the priority of Jk is set to 
the nominal one 

•  otherwise the priority is set to the highest priority of the jobs 
blocked by Jk 

•  Priority inheritance is transitive 
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Priority ceiling 
•  Properties 

–  A high-priority process can be blocked at most once 
during its execution by lower-priority processes 

–  Deadlocks are prevented 
–  Transitive blocking is prevented 

•  Advantage 
–  Mutual exclusive access to resources is ensured, by 

the protocol itself (no semaphores etc. required) 
–  Tasks can share resources simply by changing their 

priorities, thus eliminating the need for semaphores 
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Priority ceiling - example 

S2 S2 S2 

P0 

P2 

p 
r 
i 
o 
r 
i 
t 
y 

time 

S1 

P1 

S1 

S1 

S2 

S0 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t0 

P0 needs S0 e S1 

P1 needs S2 

P2 needs S2 and S1(nested in S2) 

C(S0) = P(P0) 

C(S1) = P(P0) 

C(S2) = P(P1) 

P1 blocked since 
!(p1 > C(S2)) 

Then P2 resumes with 
priority p1 

p0 > P(P2)=p1 
then P2 is 

preempted by P0 

P0 blocked since !
(p0>C(S1)) 

Then P2 resumes 
with priority p0 

P2 unlock S1, P0 is 
awakened, P2 

assumes priority p1. 
p0>C(S2) then P0 

enters S0 

P2 exits S2, its 
priority became 

p2, thus it is 
preempted by P1 

P(P0) = p0 

P(P1) = p1 

P(P2) = p2 
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Achieving predictability:  
memory management 

•  Avoid non-deterministic delays 
–  No conventional demand paging (page fault handling!) 

•  Page fault & page replacement may cause unpredictable delays 
•  May use selective page locking to increase determinism 

•  Typically used 
–  Memory segmentation 
–  Static partitioning 

•  if applications require similar amounts of memory 
•  Problems 

–  flexibility reduced in dynamic environment 
•  careful balancing required between predictabiliy and flexibility 
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Achieving predictability: 
applications 

•  Current programming languages not expressive enough to 
prescribe precise timing 
–  Need of specific RT languages 

•  Desirable features 
–  no dynamic data structures 

•  prevent the possibility of correctly predict time needed to create and 
destroy dynamic structures 

–  no recursion 
•  impossible estimation of execution time for recursive programs 

–  only time-bound loops 
•  to estimate the duration of cycles 

•  Example of RT programming language 
–  Real-Time Concurrent C 
–  Real-Time Euclid 
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What RTOS? 
•  Proprietary 

–  VxWorks by WindRiver 
–  LynxOS by Lynx 
–  Windows CE 

•  Free/Academical/Open-source 
–  RedHat’s eCos  
–  RTLinux  
–  QNX Neutrino 
–  Spring 
–  RTX 
–  CoCoOS 
–  … 

http://en.wikipedia.org/wiki/List_of_real-time_operating_systems 37 

REAL-TIME 
PROCESS MANAGEMENT  
& SCHEDULING 
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Processes 

•  Called tasks in the RT community 
•  Basic concepts 

– Task scheduling 
– Scheduling problems & anomalies 
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Scheduling – preliminaries 

•  Key fact:   
– Any RT scheduling policy must be preemptive 

•  Tasks performing exception handling may need to 
preempt running tasks to ensure timely reaction 

•  Tasks may have different levels of criticalness. 
This can be mapped to a preemption scheme 

•  More efficient schedules can be produced with 
preemption 
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Scheduling – definition 
•  Given a set of tasks J = {J1 , ...Jn} a schedule is an 

assignment of tasks to the processor so that each 
task is executed until completion 

•  Formally 
–  A schedule is a function s : R+ → N such that 

•  ∀ t ∈ R+, ∃ t1, t2 ∈ R+ | ∀ t′ ∈ [t1, t2)  s (t) = s (t′) 
•  In practice, s is an integer step function 

–  s (t) = k means task Jk is executing at time t 
–  s (t) = 0 means CPU is idle 

•  Each interval [ ti, ti+1 ) with s (t) constant for 
t ∈ [ti, ti+1) is called a time slice 
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Scheduling – example 

42 
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Scheduling – properties 

•  A schedule is called feasible if all tasks 
can be completed according to a set of 
specified constraints 

•  A set of tasks is called schedulable if there 
exist at least one algorithm that can 
produce a feasible schedule 
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Scheduling constraints 

•  The following types of constraints are 
considered 
– Timing constraints 

•  meet your deadline 
– Precedence constraints 

•  respect prerequisites 
– Resource constraints 

•  access only available resources 

44 
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Timing constraints 
•  Real-time systems are characterized mostly 

by timing constraints 
– Typical timing constraint: deadline 

•  Deadline missing separates two classes of 
RT systems 
– Hard 

•  missing of deadline can cause catastrophic 
consequences 

– Soft 
•  missing of deadline decreases performance of system 
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Task characterization 
•  Arrival time ai 

–  the time Ji becomes ready for execution 
–  Also called release time ri 

•  Computation time Ci 
–  time necessary for execution without interruption 

•  Deadline di 
–  time before which task has to complete its execution 

•  Start time si 
–  time at which Ji start its execution 

•  Finish time fi 
–  time at which Ji finishes its execution 

t 

Ji 

si 

Ci 

fi di ai 
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Task characterization 
•  Lateness Li 

