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Introduction

Psychologists of vision have delighted in various demonstrations in which prior knowl-
edge helps with interpreting an image. Sometimes the effects are dramatic, to the
point that the viewer can make no sense of the image at all until, when cued with
a single word, the object pops out of the image. This idea of “priming” with prior
knowledge is illustrated (light-heartedly) in figure 1.1. Priming in that example is

Figure 1.1: Priming with prior knowledge. If you have never seen it before this figure
probably means little at first sight. Now look for a cyclist in a Mexican hat.

rather “high-level,” calling on some intricate and diverse common-sense knowledge
concerning wheels, hats and so on. The aim of this book is to look at how prior
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knowledge can be applied in machine vision at the lower level of shapes and outlines.
The attraction of using prior knowledge in machine vision is simply that it is so

hard to make progress without it, as a decade or more of research around the 1970s
showed. There was considerable success in converting images into something like
line drawings without resorting to any but the most general prior knowledge about
smoothness and continuity. That led to the problem of “grouping” together the lines
belonging to each object which is difficult in principle, and very demanding of comput-
ing power. One effective escape from this bind has been to design vision processes in a
more goal-directed fashion and this is part of the philosophy of the notably successful
“Active Vision” paradigm of the 1980s. Consider the task of examining visually the
field of view immediately in front of a driverless vehicle, in order to steer automatically
along the road. If the nature of the task is taken into account from the outset, it is
quite unnecessary to examine an entire image; it is sufficient to focus on the expected
appearance and position of the road edge at successive times. Deviations of actual
from expected position can be treated as an error signal to control steering. This
has two great advantages. First there is no need to organise or group features in the
image; the relevant area of the image is simply tested directly against its expected
appearance. Secondly, the fact that analysis can be restricted to a relatively narrow
“region of interest” (around the road edge) eases the computational load. Active Vi-
sion, then, uses task-related prior knowledge to simplify and focus the processing that
is applied to each image.

This book is concerned with the application of prior knowledge of a particular kind,
namely geometrical knowledge. The aim is to strengthen the visual interpretation of
shape via the stabilising influence of prior expectations of the shapes that are likely
to be seen. There have been many influences in the development of this approach
and two in particular are outstanding. First is the seminal work in 1987 of M. Kass,
A. Witkin and D. Terzopoulos on “snakes” which represented a fundamentally new
approach to visual analysis of shape. A snake is an elastic contour which is fitted
to features detected in an image. The nature of its elastic energy draws it more
or less strongly to certain preferred configurations, representing prior information
about shape which is to be balanced with evidence from an image. If also inertia
is attributed to a snake it acquires dynamic behaviour which can be used to apply
prior knowledge of motion, not just of shape. Snakes are described in detail in the
next chapter. The second outstanding influence is “Pattern Theory” founded by U.
Grenander in the 70s and 80s and a popular basis for image interpretation in the
statistical community. It puts the treatment of prior knowledge about shape into a
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probabilistic context by regarding any shape as the result of applying some distortion
to an ideal prototype shape. The nature and extent of the distortion is governed by an
appropriate probability distribution which then effectively defines the range of likely
shapes.

Defining a prior distribution for shape is only part of the problem. The complete
image interpretation task is to modify the prior distribution to take account of image
features, arriving at a “posterior” distribution for what shape is actually likely to
be present in a particular image. Mechanisms for fusing a prior distribution with
“observations” are of crucial importance. Suffice it to say here that a key idea of
pattern theory is “recognition by synthesis,” in which predictions of likely shapes,
based on the prior distribution, are tested against a particular image. Any discrepancy
between what is predicted and what is actually observed can be used as an error signal,
to correct the estimated shape. Fusion mechanisms of this general type exist in the
snake, in the ubiquitous “Kalman filter” described in the next chapter, and in other
more general forms described later in the book.

