Acknowledgements

- Credits
 - Part of the course material is based on slides provided by the following authors
 - Pietro Michiardi, Jimmy Lin
Algorithm Design

- Developing algorithms involve:
 - Preparing the input data
 - Implement the mapper and the reducer
 - Optionally, design the combiner and the partitioner

- How to recast existing algorithms in MapReduce?
 - It is not always obvious how to express algorithms
 - Data structures play an important role
 - Optimization is hard
 → The designer needs to “bend” the framework

- Learn by examples
 - “Design patterns”
 - Synchronization is perhaps the most tricky aspect

Algorithm Design (cont’d)

- Aspects that are not under the control of the designer
 - Where a mapper or reducer will run
 - When a mapper or reducer begins or finishes
 - Which input key-value pairs are processed by a specific mapper
 - Which intermediate key-value pairs are processed by a specific reducer

- Aspects that can be controlled
 - Construct data structures as keys and values
 - Execute user-specified initialization and termination code for mappers and reducers
 - Preserve state across multiple input and intermediate keys in mappers and reducers
 - Control the sort order of intermediate keys, and therefore the order in which a reducer will encounter particular keys
 - Control the partitioning of the key space, and therefore the set of keys that will be encountered by a particular reducer
Algorithm Design (cont’d)

- MapReduce jobs can be complex
 - Many algorithms cannot be easily expressed as a single MapReduce job
 - Decompose complex algorithms into a sequence of jobs
 - Requires orchestrating data so that the output of one job becomes the input to the next
 - Iterative algorithms require an external driver to check for convergence

- Basic design patterns
 - Local Aggregation
 - Pairs and Stripes
 - Relative frequencies
 - Inverted indexing

Local aggregation
Local aggregation

- Between the Map and the Reduce phase, there is the Shuffle phase
 - Transfer over the network the intermediate results from the processes that produced them to those that consume them
 - Network and disk latencies are expensive
 - Reducing the amount of intermediate data translates into algorithmic efficiency

- We have already talked about
 - Combiners
 - In-Mapper Combiners
 - In-Memory Combiners

In-Mapper Combiners: example

```java
1: class MAPPER
2:   method MAP(docid a, doc d)
3:     H ← new ASSOCIATIVEARRAY
4:     for all term t ∈ doc d do
5:         H{t} ← H{t} + 1
6:     for all term t ∈ H do
7:         Emit(term t, count H{t})
```

▷ Tally counts for entire document
In-Memory Combiners: example

1: class Mapper
2: method Initialize
3: H ← new AssociativeArray
4: method Map(docid a, doc d)
5: for all term t ∈ doc d do
6: H{t} ← H{t} + 1
7: method Close
8: for all term t ∈ H do
9: Emit(term t, count H{t})

Algorithmic correctness with local aggregation

- Example
 - We have a large dataset where input keys are strings and input values are integers
 - We wish to compute the mean of all integers associated with the same key
 - In practice: the dataset can be a log from a website, where the keys are user IDs and values are some measure of activity

- Next, a baseline approach
 - We use an identity mapper, which groups and sorts appropriately input key-value pairs
 -Reducers keep track of running sum and the number of integers encountered
 - The mean is emitted as the output of the reducer, with the input string as the key
Example: basic MapReduce to compute the mean of values

```java
1: class MAPPER
2:   method MAP(string t, integer r)
3:     Emit(string t, integer r)

1: class REDUCER
2:   method REDUCE(string t, integers [r1, r2, ...])
3:     sum ← 0
4:     cnt ← 0
5:     for all integer r ∈ integers [r1, r2, ...] do
6:       sum ← sum + r
7:       cnt ← cnt + 1
8:     r_avg ← sum/cnt
9:     Emit(string t, integer r_avg)
```

Using the combiners - Wrong approach

- Can we save bandwidth with the in-memory combiners?

```
Wrong InMemory Mapper
1. class MAPPER
2.   method INITIALIZE
3.     S ← new ASSOCIATIVEARRAY
4.     C ← new ASSOCIATIVEARRAY
5.   method MAP(string t, integer r)
6.     S{t} ← S{t} + r
7.     C{t} ← C{t} + 1
8.   method CLOSE
9.     for all term t ∈ S do
10.    Emit(term t, double S{t}/C{t})
```
Using the combiners - **Wrong approach**