–  Li = fi - di (it is < 0 if task finishes before deadline) 
–  delay of task completion with respect to di  

•  Laxity or slack time Xi 
–  Xi = di - ai - Ci 
–  maximum time a task can be delayed on first 

activation to complete before its deadline 

t 

Ji 

si 

Li 

fi di ai 

47 

Task models 

•  Time-driven activation 
– Periodic tasks 

•  Event-driven activation 
– Aperiodic tasks 
– Sporadic tasks 

48 
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Periodic tasks 
•  Periodic task τi consists of infinite sequence of 

identical activities, called instances 
–  Regularly activated at a constant rate 
–  Activation time of first instance of τ is called  phase (φi) 
–  Ti = period of the task 
–  Each task ti can be characterized by Ci , Ti, , Di (deadline) 

•  Ci, Ti , Di constant for each instance 
•  In most cases: Ti =Di  
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Aperiodic tasks 
•  Aperiodic task Ji consists of infinite sequence of 

identical activities (instances) 
–  Their activations are not regular 
–  Usually small number of instances 

•  Sporadic tasks similar to aperiodic, but inter-arrival 
time is bounded 

I1,2 

Aperiodic: I1,2 unknown 
Sporadic:  I1,2 > ITmin 
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Precedence constraints 
•  Task have often to respect some precedence 

relations 
–  Described by a DAG G 

•  Nodes N(G) = tasks 
•  Edges E(G) = precedence relations 

–  G induces partial order on task set 
•  Notation 

–  Ja < Jb means Ja is a predecessor of Jb 
•  There exists a path from task (node) Ja to task Jb in G 

–  Ja à Jb means Ja is an immediate predecessor of Jb 
•  There exist an edge (Ja, Jb)  in E(G) 
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Precedence constraints – example 
•  System for recognizing object on a 

conveyer belt through two cameras 
•  Tasks  

–  For each camera 
•  image acquisition acq1 and acq2 
•  low level image processing  edge1 and  

edge2 
–  Task shape to extract two-dimensional 

features from object contours 
–  Task disp to compute pixel disparities 

from the two images 
–  Task H that calculates object height from 

results of disp 
–  Task rec that performs final recognition 

based on H and shape 

52 



27!

Resource constraints 
•  Process view 

– Resource 
•  Any SW structure that can be used by process to 

advance execution 
–  Data structure, set of variables, memory area, files, registers 

of a peripheral, … 
– Distinction between private resources, shared 

resources and exclusive resources 
•  Critical section as for conventional systems 

– Conventional semaphore-like structure suffer 
from priority inversion problem 

53 

REAL-TIME SCHEDULING 
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Scheduling – problem formulation 
•  Given 

–  a set of n tasks J = {J1 , ..., Jn} 
–  a set of m processor P = {P1, ..., Pm} 
–  a set of s resources R = {R1, ..., Rs} 
–  precedences specified by using a precedence graph 
–  timing constraints associated to each task 

•  Scheduling means to assign processors from P 
and resources from R to tasks from J in order to 
complete all tasks under the imposed constraints 
–  NP-complete! 
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Scheduling – classification 
•  Preemptive/non-preemptive 
•  Static 

–  scheduling decisions based on fixed parameters assigned before 
activation 

•  Dynamic 
–  scheduling decisions based on parameters that change during 

system evolution 
•  Off-line 

–  scheduling algorithm is preformed on the entire task set before 
start of system 

•  On-line 
–  scheduling decisions are taken at run-time every time a task 

enters or leaves the system 
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Scheduling – guarantee-based 
algorithms 

•  Hard RT systems require that 
–  feasibility of schedule has to be guaranteed in 

advance 
•  Solutions 

– Static RT systems 
– Dynamic RT systems 
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Static RT systems 

•  Static RT systems 
– All task activations can be pre-calculated off-line 
– Entire schedule can be stored in a table 
– Simple 
– Overhead for dispatching does not depend on the 

scheduling algorithm à sophisticated algorithm 
can be used to find optimal scheduling  

– Not flexible 
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Dynamic RT systems 
•  Activation of new (sporadic) tasks subject to 

acceptance test 
–  J = current task set, previously guaranteed 
–  Jnew = newly arriving task 
–  Jnew is accepted iff task set J’= J ∪ { Jnew} is 

schedulable 
•  Guarantee mechanism based on worst case 

assumptions Æ pessimistic (task could 
unnecessarily rejected, but potential overload 
are known in advance) 
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Scheduling metrics 
•  n tasks 

–  Maximum lateness 
•  Lmax = maxi=1…N (fi – di) 

–  Maximum number of late tasks 
•  Nlate = Σi=1…N miss (fi)  
•  miss (fi)= 0 if fi ≤ di,1 otherwise 

–  Average response time 
•  tr = 1/n * Σi=1…N (fi – ai) 

–  Total completion time 
•  tc = maxi=1…N (fi) – mini=1…N (ai) 

–  Weighted sum of completion times 
•  tw = Σi=1…N wi * fi 

minimize 
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Scheduling metrics 
•  Average response time/total completion time not 

appropriate for hard real time tasks à loses 
information about deadline satisfaction 

•  Maximum lateness: useful for “exploration” but 
minimizing maximum 
lateness does not  
minimize number  
of tasks that miss  
their deadlines 

•  Max # of late task  
more significant 
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Scheduling anomalies 
•  [Graham 76] 

–  If a task set is optimally scheduled on a 
multiprocessor with some priority assignment, a 
fixed number of processors, fixed execution 
times, and precedence constraints, then 

•  increasing the number of processors 
•  reducing execution times 
•  weakening the precedence constraints  

–  can increase the schedule length 

RT-computing is not equivalent to fast computing! 
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Increasing the number of 
processors 

Precedence constraints 

Computation time 

Global completion time = 12 

Global completion time = 15! 
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Decreasing computation times 

Global completion time = 13! 