1.1 Organisation of the book

The organisation of material in the book is as follows. This chapter concludes by
illustrating a range of applications and the next introduces active contour models.
The book is then divided into two parts. Part I deals with the fundamentals of
representing curves geometrically using splines, including basic machinery for least-
squares approximation of spline functions, an essential topic not normally dealt with
in graphics texts. Chapter 4 lays out a design methodology for linear, image-based,
parametric models of shape, an important tool in applying shape constraints. Then
algorithms for image processing and fitting splines to image features are introduced,
leading to practical deformable templates in chapter 6. At this stage, a tool-set has
been amassed sufficient for fitting curves to individual images, under a whole spectrum
of prior assumptions, ranging from the least constrained snake to a two-dimensional
rigid template. The treatment of part I aims to be thorough and complete, accessible
by readers who are not necessarily familiar with the techniques of computer vision,
given just a reasonable background in computing and vector algebra. (Appendix A
reviews the necessary background in vectors and matrices, and gives some additional
implementation details on spline curves.)

Part II introduces two new themes: models of motion and deformation, and prob-
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abilistic treatment of shape and motion. It begins (chapter 8) by reinterpreting the
deformable templates of part I, in probabilistic terms. This is extended to dynamical
models in chapter 9, as a preparation for fully probabilistic dynamical contour track-
ing, by Kalman filter, in chapter 10. By this stage, there are numerous parameters
to be chosen to build a competent tracker and clear design guidelines are given on
setting those parameters and on their intuitive physical interpretations. The most
effective dynamical models derive, however, from learning procedures, as described in
chapter 11, in which tracking performance improves automatically with experience.
Finally, probabilistic modelling up to this point has been based on Gaussian distri-
butions. Chapter 12 shows that for the hardest tracking problems, involving dense
background clutter, non-Gaussian models are essential. They can be applied via ran-
dom sampling algorithms, at increased computational cost, but to very considerable
effect in terms of enhanced robustness.

As far as writing conventions go, references to books and papers have been kept
out of the main text, to improve readability, and collected in separate bibliographic
notes, appearing at the end of each chapter. These notes give sources for the ideas
introduced in the body of the text and pointers to references on related ideas. Again
for readability, mathematical derivations are kept from intruding on the main text by
the use of two devices. The most important derivations are sandwiched (stealing a
convention from Knuth’s TEX manual) between

double-bend and all-clear
road signs in the margins. These are optional reading for those who want the math-
ematical details. Still more optional are the results and proofs in appendix B which
support chapter 9 on dynamical models.

Web page

A web page for the book is at URL http://www.robots.ox.ac.uk/~contours/ and
contains MPEG sequences and additional material for those interested in exploring
further the ideas discussed in the book.
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1.2 Applications

A decade ago, it seemed unlikely that the research effort invested in Computer Vision
would be harvested practically in the foreseeable future. Partly this reflected the lack
of computational power of hardware available at the time, a limitation which has been
greatly eased by the passing years. Partly though it was the result of an ambitious
view of the problems of vision, in which the aim was to build a general purpose vision
engine, rather than particular applications. More recently, that view has been rather
overtaken by a more focused, algorithmically driven approach. The result is that
Computer Vision ideas are working their way into a variety of practical applications,
particularly in the areas of robotics, medical imaging and video technology.

The active contour approach is a prime candidate for practical exploitation. This is
because active contours make effective use of specific prior information about objects
and this makes them inherently efficient algorithms. Furthermore, active contours
apply image processing selectively to regions of the image, rather than processing
the entire image. This enhances efficiency further, allowing, in many cases, images
to be processed at the full video rate of 50/60 Hz. Incidentally, the ability to do
vision at real-time rate has an important spin-off in stiffening criteria of acceptability,
amounting to a qualitative re-evaluation of standards. As an example, an algorithm
that locates the outline of a mouth in a single image nine times out of ten might
be considered quite successful. Let loose on a real-time image sequence of a talking
mouth, this is re-interpreted as abject failure — the mouth is virtually certain to be
“lost” within a second or so, and the loss is usually unrecoverable. The ability to
follow the mouth while it speaks an entire paragraph, tracking through perhaps 1000
video frames is an altogether more stringent test.

Ten examples of applications follow. Earlier ones are already promising candidates
for commercial application while later ones are more speculative.