<table>
<thead>
<tr>
<th>Class</th>
<th>REDUCER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>REDUCE(string t, doubles ([r_1, r_2, \ldots]))</td>
</tr>
<tr>
<td>sum ← 0</td>
<td></td>
</tr>
<tr>
<td>cnt ← 0</td>
<td></td>
</tr>
<tr>
<td>for all double (r \in) doubles ([r_1, r_2, \ldots]) do</td>
<td></td>
</tr>
<tr>
<td>sum ← sum + (r)</td>
<td></td>
</tr>
<tr>
<td>cnt ← cnt + 1</td>
<td></td>
</tr>
<tr>
<td>(r_{avg} \leftarrow sum/cnt)</td>
<td></td>
</tr>
<tr>
<td>EMIT(string (t), double (r_{avg}))</td>
<td></td>
</tr>
</tbody>
</table>

- Some operations are not distributive
 - \(\text{Mean}(1,2,3,4,5) \neq \text{Mean}(\text{Mean}(1,2), \text{Mean}(3,4,5))\)
 - Hence: a combiner cannot output partial means and hope that the reducer will compute the correct final mean

Using the combiners - **Correct approach**

- To solve the problem
 - The Mapper partially aggregates results by **separating the components** to arrive at the mean
 - The **sum** and the **count** of elements are packaged into a **pair**
 - Using the same input string, the combiner emits the pair
Using the combiners - Correct approach

Correct InMemory Mapper

1. `class` **MAPPER**
2. `method` **INITIALIZE**
3. \(S \leftarrow \text{new ASSOCIATIVEARRAY} \)
4. \(C \leftarrow \text{new ASSOCIATIVEARRAY} \)
5. `method` **MAP**(string \(t \), integer \(r \))
6. \(S\{t\} \leftarrow S\{t\} + r \)
7. \(C\{t\} \leftarrow C\{t\} + 1 \)
8. `method` **CLOSE**
9. `for` **all** term \(t \in S \) **do**
10. \(\text{EMIT}(\text{term } t, \text{ pair } (S\{t\}, C\{t\})) \)

Using the combiners - Correct approach

Correct Reducer

1. `class` **REDUCER**
2. `method` **REDUCE**(string \(t \), pairs \([(s_1, c_1), (s_2, c_2), \ldots] \))
3. \(\text{sum} \leftarrow 0 \)
4. \(\text{cnt} \leftarrow 0 \)
5. `for` **all** pair \((s, c) \in \text{pairs} \) \([(s_1, c_1), (s_2, c_2), \ldots] \) **do**
6. \(\text{sum} \leftarrow \text{sum} + s \)
7. \(\text{cnt} \leftarrow \text{cnt} + c \)
8. \(r_{avg} \leftarrow \text{sum}/\text{cnt} \)
9. \(\text{EMIT}(\text{string } t, \text{ double } r_{avg}) \)
A common approach in MapReduce: build complex keys
- Data necessary for a computation are naturally brought together by the framework

Two basic techniques:
- Pairs: similar to the example on the average
- Stripes: uses in-mapper memory data structures

Next, we focus on a particular problem that benefits from these two methods
Problem statement

- Building word co-occurrence matrices for large corpora
 - The co-occurrence matrix of a corpus is a square $n \times n$ matrix
 - n is the number of unique words (i.e., the vocabulary size)
 - A cell m_{ij} contains the number of times the word w_i co-occurs with word w_j within a specific context
 - Context: a sentence, a paragraph a document or a window of m words
 - NOTE: the matrix may be symmetric in some cases

Motivation

- This problem is a basic building block for more complex operations
- Estimating the distribution of discrete joint events from a large number of observations
- Similar problem in other domains:
 - Customers who buy this tend to also buy that

Observations

- Space requirements
 - Clearly, the space requirement is $O(n^2)$, where n is the size of the vocabulary
 - For real-world (English) corpora n can be hundreds of thousands of words, or even billion of worlds

- So what’s the problem?
 - If the matrix can fit in the memory of a single machine, then just use whatever naive implementation
 - Instead, if the matrix is bigger than the available memory, then paging would kick in, and any naive implementation would break
Word co-occurrence: the Pairs approach