64 
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Weakening precedences 

Global completion time = 16! 

65 

APERIODIC TASK 
SCHEDULING 

66 
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Aperiodic task scheduling 

•  Classification [Graham 79] 
– Triple (α, β, γ) 

• α = the environment on which the task set has to 
be scheduled (typically # of processors) 

• β = tasks and resource characteristics (preemptive, 
precedence, synchronous activations etc.) 

•  γ = cost function to be optimized 
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Aperiodic task scheduling 

•  Examples: 
– 1 | prec | Lmax 

•  uniprocessor machine 
•  task set with precedence constraints 
•  minimize maximum lateness 

– 2 | sync | Σi Latei  
•  two processor machine 
•  tasks have synchronous arrival time 
•  minimize # of late tasks 

68 
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Aperiodic task scheduling 

•  Typical scheduling space 
– Task activation times 

•  Synchronous activations  (ai=0, ∀i) 
•  Asynchronous activations  (∃i, s.t. ai≠0) 

– Task relations 
•  With/without precedence relations 

– Preemption 
•  With/without preemption 

69 

Aperiodic task scheduling 
algorithms 

•  Without precedence constraints 
– Jackson’s algorithm 
– Horn’s algorithm 

70 
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Jackson’s algorithm [Jackson 55] 
•  To solve 1 | sync | Lmax 

–  Uniprocessor, synchronous arrivals, minimize 
lateness 

•  No other constraints are considered 
–  tasks are independent 

•  no precedence relations 
•  no shared resources 

•  Task set J = {Ji  (Ci, Di) | i = 1…n} 
–  Computation time Ci  
–  Deadline Di  

•  Principle: Earliest Due Date (EDD) 

P.S. 
Preemption is 
not a issue 
because of 

sync! 
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Jackson’s algorithm 
•  It can be proved that: 

–  given a set of n independent tasks, any algorithm 
that executes the tasks in order of non-
decreasing deadlines is optimal with respect to 
minimize the maximum lateness 

•  Complexity 
–  sorting n values (O (n*log n)) 

•  EDD can not guarantee feasible schedule 
It only guarantees that if a feasible schedule  
exists it will find it 

72 
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Jackson’s algorithm - example 

•  Example of feasible schedule 

 

•  Example of unfeasible schedule 
EDD minimizes Lmax 
but the schedule is 

not feasible 
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Horn’s algorithm [Horn 74] 
•  To solve 1 | preem | Lmax 
•  Principle: Earliest Deadline First (EDF) 
•  It can be proved that 

–  given a set of n independent tasks with arbitrary arrival times, 
any algorithm that at any time executes the task with the earliest 
absolute deadline among all the ready tasks is optimal with 
respect to minimizing the maximum lateness 

•  Complexity 
–  O(n) per task 

•  inserting a newly arriving task into an ordered list properly 
–  n tasks => total complexity O(n2) 

•  Non preemptive EDF is not optimal! 
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Horn’s algorithm - example 

L max=L2=L3=0 

preemption 

EDF can not guarantee feasible schedule 
75 

Scheduling with precedence 
constraints 

•  In General it is a NP-hard problem 
– For special cases polynomial time algorithms 

possible 
•  Two schemes 

– Latest Deadline First (LDF) 
– Modified EDF 
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LDF algorithm [Lawler 73] 
•  To solve 1 | (prec, sync) | Lmax 

–  Given: 
•  set J of n tasks 
•  a DAG describing their precedence relations 

–  Arrival times assumed to be simultaneous 
–  LDF builds the scheduling queue from tail to head 

•  among the tasks without successors or with all successors 
already selected, LDF selects the one with latest deadline to be 
scheduled last 

•  Iterate this scheme until all tasks are selected 
•  Complexity 

–  O(n2) 
•  for each job, the precedence graph has to be visited 
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LDF algorithm- example 

J1 

J2 J3 

J4 J5 J6 

0    1    2    3    4    5    6   

0    1    2    3    4    5    6   

1 2 4 3 5 6 

1 3 2 4 5 6 

LDF 
 
 

EDF 

Lmax = 0 
 
 

Lmax =L4= 1 

Precedence 
graph 

Not optimal when precedences are considered 

First to be inserted by LDF 
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EDF with precedence constraints 
[Chetto et al. 90] 

•  To solve 1 | (prec, preem) | Lmax 
•  Modified EDF 

– Transform set J of dependent tasks into set J* of 
independent ones by an adequate modification of 
timing parameters 

– Then apply EDF 
•  The transformation ensures 

–  J* schedulable ⇔ J schedulable and prec 
constraints satisfied 
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EDF with precedence constraints  

•  Modification 
– Change arrival times & deadlines such that 

each task 
•  cannot start before its predecessors  
•  cannot preempt their successors (other tasks, 

however, may be preempted) 
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EDF with precedence constraints 

