Image Registration

Preview of the Biomedical Image Processing Course Courtesy of Dr. Alessandro Daducci

Outline

Introduction

- What is image registration?
 - Motivaton and main applications

Problem formulation

- Mathematical definition
 - ► General framework

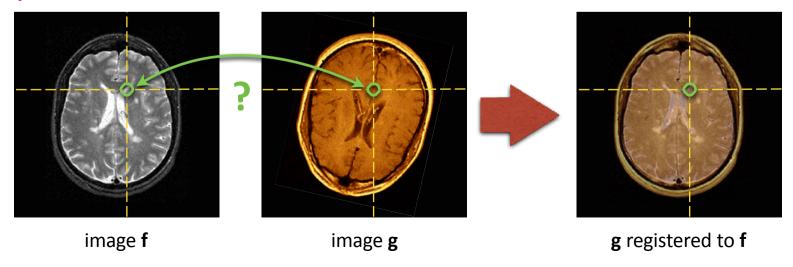
Main components

- Features: which information to use in the registration
 - ► Similarity metrics : measure how similar two images are
- Transforms: deformation model to transform one image into another
 - ► Optimizers : algorithm to estimate the transformation
- ► *Interpolators* : how to compute common coordinates from different images

Image registration

Registration is the **process of finding the transformation (T)** that puts different images (**f** and **g**) into spatial correspondence

Example



Improve diagnosis

Combining information from multiple imaging modalities

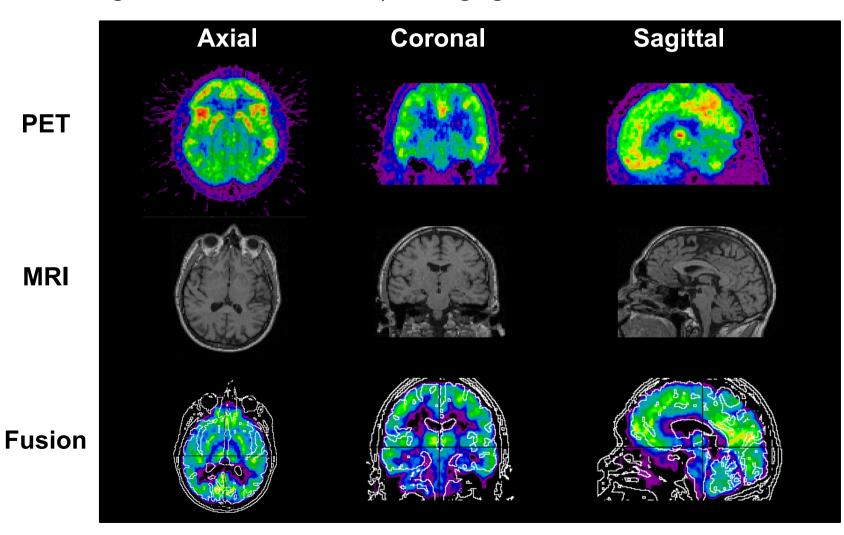
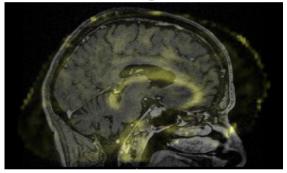
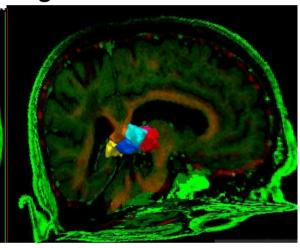


Image guided surgery or radiotherapy

Image guided surgery or radiotherapy

After registration

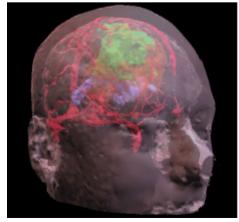


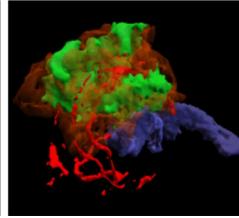


VIM targeting for therapy of movement disorders

- T1w: thalamus segmentation/delineation
- **DWI**: clustering of thalamus nuclei

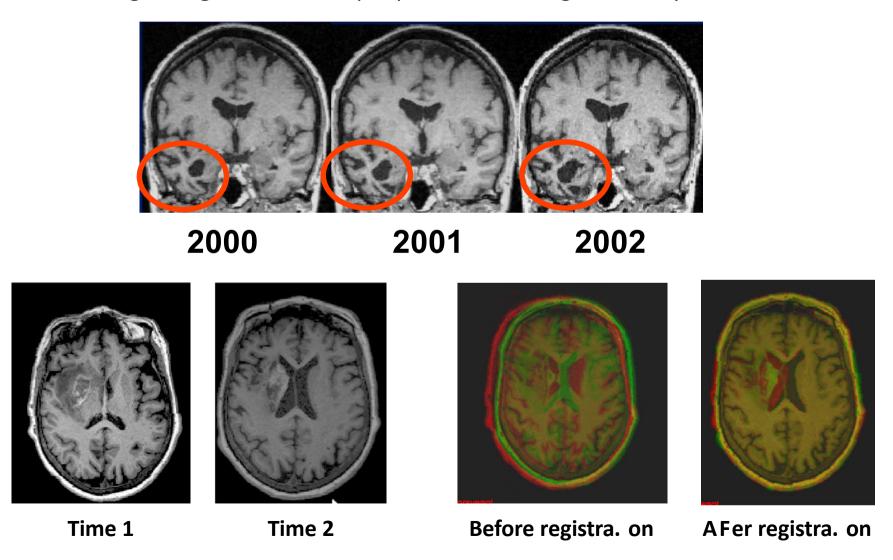
(PhD thesis of E. Najdenovska @ EPFL)