Actor-driven facial animation

A deforming face is reliably tracked to relay information about the variation over
time of expression and head position to a Computer Graphics animated face. The
relayed expression can be reproduced or systematically exaggerated. Tracking can be
accomplished in real time, keeping pace with rate of acquisition of video frames so
the actor can be furnished with valuable visual feedback. Systems currently available
commercially rely on markers affixed to the face. Visual contour tracking allows
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marker-free monitoring expression, given a modicum of make-up applied to the face,
something to which actors are well accustomed. An example of real-time re-animation
is illustrated for a cartoon cat in figure 1.2. This was done using two SGI INDY
workstations, linked by network, one for visual tracking and one for mapping tracked
motion onto the cat animation channels and display.

Figure 1.2: Actor-animated cat. Tracked facial motions drive input channels to a cartoon
cat, programmed with some exaggeration of expression. (Figure courtesy of Benedicte Bascle,
Ben North and Julian Morris.)

Traffic monitoring

Roadside video cameras are already familiar in systems for automated speed checks.
Overhead cameras, sited on existing poles, can relay information about the state
of traffic — its density and speed — and anomalies in traffic patterns. Contour
tracking is particularly suited to this task because vehicle outlines form a tightly
constrained class of shapes, undergoing predictable patterns of motion. Already the
state of California has sponsored research leading to successful prototype systems.



Introduction 7

Work in our laboratory, monitoring the motion of traffic along the M40 motorway
near Oxford, is illustrated in figure 1.3. Vehicle velocity is estimated by recording

Figure 1.3: Traffic monitoring. By automatically tracking cars, the emergency services
can, for example, obtain rapid warning of an accident or traffic jam. (Illustration taken from
(Ferrier et al., 1994).)

the distance traversed by the base of a tracked vehicle contour over a known elapsed
time. The measured distance is in image coordinates and this must be converted to
world coordinates to give true distance. The mapping between coordinate systems is
determined as a projective mapping between the image plane and the ground plane.
The mapping is calibrated in standard fashion from the corners of a rectangle on
the ground of known dimensions (known by reference to roadside markers which are
standard fittings on British motorways), and the corresponding rectangle in the image
plane, as in figure 1.4. Analysis of speeds shows clearly a typical pattern of UK
motorway traffic with successively increasing vehicle speeds towards the centre lanes
of the carriageway. This is summarised in the table in figure 1.5.

Automatic crop spraying

Agricultural systems for crop spraying suffer from limited ability to control overspray.
Excess fertiliser seeps into the water table, a problem that is increasingly becoming a



8 Chapter 1

Figure 1.4: Calibration of the image-ground mapping. Positions of the four corners
of a known rectangle on the ground and its projection onto the image plane are sufficient to
determine the mapping, using standard projective methods. (Illustration taken from (Ferrier
et al., 1994).)

target of legislators. It is clearly also highly desirable to ensure that toxic chemicals
used to control weeds are directed away from plants intended for human consumption.
Segmentation of video images on the basis of colour can be an effective means of
visually separating plant from soil but is disrupted by shadows cast by the moving
tractor. Contour tracking, as in figure 1.6, offers an alternative means of detecting
plants that is somewhat immune to such disruption.

Robot grasping

The use of vision in robotics is commonplace in commercial practice, both for inspec-
tion and for coordination of grasp. Figure 1.7 shows an experimental system designed
for use with a camera mounted on the robot’s wrist, to determine stable two-fingered
grasps. A snake is used to capture the outline shape, and geometric calculations
along the B-spline curve, using first and second derivatives to calculate orientation
and curvature, establish a set of safe grasps.



Introduction 9

region start exit distance speed av spd

(lane) (sec) (sec) (yards) (mph) (mph)

1 269.28 273.96 132 58

1 275.92 279.72 127 68

1 297.86 301.56 129 72

1 303.96 308.40 130 60 68

1 314.12 317.24 133 87

1 321.76 325.24 126 74

1 330.20 334.04 132 70

1 343.16 347.58 123 57

2 687.38 692.18 158 67

2 708.46 712.36 164 86

2 727.26 731.20 155 80 76

2 733.12 737.72 164 73

2 749.12 753.64 169 77

3 506.78 510.66 156 83 79

3 513.04 517.04 148 75

Figure 1.5: Analysis of data from tracked cars. Vehicle velocities are measured between
gates space 150 yards apart. (Data from experiments reported in (Ferrier et al., 1994).)
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Camera