Input to the problem: Key-value pairs in the form of a \textit{docid} and a \textit{doc}

- \textbf{The mapper:}
 - Processes each input document
 - Emits key-value pairs with:
 - Each co-occurring word pair as the key
 - The integer one (the count) as the value
 - This is done with two nested loops:
 - The outer loop iterates over all words
 - The inner loop iterates over all neighbors

- \textbf{The reducer:}
 - Receives pairs relative to co-occurring words
 - Computes an absolute count of the joint event
 - Emits the pair and the count as the final key-value output
 - Basically reducers emit the cells of the matrix

Java Code Example

```java
1: class Mapper
2:     method MAP(docid a, doc d)
3:         for all term w ∈ doc d do
4:             for all term u ∈ Neighbors(w) do
5:                 Emit(pair (w, u), count 1)  // Emit count for each co-occurrence

1: class Reducer
2:     method REDUCE(pair p, counts [c1, c2, ...])
3:         s ← 0
4:         for all count c ∈ counts [c1, c2, ...] do
5:             s ← s + c
6:         Emit(pair p, count s)  // Sum co-occurrence counts
```
Word co-occurrence: the Stripes approach

Input to the problem: Key-value pairs in the form of a docid and a doc

- The mapper:
 - Same two nested loops structure as before
 - Co-occurrence information is first stored in an associative array
 - Emit key-value pairs with words as keys and the corresponding arrays as values

- The reducer:
 - Receives all associative arrays related to the same word
 - Performs an element-wise sum of all associative arrays with the same key
 - Emits key-value output in the form of word, associative array
 - Basically, reducers emit rows of the co-occurrence matrix

1: class Mapper
2: method Map(docid a, doc d)
3: for all term w ∈ doc d do
4: \(H \leftarrow \text{new AssociativeArray} \)
5: for all term u ∈ Neighbors(w) do
6: \(H\{u\} \leftarrow H\{u\} + 1 \) \hspace{1cm} \(\triangleright \) Tally words co-occurring with \(w \)
7: Emit(Term w, Stripe \(H \))

1: class Reducer
2: method Reduce(term w, stripes \([H_1, H_2, H_3, \ldots]\))
3: \(H_f \leftarrow \text{new AssociativeArray} \)
4: for all stripe \(H \in \text{stripes} \[H_1, H_2, H_3, \ldots]\) do
5: Sum(\(H_f, H \)) \hspace{1cm} \(\triangleright \) Element-wise sum
6: Emit(term w, stripe \(H_f \))
Pairs and Stripes, a comparison

- The pairs approach
 - Generates a large number of key-value pairs (also intermediate)
 - The benefit from combiners is limited, as it is less likely for a mapper to process multiple occurrences of a word
 - Does not suffer from memory paging problems

- The stripes approach
 - More compact
 - Generates fewer and shorter intermediate keys
 - The framework has less sorting to do
 - The values are more complex and have serialization/deserialization overhead
 - Greatly benefits from combiners, as the key space is the vocabulary
 - Suffers from memory paging problems, if not properly engineered

Relative frequencies
“Relative” Co-occurrence matrix

- Problem statement
 - Similar problem as before, same matrix
 - Instead of absolute counts, we take into consideration the fact that some words appear more frequently than others
 - Word w_i may co-occur frequently with word w_j simply because one of the two is very common
 - We need to convert absolute counts to relative frequencies $f(w_j | w_i)$
 - What proportion of the time does w_j appear in the context of w_i?

- Formally, we compute:
 $$f(w_j | w_i) = \frac{N(w_i, w_j)}{\sum_{w'} N(w_i, w')}$$
 - $N(\cdot, \cdot)$ is the number of times a co-occurring word pair is observed
 - The denominator is called the marginal

Computing relative frequencies: the stripes approach

- The stripes approach
 - In the reducer, the counts of all words that co-occur with the conditioning variable (w_i) are available in the associative array
 - Hence, the sum of all those counts gives the marginal
 - Then we divide the the joint counts by the marginal and we’re done