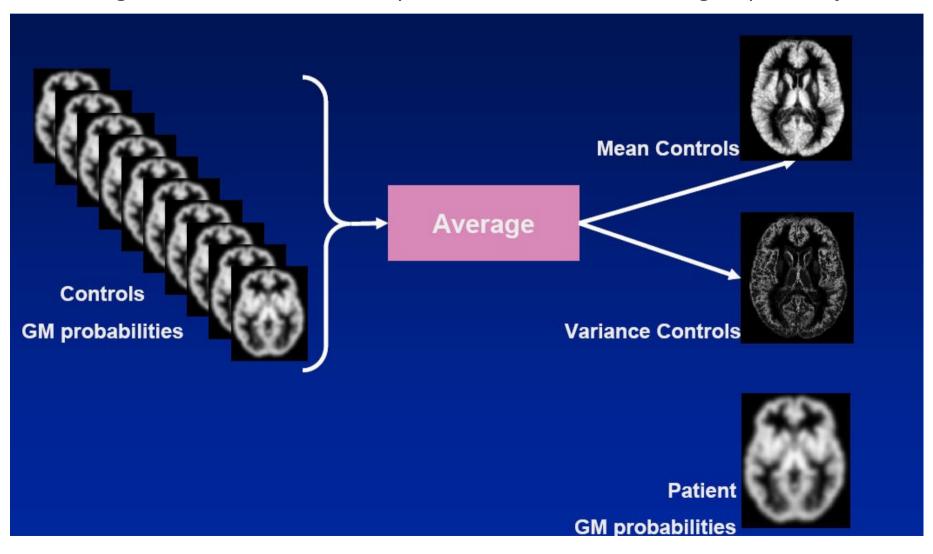
Study disease progression

Monitoring changes in size, shape, position or image intensity over time

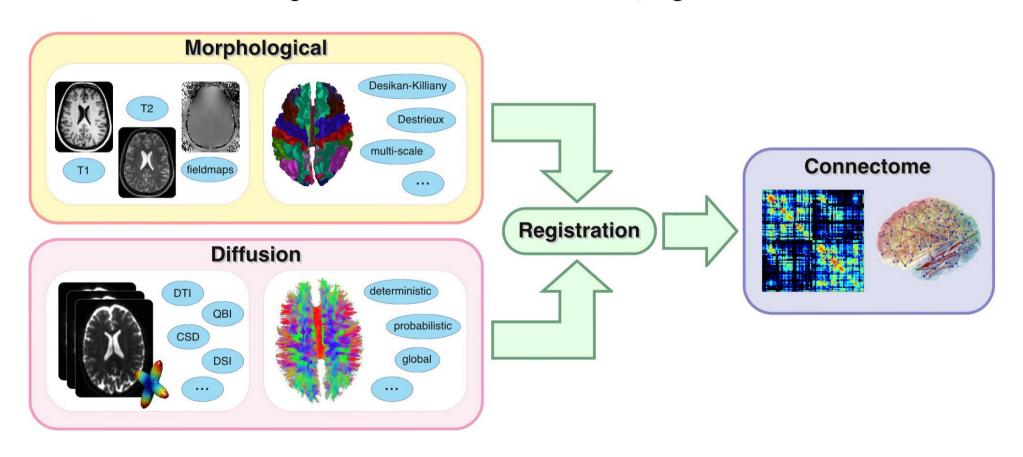


Patient comparison (group studies) or atlas construction

Relating one individual's anatomy to a standardized atlas or group of subjects

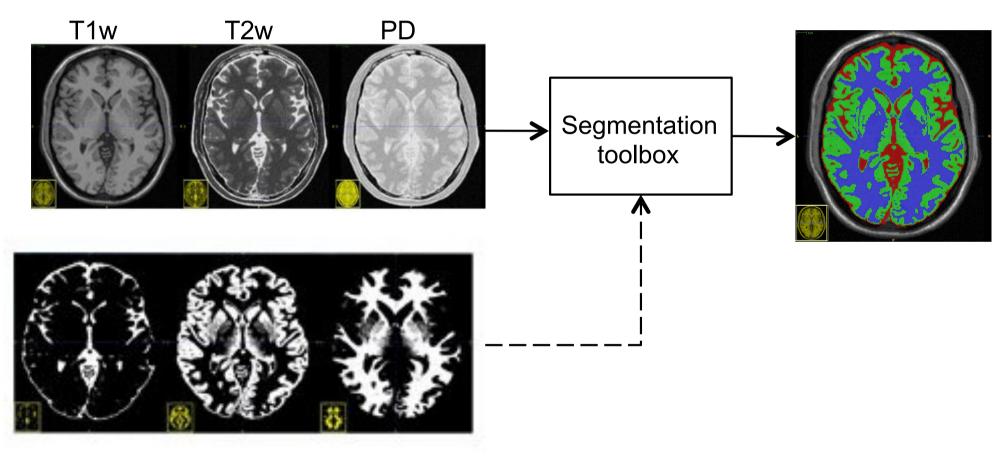


- Estimating brain connectivity from diffusion MRI
 - Estimate fiber bundles from diffusion MRI, i.e. DWI
 - ▶ Define cortical segmentation from structural MRI, e.g. T1w