Sprayers

Plants

Figure 1.6: Robot tractor. An autonomous tractor carrying a camera and computer
for video analysis has the task of spraying earth and plants automatically, using an array of
independently controlled spray nozzles. Plants can be segmented dynamically from the earth
and weeds around it, the spraying of fertiliser and weed-killer to be directed onto or away from
plants as appropriate. (Figures courtesy of David Reynard, Andrew Wildenberg and John
Marchant.)
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Figure 1.7: Robot hand-eye coordination. The white circles are placement regions for
two thin fingers, computed automatically from the outline of the screwdriver handle. Provided
each finger lies within its circle, closing the gripper is bound to capture the screwdriver. (Figure
courtesy of Colin Davidson.)

Surveillance

A combination of visual motion sensing and contour tracking is used to follow an
intruder on a security camera in figure 1.8. The camera is mounted on a computer
controlled pan-tilt platform driven by visual feedback from the tracked contour.

Biometrics: body motion

This application (figure 1.9) involves the measurement of limb motion for the purposes
of analysis of gait as a tool for planning corrective surgery. The tool is also useful for
ergonomic studies and anatomical analysis in sport. It is related to the facial animation
application above, but more taxing technically. Again, marker based systems exist and
are commercially successful as measurement tools both in biology and medicine but it
is attractive to replace them with marker-free techniques. There are also increasingly
applications in Computer Graphics for whole body animation. Capture of the motion
of an entire body from its outline looks feasible but several problems remain to be
solved: the relatively large number of degrees of freedom of the articulating body
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Figure 1.8: Tracking a potential intruder on security video. (Figure courtesy of
Simon Rowe, David Murray.)
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poses stability problems for trackers; the agility of, say, a dancing figure requires
careful treatment of “occlusion” — periods during which some limbs and body parts
are obscured by others.

Figure 1.9: Biometrics. Tracking the articulated motion of a human body is applicable both
to biometrics and clinical gait analysis and for actor-driven whole body animation. (Figure
courtesy of Rupert Curwen and Julian Morris.)
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Audio-visual speech analysis

Automatic speech-driven dictation systems are now available commercially with large
vocabularies though often restricted to separately articulated words. The functioning
of such a system is dependent on very reliable recognition of a small set of keywords. In
practice, adequately reliable keyword recognition has been realised in low-noise envi-
ronments but is problematic in the presence of background noise, especially cross-talk
from other speakers. Independent experiments in several laboratories have suggested
that lip-reading has an important role to play in augmenting the acoustic signal with
independent information that is immune to cross-talk. Active contour tracking has
been shown to be capable of providing this information (figures 1.10 and 1.11), ro-
bustly and in real time, resulting in substantial improvements in recognition-error
rates.

Figure 1.10: Speech-reading. Performance in automatic speech recognition can be en-
hanced by lip-reading. This is done by tracking visually the moving outlines of lips to obtain
visual signals which are synchronised with the acoustic signal. (Figure courtesy of Robert
Kaucic and Barney Dalton.)
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Figure 1.11: Audio and visual speech signals This figure shows visual (left) and audio
(right) signals for the spoken word “seven,” over a duration of 0.6 s.

Medical diagnosis

Ultrasound scanners are medical diagnostic imaging devices that are very widely avail-
able owing to their low cost. They are especially suited to dynamic analysis owing
to their ability to deliver real-time video sequences. There are numerous potential
applications for automated analysis of the real-time image sequences, for example the
analysis of abnormalities in cardiac action as in figure 1.12. Noisy artifacts — ultra-
sound speckle — make these images especially hard to analyse. In this context, active
contours are particularly powerful because speckle-induced error tends to be smoothed
by the averaging along the contour that is a characteristic of active contour fitting.
Broadly tuned, learned models of motion are used in tracking as prior constraints on
the moving subject, to aid automated perception. The research issue here is how to
learn more finely tuned models to classify normal and aberrant motions.