•  Modification of arrival (release) times: 
– Try to postpone release time 
– Given two tasks Ja and Jb, Ja → Jb, the 

following two conditions must be satisfied 
•  sb ≥ rb 

–  Jb cannot start earlier than its arrival time 
•  sb ≥ ra + ca 

–  Jb cannot start earlier than minimum finish time of Ja 

– Then the new release time for Jb is 
•  r*b =max (rb, ra + ca) 

Complexity = O (n2) 81 

EDF with precedence constraints 
•  Modification of deadlines 

– Try to anticipate the deadline 
– Given two tasks Ja and Jb , Ja → Jb, the following 

two conditions must be satisfied 
•  fa ≤ da 

–  Ja must finish before its deadline 
•  fa ≤ db – cb 

–  Ja must finish before latest start time of b 

– The new deadline for Ja is 
•  d*a  = min (da, db - Cb) 

Complexity = O (n2) 82 



42!

EDF with precedence constraints - 
example 

J1 J2 

C1 

d1 r1 

C2 

d2 r2 

J1 

J2 

r*1 = r1 
r*2 = r1 + c1  
d*1 = d2 – c2  
d*2 = d2 

r*2 

d*1 

83 

Aperiodic task scheduling: 
summary 

84 
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PERIODIC TASK SCHEDULING 

85 

Introduction 

•  Periodic activities represent the major 
computational demand in many 
applications 
– sensory data acquisition 
– control loops 
– system monitoring 

•  Usually several periodic tasks running 
concurrently 
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Assumptions 
1.  Instances of a task are regularly activated at constant rate. 

Interval between two consecutive activations is the period of 
the task 

2.  All instances of a task have the same worst case execution 
time Ci 

3.  All instances of a task have the same deadline Di,  
and Di = Ti  (deadline = period) 

4.  All periodic tasks are independent  
(no precedence relations, no resource constraints) 

5.  No task can suspend itself (e.g. for I/O) 
6.  All tasks are released as soon as they arrive 
7.  All overheads due to the RTOS are assumed to be zero 

3,4: can be too tight for practical application 
87 

Characterization of periodic tasks 
•  A periodic task τi can be characterized  

(see assumptions 1-4) by 
–  phase fi 
–  period Ti 
– worst case computation 

time Ci 

•  Additional parameters 
– Response time Ri = fi – ri 
– Critical instant (of a task) 

•  Release time of a task instance resulting in the largest 
response time 

t 

τi 

si 

Li 

fi di ri 

Ri 
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Scheduling of periodic tasks 

•  Static scheduling  
•  Dynamic (process-based) scheduling 

89 

Static scheduling 

•  Cyclic executive approach: 
– With a fixed set of purely periodic tasks it is 

possible to layout a schedule such that the 
repeated execution of this schedule will cause 
all processes to run at their correct rate 

– Essentially a table of procedure calls, where 
each procedure represents part of a code for 
a “process” 

•  Off-line 
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Cyclic executive approach 
•  Schedule structure: 

–  Tasks are mapped onto a set of minor cycles 
–  The set of minor cycles constitute a major cycle (the 

complete schedule) 
•  Cycle durations: 

–  Minor cycle m = mini (Ti)  
–  Major cycle M = LCM(Ti)    Æ M = k·m 

•  Example: 
–  T = (7, 10, 21, 35) 

•  m = 7 
•  M = 2x3x5x7 = 210 

LCM = Least 
common 
multiple 

91 

Cyclic executive approach: 
example 

•  Task set 

 
 

•  Schedule 

 
Process   period,T        Computation Time, C 
---------------------------------------------------------------- 
   A       25   10 
   B       25   8 
   C       50   5   
   D       50   4 
   E      100   2 

A B C D E 

Minor cycle 
(25) 

Major cycle 
(100) 

A A A B B B C D 

23 24 22 23 

Minor cycle 
(25) 

Minor cycle 
(25) 

Minor cycle 
(25) 
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Cyclic executive approach: 
example 

•  Actual code that 
implements the 
above cyclic 
executive schedule 

loop 
  wait_for_interrupt 
  Procedure_For_A 
  Procedure_For_B 
  Procedure_For_C 
  wait_for_interrupt 
  Procedure_For_A 
  Procedure_For_B 
  Procedure_For_D 
  Procedure_For_E 
  wait_for_interrupt 
  Procedure_For_A 
  Procedure_For_B 
  Procedure_For_C 
  wait_for_interrupt 
  Procedure_For_A 
  Procedure_For_B 
  Procedure_For_D 
end loop 
 93 

Cyclic executive approach 

•  Advantages 
– No actual process exists at run-time; 

each minor cycle is just a sequence of 
procedure calls 

– The procedures share common address 
space and can pass data between themselves 

•  No need for data protection, no concurrency 
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Cyclic executive approach 

•  Disadvantages 
– Task periods must be multiple of minor cycle 

time 
(to make this manageable) 

–  It only handles periodic tasks 
•  Difficult to incorporate sporadic processes (major 

cycle time) 
– Difficult to construct cyclic executive 

(equivalent to bin packing problem, NP-hard) 
95 

Dynamic (process-based) 
scheduling 

•  Fixed-priority scheduling 
– Rate-monotonic (RM) scheduling 
– Deadline-monotonic (DM) scheduling 

•  Dynamic-priority scheduling 
– EDF 
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Processor utilization factor 