Multispectral segmentation

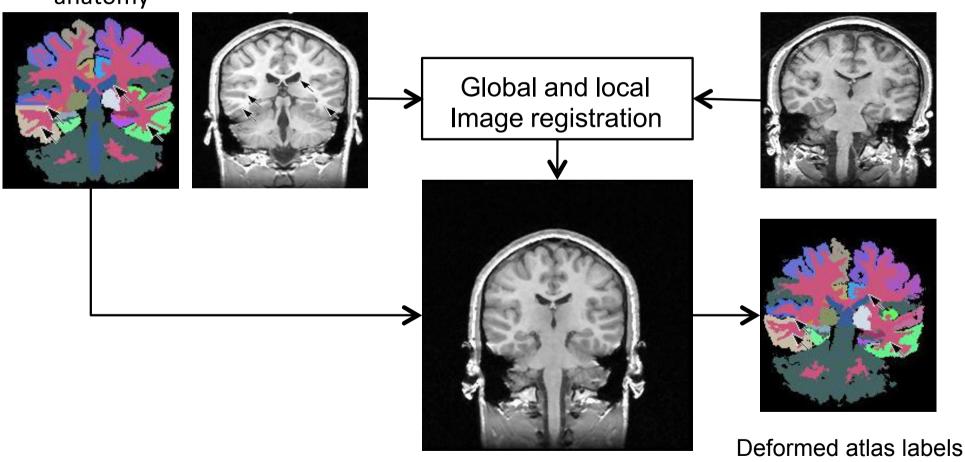
Use more than one modality to improve the segmentation of brain anatomy



Atlas priors

Atlas-based segmentation

Use an accurate atlas to define one subject's anatomy

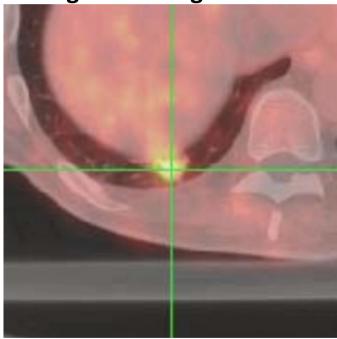


Registration is very important

- In medical imaging, registration is particularly important
 - ► Example: PET-MRI registration to study tumor location

Registra.on algorithm 1

Registra.on algorithm 2



► Is the tumor in the lung only?

Mathema. cal formula. on

Registration is an alignment problem

• "...find the spatial transformation that maps points from one image B to the corresponding points in another image A..."

Mathematical formulation

Registra5on is an alignment problem

• "...find the spa5al transforma5on that maps points from one image B to the corresponding points in another image A..."

Usually solved as energy minimization problem (or

optimal
$$\mathcal{T}^* = \operatorname*{argmin}_{\mathcal{T} \in \mathbb{T}} d(A, B^{\mathcal{T}})$$
 images transformation
$$\operatorname*{space\ of\ all\ possible}_{\text{transformations}}$$
 similarity/dissimilarity between the images

Nota5on

$$A: \mathbf{x}_A \in \Omega_A \mapsto A(\mathbf{x}_A)$$

$$T: \mathbf{x}_B \mapsto \mathbf{x}_A \iff \mathbf{T}(\mathbf{x}_B) = \mathbf{x}_A$$

$$\rightarrow B^{\mathcal{T}}$$

$$\qquad \qquad \bullet \quad \Omega_{A,B}^T = \{ \mathbf{x}_A \in \Omega_A | \mathbf{T}^{-1}(\mathbf{x}_A) \in \Omega_B \}$$

Intensity of image A at location \mathbf{x}

Transforms a position **x** from one image to another

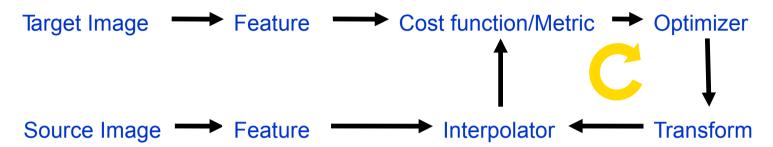
Transforms an image (both coordinates x and

intensities) Image B transformed

Overlap domain after transformation T

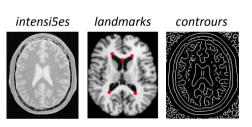
Mathematical formulation

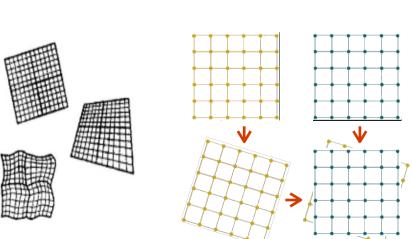
General framework



The main actors

- Feature
- -Which information to use for driving the registration
- Similarity metric
- -Measures of how similar the features are in the two images
- Interpolator
- -How to compute similarity metrics from different grids
- **▶** Transform
- -The deformation model to transform one image into another
- Optimizer
- -The optimization algorithm to estimate the transformation



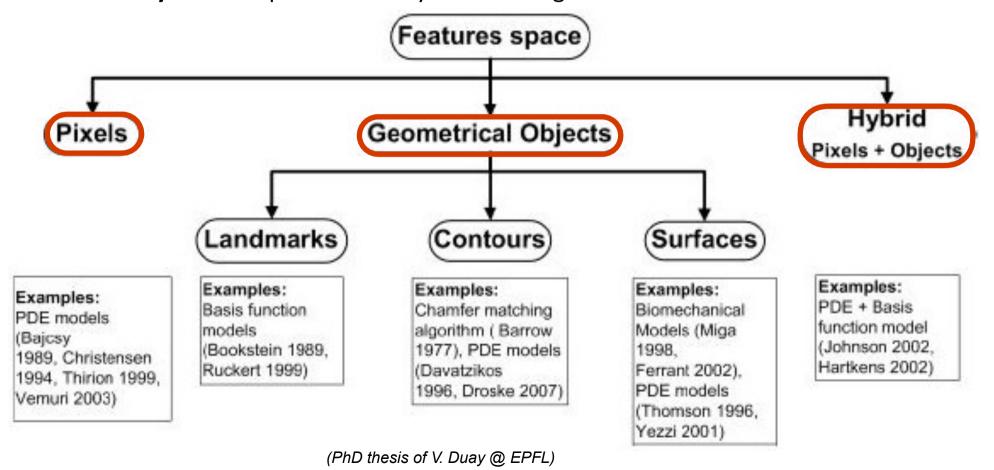


Are these images "similar"?