Another important imaging modality for medical applications is “Magnetic Res-
onance Imaging” (MRI). It is an expensive technology, but popular because it is as
benign as ultrasound, yet as detailed as tomographic X-rays. Applications are perva-
sive, and one specific example concerning measurements of the cerebral hemispheres
of the brain is illustrated in figure 1.13. In each of successive slices of the brain im-
age, two separate snakes lock onto the outlines of the left and the right hemispheres.
Geometric coherence in successive slices means that a fitted snake from one slice can
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Figure 1.12: Medical echocardiogram analysis. The left ventricle beating heart is tracked
by ultrasound imaging for use in medical diagnosis. (Figure courtesy of Alison Noble and Gary
Jacob.)
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Figure 1.13: MRI imaging of brain hemispheres. Each MRI scan (left) of the brain
images one cross-sectional slice of the brain. Separate snakes trace outlines of the left and
right hemispheres. Slices from one hemisphere are stacked (middle), converted to a mesh and
finally rendered as a solid (right). (Figures reproduced from (Marais et al., 1996).)

be used as the initial snake for the next. The entire fitting process can therefore be
initialised by hand fitting snakes around outlines in the first slice. The degree of sym-
metry of the reconstructed hemispheres has been proposed as a possible diagnostic
indicator for schizophrenia.

Automated video editing

It is standard practice to generate photo-composites by “blue-screening” in which
a foreground object, photographed in motion against a blue background is isolated
electronically. It can then be superimposed against a new background to create special
effects. Contour tracking raises the possibility of doing this with objects photographed
against backgrounds that have not been prepared specially in any way, as in figure 1.14.
This increases the versatility of the technique and raises the possibility of extracting
moving objects from existing footage for re-incorporation in new video sequences. In a
second example (figure 1.15), the motion of a cluster of leaves is not only tracked, but
also interpreted as a three-dimensional displacement, so that a computer-generated
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Figure 1.14: Automated video editing. Tracking the outline of a foreground object
allows it to be separated automatically from the background, and manipulated as desired, a
special effect which can otherwise only be achieved by “blue-screening” from specially prepared
footage.

object can be “hung” from the cluster and added to the animation. This is achieved
despite the heavy clutter in the background that makes tracking harder by tending to
camouflage the moving leaves.

User interface

The use of body parts as input devices for graphics has of course been thoroughly
explored in “Virtual Reality” applications. Current devices such as data-gloves and
infra-red helmets are cumbersome and restrictive to the wearer. Visual tracking tech-
nology raises the possibility of flexible, non-contact input devices as in figure 1.16.
One aim is to use tracking to realise the “digital desk” concept in which a user manip-
ulates a mixture of real and virtual documents on a desk, the virtual ones generated
by an overhead video-projector.
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Figure 1.15: Automated re-animation. A cluster of leaves is tracked as it moves (top),
its motion interpreted three-dimensionally, and computer-generated pot and flowers are added.
This technique is then applied to a sequence with the leaf cluster moving against heavy clutter
(bottom).
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Figure 1.16: A hand tracked in real time by a video camera acts as a three-dimensional
mouse. Moving the thumb towards the hand acts as an “indexing” gesture, equivalent to
lifting a conventional mouse off the desk to reposition it without moving the pointer. (Figure
courtesy of Ben North.)
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Bibliographic notes

Despite enormous research effort, the pinnacle of which is represented by (Marr, 1982),
the goal of defining general low-level processes for vision has proved obstinate and
elusive. Much effort was directed towards finding significant features in images. The
theory and practice of image-feature detection is very fully developed — some of the
landmarks include (Roberts, 1965; O’Gorman, 1978; Haralick, 1980; Marr and Hil-
dreth, 1980; Canny, 1986; Perona and Malik, 1990) on feature detection and (Monta-
nari, 1971; Ramer, 1975; Zucker et al., 1977) on grouping them into linear structures.
See also (Ballard and Brown, 1982) for a broad review. The challenge lies in re-
covering features undamaged and free of breaks, and in successfully grouping them
according to the object to which they belong. In some cases subsequent processes can
tolerate errors — gaps in contours and spurious fragments — and this is particularly
true of certain approaches to object recognition, for instance (Ballard, 1981; Grim-
son and Lozano-Perez, 1984; Faugeras and Hebert, 1986; Mundy and Heller, 1990).
Another important theme in “low-level” vision has been matching using features, in-
cluding (Baker and Binford, 1981; Buxton and Buxton, 1984; Grimson, 1985; Ohta
and Kanade, 1985; Pollard et al., 1985; Ayache and Faverjon, 1987; Belhumeur, 1993),
mostly applied to matching pairs of stereoscopic images.