•  Given a set Γ of periodic tasks the 
utilization factor U: 
–  is the fraction of processor time spent in the 

execution of the task set 
– determines the load of the CPU 

•  Ci/Ti is the fraction of processor time spent 
in executing ti 

•  U = Σi=1…n Ci/Ti  
97 

Processor utilization factor 

•  U can be improved by: 
–  Increasing  computation times of the tasks 
– Decreasing the periods of the tasks 

•  up to a limit below which Γ is not schedulable 
•  Limit depends on: 

–  task set (particular relations among task’s 
periods) 

–  algorithm used to schedule the tasks 
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Processor utilization factor 
•  Upper bound of U, Uub(Γ, A) 

–  Value of U (for a given task set and scheduling algorithm) 
for which the processor is fully utilized 

–  Task set Γ is schedulable using A but any increase of 
computation time in one of the tasks may make  
the set infeasible 

•  Least upper bound of U, Ulub 
–  Minimum of  Uub over all task sets Γ that fully utilize the 

processor for a given algorithm 

•  Ulub allows to easily test for schedulability of set 
lub ( ) min( ( , )), .ubU A U A= Γ ∀Γ
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YES                       ?             NO 

Processor utilization factor 
•  Schedulability test 

–  UΓi <= Ulub(A) Æ Γi  schedulable 
–  UΓi > Ulub(A) Æ Γi may be schedulable, if the periods of the 

tasks are suitable related 
–  UΓi > 1  Æ Γi not schedulable 

0 1 

Γ1 
Γ2 
Γ3 

Γ4 

Γm 

1ub
U

2ub
U

3ub
U

4ub
U

mub
U

lubU

U 
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Rate Monotonic (RM) Scheduling 
•  Static priority scheduling 
•  Rate monotonic Æ priorities are assigned to 

tasks according to their request rates 
•  Each process is assigned a (unique) priority 

based on its period 
– The shorter the period, the higher the priority  
– Given tasks ti and tj,  Ti < Tj  Æ Pi > Pj 

•  Intrinsically preemptive 
– Currently executing task is preempted by a newly 

released task with shorter period 
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RM scheduling 

•  RM is proven to be optimal 
–  If a set of processes can be scheduled (using 

preemptive priority-based scheduling) with a 
fixed priority-based assignment scheme, then 
RM can also schedule the set of processes 
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RM scheduling: Example 

•  1 = lower priority 
•  5 = higher priority 

Process Period, T Priority, P 

A 25 5 

B 60 3 
C 42 4 
D 105 1 
E 75 2 
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RM schedulability test 
•  Considers only the utilization of the process 

set [Liu&Layland 73] 

•  Total utilization of the process set 

Ci
Ti

!

"
##

$

%
&&

i=1

n

' (n(2
1
n )1)Ulub = 

U(n) 

n 
0% 

20% 

40% 

60% 

80% 

100% 

0 10 20 30 40 

N U(n) 

1 1.000 

2 0.828 

3 0.780 

4 0.757 

5 0.743 

6 0.735 

7 0.729 

8 0.724 
9 0.721 

10 0.718 
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RM schedulability test 
•  For large values of n, the bound asymptotically 

reaches 69.3% (ln2)  
•  Any process set with a combined utilization of less 

than 69.3% will always be schedulable under RM 
•  NOTE 

–  This schedulability test is sufficient, but not necessary 
•  If a process set passes the test, it will meet all deadlines; if it 

fails the test, it may or may not fail at run-time 
–  The utilization-based test only gives a yes/no answer  

•  No indication of actual response times of processes! 
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RM schedulability test – example 
Process Period, 

T 
Computation 

time, C 
Priority, 
P 

Utilization, 
U 

Task_1 50 12 1 0.24 
Task_2 40 10 2 0.25 
Task_3 30 10 3 0.33 

 

Task_2 

0 10 20 30 40 50 60 Time 

Task_3 

Task_1 

U = 12/50 + 10/40 + 10/30 = 0.24 + 0.25 + 0.33 = 0.82 
U > U(3) = 3 (21/3 –1) = 0.78 

10 

Task_1 
misses 
deadline 
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RM schedulability test – example 
Process Period, 

T 
Computation 

time, C 
Priority, 
P 

Utilization, 
U 

Task_1 50 25 1 0.5 
Task_2 40 5 2 0.125 
Task_3 30 4 3 0.133 

 

Task_2 

0 10 20 30 40 50 60 Time 

Task_3 

Task_1 

U = 25/50 + 5/40 + 4/30 = 0.5 + 0.125 + 0.133= 0.758 
U < U(3) = 3 (21/3 –1) = 0.78 

21 4 

4 

5 

4 

5 

U < Ulub 
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RM schedulability test - example 
Process Period, 

T 
Computation 

time, C 
Priority, 
P 

Utilization, 
U 

Task_1 80 40 1 0.500 
Task_2 40 10 2 0.250 
Task_3 20 5 3 0.250 
 

U = 1 > U(3) = 3 (21/3 –1) = 0.78 

0 10 20 30 40 50 60 

Task_3 

Task_2 

Task_1 

Time 70 80 

Even if 
U > Ulub 
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Response time analysis 

•  Drawbacks of utilization-based tests: 
– Not exact 
– Overestimation of the processor load 

•  Solution 
– Response time analysis  
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Response time analysis 