I - Features of interest

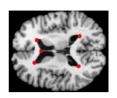
Two main approaches

- Feature based: use corresponding points or features in the images to align them
 - ▶ Intensity based: operate directly on the image intensi5es



I - Features of interest

Feature based approach



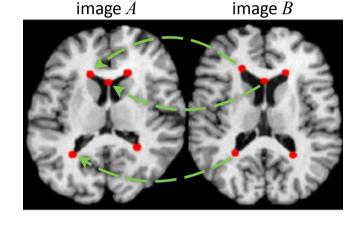
Compute transformation T by minimizing some "measure of distance" between them

Example: landmarks

- ► Identify "fiducial markers" on the images
- -Internal anatomical structures, e.g. anterior commissure
- -Pins/markers fixed to the patient, e.g. skin markers
- Compute the centroid of each point cloud
 - -Difference between centroids = translation that must be applied
 - ► Rotate one point-set until the distance between corresponding points is minimized -Iterative Closest Point (ICP) algorithm

Can be extended to other features

- ▶ e.g. surfaces ("Head and Hat") or contours ("Crest Lines")
- ► Critical : define a good *similarity metric* for that feature



I - Features of interest

Intensity based approach

- Use the intensities in the two images alone
 - No need to delineate corresponding structures
 - Like having "features = pixels"
 - ► Transformation T computed by *comparing* intensity patterns in both images via "pixel similarity metrics"

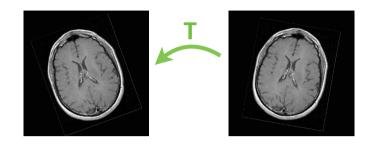
These are based on the joint histogram

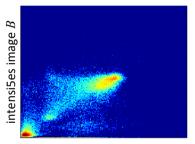
NB: we will focus on this approach

(it's the most used in medical imaging)

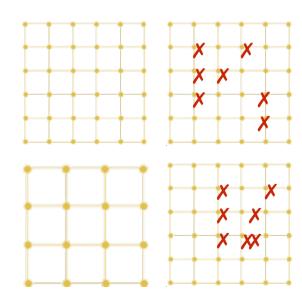
Image sampling strategy

- Full sampling
 - Similarity metrics computed on all voxels of the image
- Subset sampling
 - In general, it is not necessary to evaluate all voxels
 - Examples: subsampled regular grid, random loca.ons ...





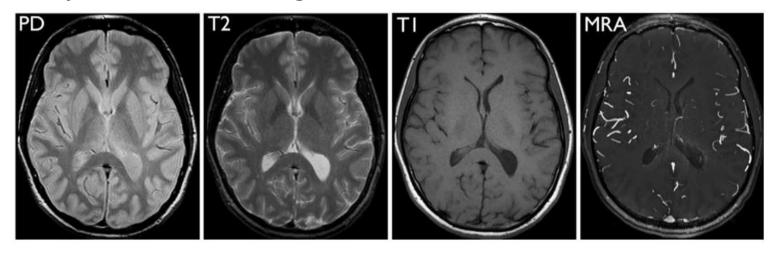
intensi5es image A



Quantify degree of similarity between two images

Example

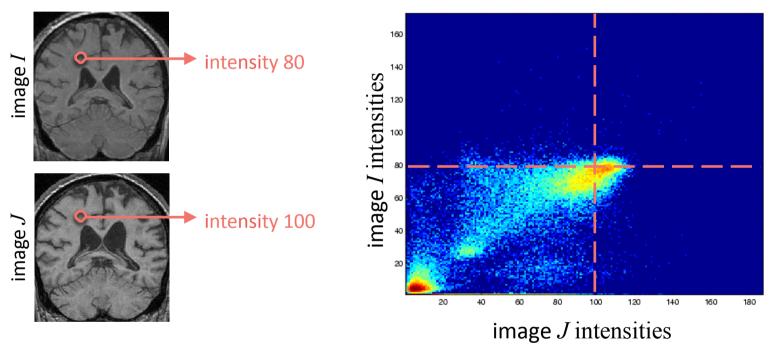
Same subject/session, but images from different modalities look different



- How to construct a metric to realize they are all the "same object"? would be
- $\blacktriangleright \sum_{\mathbf{x} \in \Omega_A} |A(\mathbf{x}) B^T(\mathbf{x})|$ very high in any case. Any other idea?

Joint histogram

$$|H_{I,J}(i,j)| = \text{Card}\{(x,y)|I(x,y)| = i \text{ and } J(x,y) = j\}$$



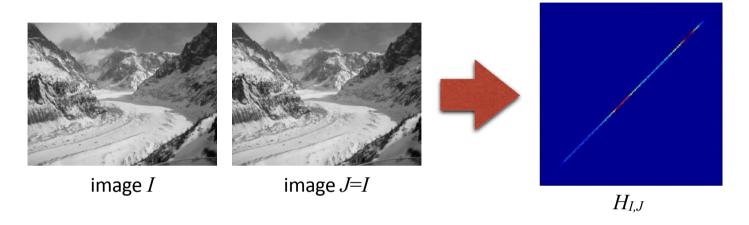
Notes

► I and J must have the same dimensions, e.g $M \times N$ (NB: in this context $J = B^T$)