One notably successful reaction against the tyranny of low-level vision was “active
vision” (Aloimonos et al., 1987; Bajcsy, 1988) whose progress and achievements are
reviewed in (Blake and Yuille, 1992; Aloimonos, 1993; Brown and Terzopoulos, 1994).
Another radical departure was the “snake”, for which the original paper is (Kass et al.,
1987), and many related papers are given in the bibliography to the following chapter.
Pattern theory is a general statistical framework that is important in the study of
active contours. It was developed over a number of years by Grenander (Grenander,
1981), and a lucid summary and interpretation can be found in (Mumford, 1996).
Again, many related papers following the pattern theory approach are given in the
course of the book.

Applications

Actor-driven animation is a classic application for virtual reality systems. Tracking
of changing expressions can be done using VR hardware, or visually with reflective
markers (Williams, 1990), using active contours (Terzopoulos and Waters, 1990; Ter-
zopoulos and Waters, 1993; Lanitis et al., 1995) or using so-called “optical flow” (Essa
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and Pentland, 1995; Black and Yacoob, 1995). Underlying muscular motion may be
modelled to constrain tracked expressions.

Traffic monitoring is firmly established as a viable application for machine vision,
for traffic information systems, non-contact sensors, and autonomous vehicle control
(Dreschler and Nagel, 1981; Dickmanns and Graefe, 1988a; Sullivan, 1992; Dickmanns,
1992; Koller et al., 1994; Ferrier et al., 1994). Projective (homogeneous) transforma-
tions (Mundy and Zisserman, 1992; Foley et al., 1990) are used for the conversion
between image and world coordinates.

Automated crop-handling based on vision has become a realistic possibility in the
last decade (Marchant, 1991; Plá et al., 1993), and active contour tracking has a role
to play here (Reynard et al., 1996).

A series of theories of determining stable grasps based on an outline have been
proposed (Faverjon and Ponce, 1991; Blake, 1992; Rimon and Burdick, 1995a; Rimon
and Burdick, 1995b; Rimon and Blake, 1996; Ponce et al., 1995; Davidson and Blake,
1998) and are particularly suited to real-time grasp planning with active contours
(Taylor et al., 1994).

A pioneering advance in the visual tracking of human motion was Hogg’s “Walker”
(Hogg, 1983) which used an articulated model of limb motion to constrain search for
body parts. Active contours have been applied with some success to tracking whole
bodies and body parts (Waite and Welsh, 1990; Baumberg and Hogg, 1994; Lanitis
et al., 1995; Goncalves et al., 1995), though methods based on point features can also
be useful for coarse tracking (Rao et al., 1993; Murray et al., 1993).

Audio-visual speech analysis, or speech-reading, has been the subject of psycho-
logical study for some time (Dodd and Campbell, 1987). The computational problem
has received a good deal of attention recently, using both active contours (Bregler and
Konig, 1994; Bregler and Omohundro, 1995; Kaucic et al., 1996) and methods based
more directly on image intensities (Petajan et al., 1988), or using artificial facial mark-
ers (Finn and Montgomery, 1988; Stork et al., 1992). Generally, as in conventional
speech recognition, Hidden Markov Models (HMMs) (Rabiner and Bing-Hwang, 1993)
are used for classification of utterances, e.g. (Adjoudani and Benoit, 1995).

Several researchers have investigated the application of active contours to the
interpretation of medical images, for example (Amini et al., 1991; Ayache et al., 1992;
Cootes et al., 1994).