•  The analysis has two stages: 
1.  The worst-case response time of each 

process is obtained analytically 
2.  The response times are then individually 

compared with the process deadlines 
•  Response time analysis provides sufficient 

and necessary conditions for 
schedulability 
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Response time analysis 

•  For any process i, the worst-case response 
time is given by: Ri = Ci  + Ii 
–  Ii is the maximum interference that process i can 

experience in any time during the interval [t, t+Ri) 
–  Interference = preemption 

•  For the highest priority process, its worst-case 
response time will equal its own computation time (that 
is, R = C) 

•  Other processes will suffer interference from higher-
priority processes 
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Response time analysis 

•  Let i, j be two processes where: 
– priority(j) > priority(i) 

•  During the interval [0,Ri) we have: 
– Number of releases of j instances = ⎡Ri / Tj ⎤ 
– Max interference of j = ⎡Ri / Tj ⎤ Cj 

( )

i
i j

j hp i j

RI C
T∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎢ ⎥
∑hp(i) = set of tasks with  

higher priority than i ( )

i
i i j

j hp i j

RR C C
T∈

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑
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Response time analysis 

•  Solving by forming a recurrence equation 
– Where the set                                       is 

monotonically non-decreasing 
0 1 2{ , , ,......, ,....}n
i i i iw w w w

1

( )

n
n i
i i j

j hp i j

ww C C
T

+

∈

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑
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Response time analysis 

•  The equation is solved when wn+1 = wn 

•  If the equation does not have a solution, 
then the w values will continue to rise 
– Stop when w > D à not schedulable 

•  Value of w0 ? 
– The smallest possible value for Ri  is Ci 
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Response time analysis - example 
•  Task 1 =>  R1 = C1 = 3 <= 7 OK 
•  Task 2 =>    

–  w20  = C2 = 3 
–  w21  = 3 + ⎡3/7⎤ 3 = 6 
–  w22  = 3 + ⎡6/7⎤ 3 = 6 = w21  => R2 = 6 <= 12 OK 

•  Task 3 =>  
–  w30 = C3 = 5 
–  w31 = 5 + ⎡5/12⎤ 3 + ⎡5/7⎤ 3 = 11 
–  w32 = 5 + ⎡11/12⎤ 3 + ⎡11/7⎤ 3 = 14 
–  w33 = 5 + ⎡14/12⎤ 3 + ⎡14/7⎤ 3 = 17 
–  w34 = 5 + ⎡17/12⎤ 3 + ⎡17/7⎤ 3 = 20 
–  w35 = 5 + ⎡20/12⎤ 3 + ⎡20/7⎤ 3 = 20 
–  => R3 = 20 <= 20 OK 

Process Period, 
T 

Computation 
time, C 

Priority, 
P 

Task_1 7 3 3 

Task_2 12 3 2 
Task_3 20 5 1 

 

0 

1 2 3 1 2 

4 8 12 16 20 
T 

2 6 10 14 18 

3 1 2 3 
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Response time analysis - example 

 
 
•  Process set that failed the utilization-based test 
•  U = 40/80+10/40+5/20 = 1/2+1/4+1/4 = 1 > 0.78 
•  Response time test ok 

–  R1 = 80 <= 80 OK 
–  R2 = 15 <= 40 OK 
–  R3 =  5 <= 20 OK 

Process Period, 
T 

Computation 
time, C 

Priority, 
P 

Task_1 80 40 1 

Task_2 40 10 2 
Task_3 20 5 3 
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EDF algorithm 
•  Dynamic scheduling algorithm 

–  Dynamic priority assignment 
•  Idea as for aperiodic tasks 

–  Tasks are selected according to their absolute deadlines  
–  Tasks with earlier deadlines are given higher priorities 
–  It is intrinsically preemptive 

•  The currently executing task is preempted whenever another 
instance with earlier deadline becomes active 

•  More powerful than RM! 
•  It works for periodic as well as aperiodic tasks 

–  Optimality holds for periodic as well aperiodic tasks 
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EDF - example Process Period, T WCET, C 
T1 5 2 

T2 7 4 
 

0 5 10 15 20 25 30 35 

0 7 14 21 28 35 

T1 

T2 

RM schedule 

0 5 10 15 20 25 30 35 

0 7 14 21 28 35 

T1 

T2 

EDF schedule 

Deadline miss 
3 1 

Worst case execution time 
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EDF schedulability test 

•  Schedulability of a periodic task set 
scheduled by EDF can be verified through 
the processor utilization factor U 

•  Theorem [Liu&Layland 73] 
– A set of periodic tasks is schedulable with 

EDF iff 

– This is a sufficient and necessary condition 

1
1

n
i

i i

C
T=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑
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EDF schedulability test: example 

 
•  Processor utilization of the task set  

– U  = 2/5 + 4/7 = 34/35 = 0.97 
– U > 0.82 

•  schedulability not guaranteed under RM 
– U <1  

•  schedulability guaranteed under EDF 

Process Period, T WCET, C 
T1 5 2 

T2 7 4 
 

120 



61!