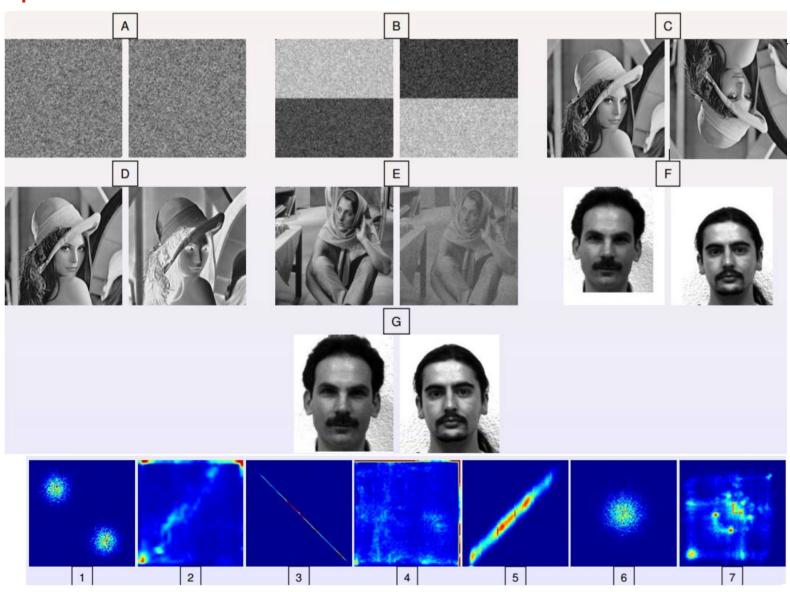
If I and J have intensities in [0...255]

- $size(H_{I,J}) = 256 \times 256$ and $sum(H_{I,J}) = M \cdot N$

Examples

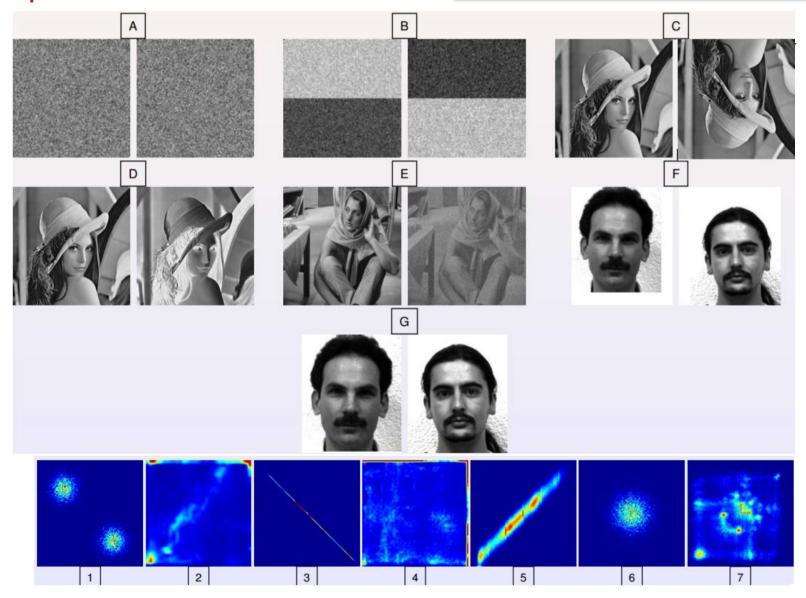


Examples



Examples

 $A \rightarrow 6$, $B \rightarrow 1$, $C \rightarrow 7$, $D \rightarrow 3$, $E \rightarrow 5$, $F \rightarrow 4$, $G \rightarrow 2$



Minimizing intensity differences

Sum of squared differences

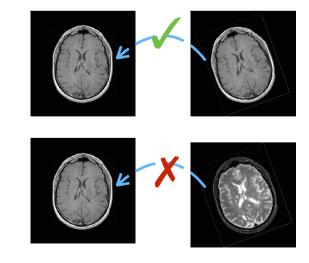
(SSD)
$$\operatorname{SSD} = \sum_{\mathbf{x}_A \in \Omega_{A,B}^T} |A(\mathbf{x}_A) - B^T(\mathbf{x}_A)|^2$$

- ► SSD *very sensitive* to few voxels with very different intensities between images
 - e.g. contrast agent is injected between two acquisi5ons
 - ▶ Sum of absolute differences (SAD) reduces the effect of these outliers

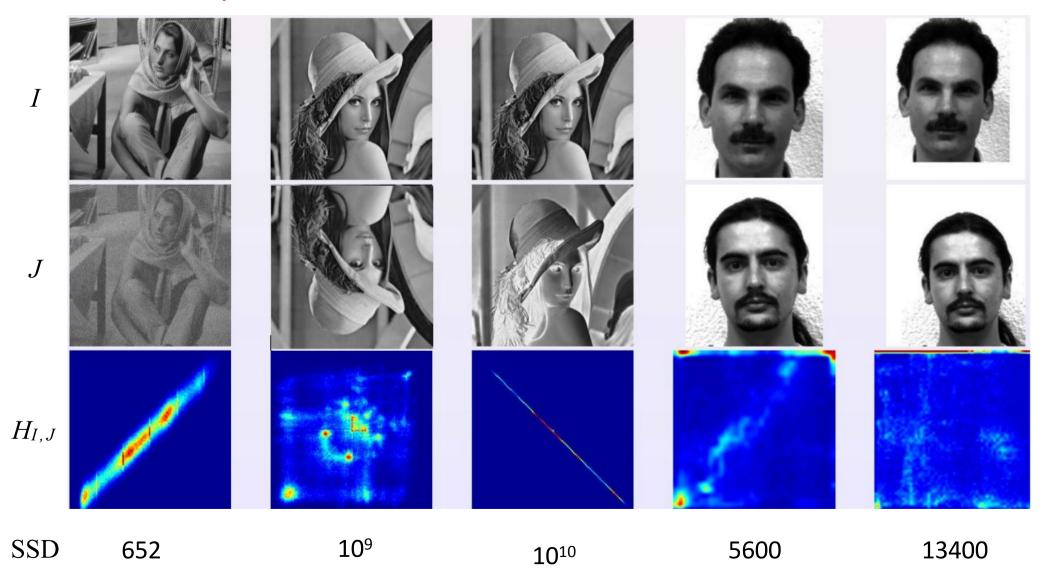
$$SAD = \sum_{\mathbf{x}_A \in \Omega_{A,B}^T} |A(\mathbf{x}_A) - B^T(\mathbf{x}_A)|$$