The technique of rotoscoping allows film-makers to transfer a complex object from
one image sequence to another. This can be done automatically using blue-screening
(Smith, 1996) if the object can be filmed against a specially prepared background.
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Computer-aided techniques for object segmentation are also of great interest for aug-
mented reality systems, which attach computer-generated imagery to real scenes. Tra-
ditionally mechanical or magnetic 3D tracking devices have been used (Grimson et al.,
1994; Pelizzari et al., 1993; Wloka and Anderson, 1995) to solve this problem, but they
are inaccurate and cumbersome. Vision-based tracking has been used instead (Ku-
tulakos and Valliano, 1996; Uenohara and Kanade, 1995; State et al., 1996; Heuring
and Murray, 1996), especially for medical applications, mostly restricted to tracking
artificial markers. Graphical objects can be made to pass behind real ones (State
et al., 1996), by building models of the real-world objects off-line, using scanned range
maps.

Effective ways of using a gesturing hand as an interface are yet to be generally
established. One very appealing paradigm is the “digital desk” (Wellner, 1993) in
which moving hands interact both with real pieces of paper and with virtual (pro-
jected) ones, on the surface of a real desk. Other body parts may also be useful for
controlling graphics, for instance head (Azarbayejani et al., 1993) and eyes (Gee and
Cipolla, 1994). Gestures need not only to be tracked but also interpreted by classi-
fying segments of trajectories, either in configuration space or phase space (Mardia
et al., 1993; Campbell and Bobick, 1995; Bobick and Wilson, 1995). This is related
both to classification of speech signals (see above) and to classification of signals in
other domains, such as electro-encephalograph (EEG) in sleep (Pardey et al., 1995).
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Active shape models

Active shape models encompass a variety of forms, principally snakes, deformable tem-
plates and dynamic contours. Snakes are a mechanism for bringing a certain degree
of prior knowledge to bear on low-level image interpretation. Rather than expecting
desirable properties such as continuity and smoothness to emerge from image data,
those properties are imposed from the start. Specifically, an elastic model of a con-
tinuous, flexible curve is imposed upon and matched to an image. By varying elastic
parameters, the strength of prior assumptions can be controlled. Prior modelling can
be made more specific by constructing assemblies of flexible curves in which a set
of parameters controls kinematic variables, for instance the sizes of various subparts
and the angles of hinges which join them. Such a model is known as a deformable
template, and is a powerful mechanism for locating structures in an image.

Things become more difficult when it is necessary to locate moving objects in
image sequences — the problem of tracking. This calls for dynamic modelling, for
instance invoking inertia, restoring forces and damping, another key component of
the original snake conception. We refer to curve trackers that use prior dynamical
models as “dynamic contours.” Later parts of the book are all about understanding,
specifying and learning dynamical prior models of varying strength, and applying
them in dynamic contour tracking.
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2.1 Snakes

The art of feature detection has been much studied (see bibliographic notes for previ-
ous chapter). The principle is that a “mask” or “operator” is designed which produces
an output signal which is greatest wherever there is a strong presence in an image of a
feature of a particular chosen type. The result is a new image or “feature map” which
codes the strength of response for the chosen feature type, at each pixel. Examples of
feature maps for three different kinds of feature are illustrated in figure 2.1. Details
of the designs of masks and the application to images by digital convolution are given
in chapter 5. For now it is sufficient to say that the operator is a sub-image which
is scanned over an image using “mathematical correlation” or “convolution” (this is
explained in chapter 5). The mask is a prototype image, typically of small size, of the
feature being sought: for a valley feature, for instance, the mask would be a V-shaped
intensity function. The output of the correlation process is a measure of goodness of
fit of the prototype to the image, in each of the image locations evaluated.

However, feature maps are only the beginning. They enhance features of the
desired type but do not unambiguously detect them. Detection requires a decision
to be made at each pixel, the simplest decision rule being that a feature is marked
wherever feature strength exceeds some preset threshold. A constant threshold is
rarely adequate except for the simplest of situations such as an opaque object on a
back-lit table, as commonly used in machine vision systems. However, the features
on a face cannot be back-lit and, if the threshold is set high, gaps appear in edges.
If the threshold is low, spurious edges appear, generated by fine texture. Often no
happy medium exists. More subtle decision schemes than simple thresholds have been
explored but after around two decades of concerted research effort, one cannot expect
to do very much better than the example in figure 2.2. The main structure is present
but the topology of hand contours is disrupted by gaps and spurious fragments.