Deadline monotonic  
(DM) scheduling 

•  Assumption up to now 
–  relative deadline = period 

•  DM scheduling weakens this assumption 
–  Static algorithm with preemption 

•  For DM each periodic tasks τi is characterized by 
four parameters: 
–  Relative deadline Di (equal for all instances) 
–  Worst case computation time Ci (equal for all 

instances) 
–  Period Ti 
–  Phase fi 
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DM scheduling 
•  DM = generalization of RM 

– RMA optimal for D = T 
– DMA extends this optimality for D < T 

•  Priority of a process inversely proportional to 
its deadline (but still static!) 
– Given tasks τi and τj,  Di < Dj  Æ Pi > Pj 

t 

τi Ci 

Ti 

Di 
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DM scheduling: example 

•  Task set not schedulable with RM but 
schedulable with DM 

Process Period, 
T 

Deadline, 
D 

Computation 
time, C 

Priority, 
P 

Response 
time, R 

Task_1 20 5 3 4 3 
Task_2 15 7 3 3 6 
Task_3 10 10 4 2 10 
Task_4 20 20 3 1 20 
 
  

0 10 20 30 40 

Task_1 

Task_2 

Task_3 

Task_4 
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DM schedulability analysis 

•  Schedulability can be tested replacing the 
period with the deadlines in the definition 
of U 

– Too pessimistic! (U overestimated) 

U = Σi=1…n Ci/Di  
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DM schedulability analysis 

•  Actual guarantee test based on a modified 
response time analysis 
–  Intuitively: for each τi , the sum of its 

processing time and the interference 
(preemption) imposed by higher priority tasks 
must be ≤ Di 

Ci + Ii ≤ Di 

∀i: 1 ≤ i ≤ n 
Ii = Σ( j=1…i-1) ⎡ Ri / Tj ⎤ Cj   
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EDF for D<T 
•  EDF applies also to the case D < T 
•  Different schedulability test 

– Based on the processor demand criterion 
•  The processor demand of a task τi  in any 

interval [t, t+L] is the amount of processing 
time required by τi  in [t, t+L] that has to be 
completed at or before t+L 
– That is, that has to be executed with 

deadlines ≤ t+L 
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Processor demand for EDF 

•  Applicable also to the case D=T 
•  In general, the schedulability of the task 

set is guaranteed iff  the cumulative 
processor demand in any interval [0, L] ≤ L 
(the interval length): 

1
(0, ) .

n

P i
i i

LC L C
T=

⎢ ⎥
= ⎢ ⎥

⎣ ⎦
∑ ≤  L 
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Processor demand for EDF 

•  In the case D<T 

∀L ≥ 0 

Number of completions  
between 0 and L-Di 

Number of checkpoints 
is actually limited 
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Processor demand for EDF - 
example 

•  Schedulability test (L=21) 
–  (⎣(21-7)/8⎦+1) • 3 + (⎣(21-4)/8⎦+1) • 2 = 

6 + 6 = 12 < 21   OK 
•  Schedulability test (L=24) 

–  (⎣(24-7)/8⎦+1) • 3 + (⎣(24-4)/8⎦+1) • 2 = 
9 + 6 = 15 < 24   OK 

τ1 

τ 2 
L 

Task T  D C 
!1 8 7 3 

!2 8 4 2 
 

7              15                            23 

4              12                            20 

L 
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Periodic task scheduling: 
summary 

•  Rate Monotonic (RM) is optimal among fixed 
priority assignments (with D=T) 

•  Earliest Deadline First (EDF) is optimal among 
dynamic priority assignments 

•  Deadlines = Periods 
–  guarantee test in O(n) using processor utilization, 

applicable to EDF and RM (only sufficient condition) 
•  Deadlines < periods  

–  polynomial time algorithms for guarantee test 
–  fixed priority (DM): response time analysis 
–  dynamic priority (EDF): processor demand 
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Periodic task scheduling: 
summary 

RMA 
 

Processor utilization 
approach 

DMA 
 

Response time approach 

 
EDF 

 

Processor utilization 
approach 

 

EDF 
 

Processor demand approach 
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PRIORITY SERVERS 
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Introduction 

•  In most real-time applications there are 
– Both periodic and aperiodic tasks 

•  typically periodic tasks are time-driven, hard real-time 
•  typically aperiodic tasks are event-driven, soft or hard 

RT 

•  Objectives: 
– Guarantee hard RT tasks 
– Provide good average response time for soft RT 

tasks 
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Handling periodic and  
aperiodic tasks 

•  Solutions 
–  Immediate service 
– Background scheduling 
– Aperiodic servers 

•  Static priority servers 
•  Dynamic priority servers 
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Immediate service 
•  Aperiodic requests are served as soon as they 

arrive in the system 
•  Minimum response times for aperiodic requests 
•  Low guarantee of periodic tasks 

Response time = 3 
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Background scheduling 
•  Handle soft aperiodic tasks in the background behind 

periodic tasks, that is, in the processor time left after 
scheduling all periodic tasks 

•  Aperiodic tasks just get assigned a priority lower than 
any periodic one 

•  Organization of background scheduling: 

Periodic tasks 

Aperiodic tasks 

CPU 
RM 

FCFS 

High priority queue 

Low priority queue 

136 
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Background scheduling - example 

Response time = 10 

Task C T 

τ1	
 1 4 

τ2	
 3 6 
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Background scheduling 

•  Utilization factor under RM < 1 Æ some 
processor time is left, it can be used for 
aperiodic tasks 

•  High periodic load Æ bad response time 
for aperiodic tasks 

•  Applicable only if no stringent timing 
requirements for aperiodic tasks 

•  Major advantage: simplicity 
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Priority servers 
•  Alternative scheme to achieve more predictable aperiodic task 

handling 
–  A specific periodic task (server) services  aperiodic requests 
–  The server is assigned a period Ts and a computation time Cs 