Notes

- ► Computed from $H_{I,J}$: SSD = $\sum_{i,j} H(i,j) \cdot (i-j)^2$
- SSD/SAD can be used only when "images are the same"
- -Same modality, same contrast, same scaling, same visible details...
- -...but, in practice, this is never the case
- -Implicit assumption: after registration the images differ only by Gaussian noise



SSD examples



Correla. o n approach

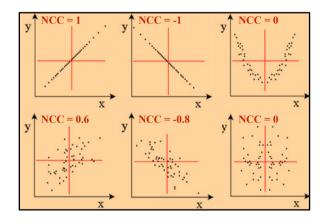
- Use a slightly less strict assump5on
 - We don't try to $B^{\mathcal{T}}=A$ at registra5on have require only a rela5onship of the $B^{\mathcal{T}}=\alpha A+\beta$ (linear) form

$$CC = \sum_{\mathbf{x}_A \in \Omega_{A,B}^T} (CC) A(\mathbf{x}_A) \cdot B^T(\mathbf{x}_A)$$

► Normalized Cross-Correla.on (NCC)

$$NCC = \frac{\sum_{\mathbf{x}_A \in \Omega_{A,B}^T} \left(A(\mathbf{x}_A) - \bar{A} \right) \cdot \left(B^T(\mathbf{x}_A) - \bar{B} \right)}{\sqrt{\sum_{\mathbf{x}_A \in \Omega_{A,B}^T} \left(A(\mathbf{x}_A) - \bar{A} \right)^2} \cdot \sqrt{\sum_{\mathbf{x}_A \in \Omega_{A,B}^T} \left(B^T(\mathbf{x}_A) - \bar{B} \right)^2}}$$

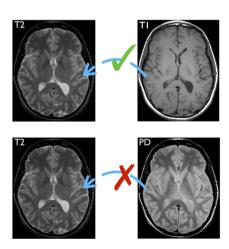
image A image B $H_{I,J}$



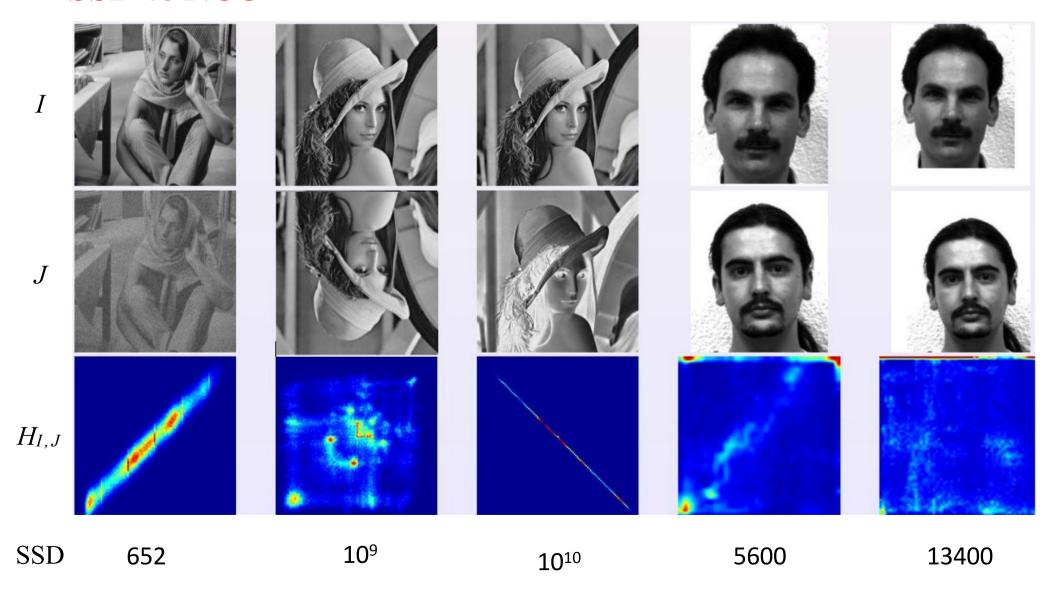
- ► NCC(I,J) \in [-1,1] $\forall I,J$. NCC(I,J)=0 \rightarrow no
- ightharpoonup correlation Can be computed from $H_{I,J}$