1. class REDUCER
2. method REDUCE(term w, stripes [H_1, H_2, \ldots])
3. $H_f \leftarrow$ new ASSOCIATIVEARRAY
4. for all stripe $H \in$ stripes [H_1, H_2, \ldots] do
5. SUM(H_f, H) // Element-wise sum
6. cnt \leftarrow COUNT(H_f) // $\sum_i H_f(u_i)$
7. for all term $u \in H_f$ do
8. $H_f\{u\} \leftarrow H_f\{u\}/cnt$
9. Emit(Term w, Stripe H_f)
Computing relative frequencies: the pairs approach

- The pairs approach
 - The reducer receives the pair \((w_i, w_j)\) and the count
 - From this information alone it is not possible to compute \(f(w_j \mid w_i)\)
 - Fortunately, as for the mapper, also the reducer can preserve state across multiple keys
 - We can buffer in memory all the words that co-occur with \(w_i\) and their counts
 - This is basically building the associative array in the stripes method

- Problems:
 - Pairs that have the same first word can be processed by different reducers
 - E.g., (house, window) and (house, door)
 - The marginal is required before processing a set of pairs
 - E.g., we need to know the sum of all the occurrences of (house, *)

We must define an appropriate partitioner

- The default partitioner is based on the hash value of the intermediate key, modulo the number of reducers
- For a complex key, the raw byte representation is used to compute the hash value
 - Hence, there is no guarantee that the pair (dog, aardvark) and (dog, zebra) are sent to the same reducer
- What we want is that all pairs with the same left word are sent to the same reducer

We must define the sort order of the pair

- In this way, the keys are first sorted by the left word, and then by the right word (in the pair)
- Hence, we can detect if all pairs associated with the word we are conditioning on \(w_i\) have been seen
- At this point, we can use the in-memory buffer, compute the relative frequencies and emit
Computing relative frequencies: order inversion

- The key is to properly sequence data presented to reducers
 - If it were possible to compute the marginal in the reducer before processing the join counts, the reducer could simply divide the joint counts received from mappers by the marginal
 - The notion of “before” and “after” can be captured in the ordering of key-value pairs
 - The programmer can define the sort order of keys so that data needed earlier is presented to the reducer before data that is needed later

Recall that mappers emit pairs of co-occurring words as keys

- The mapper:
 - additionally emits a “special” key of the form \((w_i, *)\)
 - The value associated to the special key is one, that represents the contribution of the word pair to the marginal
 - Using combinbers, these partial marginal counts will be aggregated before being sent to the reducers

- The reducer:
 - We must make sure that the special key-value pairs are processed before any other key-value pairs where the left word is \(w_i\)
 - We also need to modify the partitioner as before, i.e., it would take into account only the first word
Computing relative frequencies: the pair approach

1. class Mapper
2. method MAP(docID a, doc d)
3. for all term w ∈ doc d do
4. for all term u ∈ Neighbors(w) do
5. Emit(Pair (w, u), Integer 1)
6. Emit(Pair (w, *), Integer 1)

Note: The partitioner is not shown here.

Using in-mapper combiners

1. class Mapper
2. method INITIALIZE
3. var cnt := 0
4. method REDUCE(pair p, integers [r₁, r₂, …])
5. if p.getSecond() == * then
6. cnt := 0
7. for all integer r ∈ integers [r₁, r₂, …] do
8. cnt := cnt + r
9. else
10. sum := 0
11. for all integer r ∈ integers [r₁, r₂, …] do
12. sum := sum + r
13. Emit(Pair p, double sum/cnt)
Computing relative frequencies: order inversion

- **Memory requirements:**
 - Minimal, because only the marginal (an integer) needs to be stored
 - No buffering of individual co-occurring word
 - No scalability bottleneck

- **Key ingredients for order inversion**
 - Emit a special key-value pair to capture the marginal
 - Control the sort order of the intermediate key, so that the special key-value pair is processed first
 - Define a custom partitioner for routing intermediate key-value pairs
 - Preserve state across multiple keys in the reducer

Inverted indexing
Inverted indexing

- Quintessential large-data problem: Web search
 - A web crawler gathers the Web objects and store them
 - Inverted indexing
 - Given a term t \rightarrow Retrieve relevant web objects that contains t
 - Document ranking
 - Sort the relevant web objects

- Here we focus on the inverted indexing
 - For each term t, the output is a list of documents and the number of occurrences of the term t