(capacity of the server) 
–  The server is scheduled like any other periodic task,  

not necessarily at lowest priority 
•  Conceptual scheme 
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Priority servers 
•  Priority server are classified according to the priority scheme 

(of the periodic scheduler) 
–  Static priority servers 

•  Polling Server 
•  Deferrable server 
•  Priority exchange 
•  Sporadic server 
•  Slack stealing 

–  Dynamic priority servers 
•  Dynamic Polling Server 
•  Dynamic Deferrable Server 
•  Dynamic Sporadic Server 
•  Total Bandwidth Server 
•  Constant Bandwidth Server 
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Polling server (PS) 
•  At the beginning of its period  

–  PS is (re)-charged at its full value Cs 
–  PS becomes active and is ready to serve any pending 

aperiodic requests within the limits of its capacity Cs  
•  If no aperiodic request pending Æ PS “suspends” 

itself until beginning of its next period 
–  Processor time is used for periodic tasks 
–  Cs is discharged to 0 
–  If aperiodic task arrives just after suspension of PS it is 

served in the next period 
•  If there are aperiodic requests pending Æ PS serves 

them until Cs>0 
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Polling server - example 
Task C T 

τ1	
 2 4 

τ2	
 1 6 

Server: 
Ts = 5 
Cs = 1 

RM 

P(τ1)>P(S)>P(τ2) 
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Polling server analysis 
•  In the worst-case, the PS behaves as a periodic 

task with utilization Us = Cs/Ts  
•  Usually associated to RM for periodic tasks 
•  Aperiodic tasks execute at the highest priority if  

–  Ts = min (T1, … ,Tn) 
•  Utilization (For Us=0, reduces to URM) 
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Deferrable server 
•  Basic approach like Polling Server 
•  Differences  

–  DS preserves its capacity if no requests are pending 
at invocation of the server 

–  Capacity is maintained until server period Æ 
aperiodic requests arriving at any time are served as 
long as the capacity has not been exhausted 

•  At the beginning of any server period, the capacity 
is replenished at its full value (as in PS) 
–  But no cumulation! 
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Deferrable server – example 
Task C T 

τ1	
 2 4 

τ2	
 1 6 

Server: 
Ts = 5 
Cs = 1 

RM 
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Deferrable server analysis 

•  Utilization 

•  Comparing PS and DS 

Keeping the budget improves  
responsiveness, but decreases  
the utilization bound. 
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Schedulability analysis  
and comparison (Up=0.69) 
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Comparison of fixed priority servers 
Performance Computational 

complexity 
Memory 
requirement 

Implementation 
complexity 

Background 
server C A A A 

Polling 
Server 

C A A A 

Deferrable  
Server 

B A A A 

Priority 
Exchange 

B B B B 

Slack  
Stealing 

A C C C 

A=excellent   B=good    C=poor 
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Dynamic priority servers 
•  Dynamic scheduling algorithms have higher 

schedulability bounds than fixed priority ones 
•  This implies higher overall schedulability  
•  Example: 

–  Suppose  
•  Aperiodic server using Slack Stealing 

–  Uss = 2(Up/2 + 1)-2 -1 
•  Utilization factor of periodic tasks 

Up = 0.6 
•  Periodic task scheduling under RM 

–  Uss = 0.18 
•  Periodic task scheduling under EDF 

–  Uss = 1 - Up = 0.4 
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0 0.2 0.4 0.6 0.8 1Up

Us
s
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Uss vs. Up 
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Dynamic priority servers 
•  Goal 

–  Decreasing average response time for aperiodic tasks and 
preserving the schedulability of periodic tasks 

•  Solutions 
–  Adaptation of static servers (EDF instead of RM for 

periodic tasks) 
•  Dynamic priority exchange server 
•  Improved priority exchange server 
•  Dynamic sporadic server 

–  Total Bandwidth Server 
•  Whenever an aperiodic request enters the system the total 

bandwidth of the server is immediately assigned to it, whenever 
possible 
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Total bandwidth server (TBS) 
•  Dynamic priority server, used with EDF 

–  Each aperiodic request is assigned a deadline so  
that the server demand does not exceed a given 
bandwidth Us 

–  Aperiodic jobs are inserted in the ready queue and 
scheduled together with the hard tasks 

•  Conceptual view: 

Periodic tasks are  
guaranteed  

if and only if 
Up + Us ≤ 1 
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Total bandwidth server 

•  Deadline assignment 
–  Job Jk with computation time Ck arrives at time rk  

is assigned a deadline 
dk = rk + Ck / Us 

•  To keep track of the bandwidth assigned to 
previous jobs, dk must be computed as 

dk = max (rk , dk-1 ) + Ck / Us 

•  Deadline used to assign priority 
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Total bandwidth server - example 

153 

Task C T 

τ1	
 1 4 

τ2	
 3 6 

Us = 1-Up = 1-0.75 = 0.25 
 

d1 = r1 + C1 / Us = 1 + 2/0.25 = 9 
d2 = max(r2,d1) + C2 / Us = 9 + 1/0.25 = 13 

THE END 
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If you liked the SOA class, please consider the possibility of: 

1.  attending to other ESD courses (PSE, SSE, …) 

2.  enjoying an exciting thesis/stage in the System 
Architecture area (ESD Group) 