Have to be *maximized*

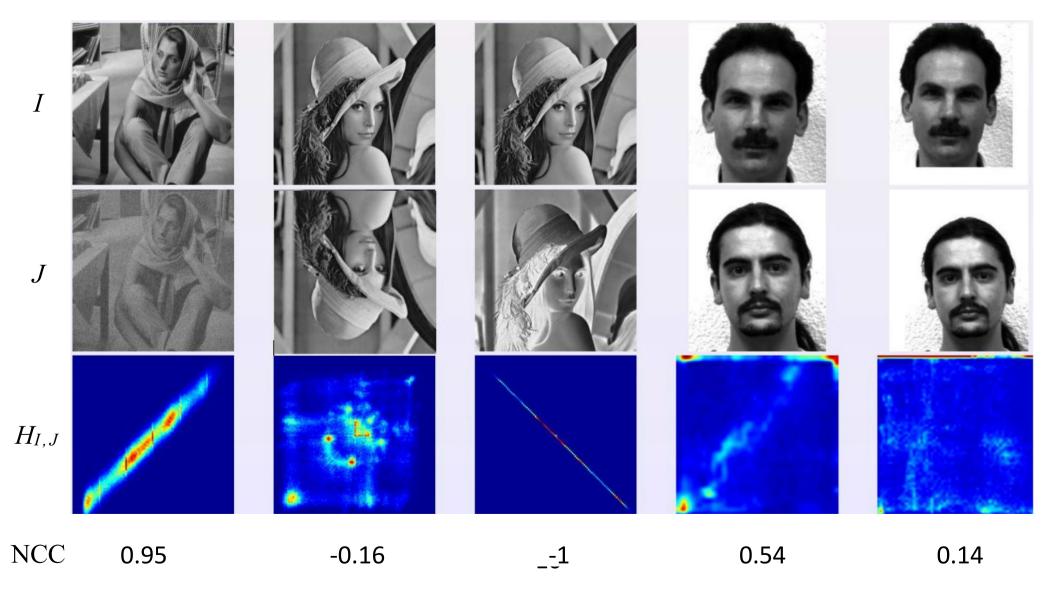
Model contrast differences, only if linearly dependent



SSD vs NCC



SSD vs NCC



III - Interpolators

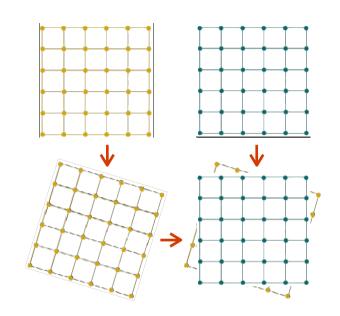
- To compute distance/similarity $d(A, B^T)$ we need to compare features/intensities at same locations on both images
 - ▶ If \mathcal{T} maps the pixels of B exactly at the same locations of the pixels of A, there are no problems
 - But usually the locations/grids do not match

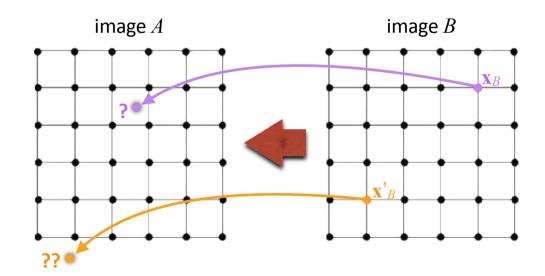
▶ Interpolation

- -For the points $T(x_B)$ falling *inside* the grid of A (but not on the grid points themselves)
- -Value for these points needs to be estimated from the *neighboring pixels*

► Extrapola.on

- -For the points $T(x_B)$ falling *outside* the grid of A
- -Points not considered? Mirror or extend pixels?



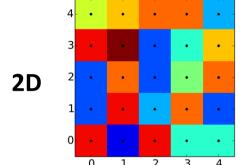


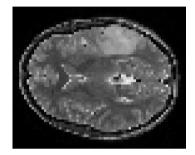
III - Interpolators

Most common choices

▶ Nearest neighbor

1D

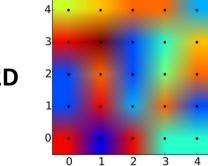


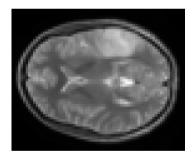


► Linear

1D

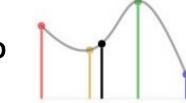
2D



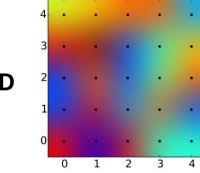


► **Higher order**, e.g. cubic or B-spline

1D



2D



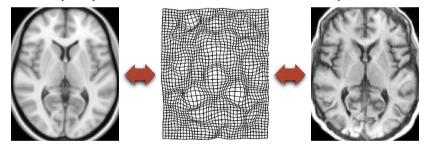
IV - Deforma. on models

Two main categories

- ► Linear (a.k.a. rigid)
- Only a limited number of degrees of freedom is allowed

$$\begin{pmatrix} \cos\beta\cos\gamma & \cos\alpha\sin\gamma + \sin\alpha\sin\beta\cos\gamma & \sin\alpha\sin\gamma - \cos\alpha\sin\beta\cos\gamma & t_x \\ -\cos\beta\sin\gamma & \cos\alpha\cos\gamma - \sin\alpha\sin\beta\sin\gamma & \sin\alpha\cos\gamma + \cos\alpha\sin\beta\sin\gamma & t_y \\ \sin\beta & -\sin\alpha\cos\beta & \cos\alpha\cos\beta & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

- ► Non-linear (a.k.a. *non-rigid*)
 - Virtually any transforma5on/deforma5on is possible



- NB: the choice of the deformation model to use depends on the application, i.e. which tissue/structure to register
 - Bones of the skull restrict the movement of the brain
 - ► SoS 5ssue tends to deform in more complicated ways

IV - Deforma. on models

Linear transforma.ons

► Rigid :

$$\mathbf{T}(\mathbf{x}) = \mathbf{R}\mathbf{x} + \mathbf{t}$$

-6 parameters: rota5on (R) and transla5on (t)

-Invariants: distances (isometric), curvature, angles, lines

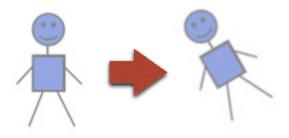
-Use: same structure in a different posi5on

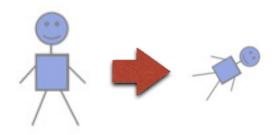
$$\mathbf{T}(\mathbf{x}) = \mathbf{s}\mathbf{R}\mathbf{x} + \mathbf{t}$$

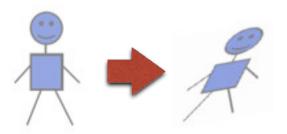
- **7 parameters**: adds a scaling factor (s)
- Invariants: distance ra5os, angles, line

$$\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$$

- 12 parameters: A includes stretching and shearing
- Invariants: lines, parallelism
- Use: correct for scanner deforma5ons/ar5facts
- find approximate alignment before nonlinear registra5on



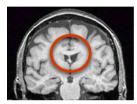




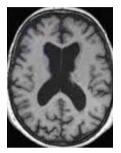
IV - Deforma, on models

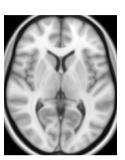
Nonlinear transformation required when registering:

- An image of one individual and atlas
 - ► Image from different individuals
- Tissue that deforms over time









5me 1

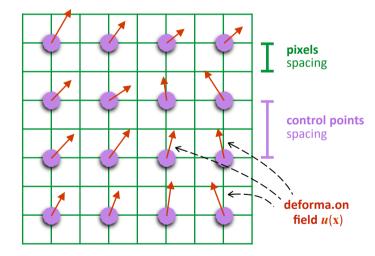
5me 2

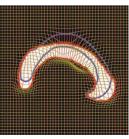
subject

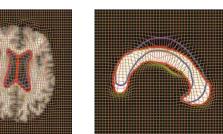
template

General approach

- ► Each pixel can virtually be moved independently
- -One displacement per pixel
- -Actual tissue deformations are usually more smooth/regular
- Usually grids of control points are defined
 - One displacement u(x) (\nearrow) per control point (\bigcirc)
 - Smoothness constraints are usually added to obtain "anatomically reasonable" deforma5ons
 - Control points are not independent
- Several solutions inspired by physics
 - Elastic, viscous fluid, op5cal flow, diffusion model (demons)



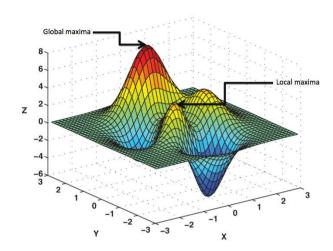




V - Optimizers

Registration is an optimization problem

- ► The search space is **high dimensional** (i.e. space of all possible transforma5ons)
- ► The problem is **nonlinear** (possibly with many **local minima**)

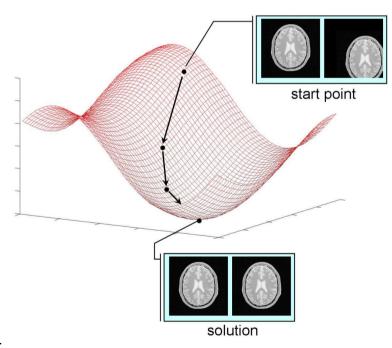


Usually iterative approaches are used

- Start with *initial estimate* of transformation, T^o
- ►At each iteration t, current estimate \mathbf{T}^t is used to compute a *similarity measure* $d(A, B^T)$
- ▶Using *d*, refine the transforma5on $\mathbf{T}^t \rightarrow \mathbf{T}^{t+1}$
- Continues until the convergence

Classical algorithms

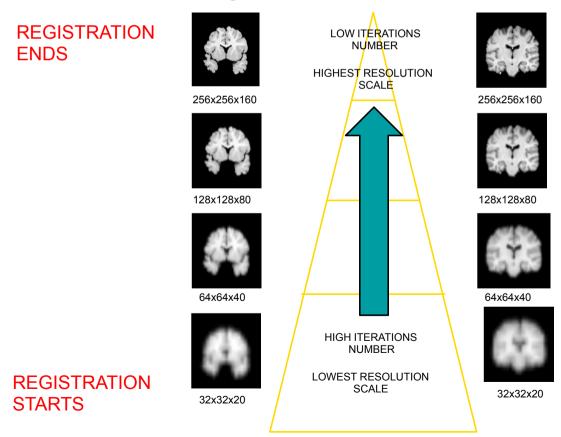
Gauss-Newton, (stochas5c) gradient descent etc...



Mul. -scale pyramid

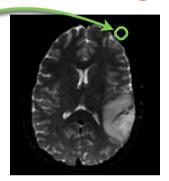
Strategy to improve registration accuracy

- Start the registration using images with low complexity smoothing downsampling
- ► At convergence, increase the complexity/details of the images and repeat
- This reduces the chance of falling in **local minima** (bad registra5on)



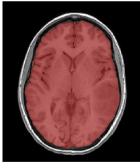
Use of masks

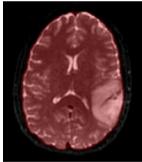
- Sometimes it is desirable to align only part of an image
 - We are interested only on a por.on or some details of the image
 - We need to ignore parts of the imagesthat can confound the registra5on



Some anatomical details are not visible in both images

With a mask registration is constrained to a region





- ► A mask is a **binary image**
 - "1" \Rightarrow the pixel in

(e.g. *ar5ficial edges*)

- considered
 - "**0**" → the pixel in *ignored*
- ► A **fixed image mask is usually sufficient** to focus the registration on a region, since samples are drawn from the domain of the fixed image

Available tools

- ITK.org : MITK, MedINRIA, Slicer3D,
- etc Elastix
 Choice for our lab: power of ITK (all algorithms) with simple interface
- FSL FLIRT (linear) and FNIRT
- (nonlinear) ANTs (Advanced)
- Normaliza5on Tools) SPM
- Freesurfer Hammer / Glirt
- BrainVisa / Anatomist and many
- others more....