The lesson is that “low-level” feature detection processes are effective up to a point
but cannot be expected to retrieve entire geometric structures. Snakes constitute a
fundamentally new approach to deal with these limitations of low-level processing. The
essential idea is to take a feature map F (r) like the ones in figure 2.1, and to treat
(−F (r)) as a “landscape” on which the snake, a deformable curve r(s), 0 ≤ s ≤ 1,
can slither. For instance, a filter that gives a particularly high output where image
contrast is high will tend to attract a snake towards object edges. Equilibrium equa-
tions for r(s) are set up in such a way that r(s) tends to cling to high responses of
F , that is, maximising F (r(s)) over 0 ≤ s ≤ 1, in some appropriate sense. This ten-
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Image Edges

Ridges Valleys

Figure 2.1: Image-feature detectors. Suitably designed image filters can highlight areas
of an image in which particular features occur. The examples shown here filter for areas of
high contrast (“edges”), peaks of intensity (“ridges”) and intensity troughs (“valleys”).
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Figure 2.2: Detecting edges. Edges (right) are generated from the image (left) using
horizontally and vertically oriented masks and a decision process (Canny, 1986) that attempts
to repair gaps. Nonetheless, there are breaks at critical locations such as corners or junctions,
and spurious fragments that disrupt the topology of the hand.

dency to maximise F is formalised as the “external” potential energy of the dynamical
system. It is counterbalanced by “internal” potential energy which tends to preserve
smoothness of the curve. The equilibrium equation is:(

∂(w1r)
∂s

− ∂2(w2r)
∂s2

)
︸ ︷︷ ︸

internal forces

+ ∇F︸ ︷︷ ︸
external force

= 0. (2.1)

(Note: s and t subscripts denote differentiation with respect to space and time, and ∇F
is the spatial gradient of F .) If (2.1) is solved iteratively, from a suitable configuration,
it will tend to settle on a ridge of the feature map F , and figure 2.3 illustrates this.
The coefficients w1 and w2 in (2.1), which must be positive, govern the restoring forces
associated with the elasticity and stiffness of the snake respectively. Either of these
coefficients may be allowed to vary with s, along the snake. For example, allowing w2

to dip to 0 at a certain point s = s0 will allow the snake to kink there, as illustrated
at the mouth corners in figure 2.3. Increasing w2 encourages the snake to be smooth,
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Initial configuration Final configuration

Figure 2.3: Snake equilibrium. Snakes are shown in initial and final configurations.
The eyebrow snake moves over an edge-feature map. The mouth snake is also attracted to
edge-features; smoothness constraints are suspended at mouth corners, to allow the snake to
kink there. Given that the strongest feature on the nose is a ridge (see figure 2.1), the nose
snake is chosen to be attracted to ridges.

like a stiff but flexible rod, but also increases its tendency to regress towards a straight
line. Increasing w1 makes the snake behave like stretched elastic which encourages
an even parameterisation of the curve, but increases the tendency to shortness, even
collapsing to a point unless counterbalanced by external energy or constraints.

Discrete approximation

Practical computations of r(s) must occur over discrete time and space, and approx-
imate the continuous trajectories of (2.1) as closely as possible. The original snake
represented r(s) by a sequence of samples at s = si, i = 1, . . . , N , spaced at intervals
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of length h, and used “finite differences” to approximate the spatial derivatives rs and
rss by

rs(si) =
r(si) − r(si−1)

h
and rss(si) =

r(si+1) − 2r(si) + r(si−1)
h2

and solve the resulting simultaneous equations in the variables r(s1), . . . , r(sN ). The
system of equations is “sparse,” so that it can be solved efficiently, in time O(N) in
fact.

In finite difference approximations, the variables r(si) are samples of the curve
r(s), at certain discrete points, conveying no information about curve shape between
samples. Modern numerical analysis favours the “finite element” method in which
the variables r(si) are regarded as “nodal” variables or parameters from which the
continuous curve r(s) can be completely reconstructed. The simplest form of finite-
element representation for r(s) is as a polygon with the nodal variables as vertices.
Smoother approximations can be obtained by modelling r(s) as a polynomial “spline
curve” which passes near but not necessarily through the nodal points. This is par-
ticularly efficient because the spline maintains a degree of smoothness, a role which
otherwise falls entirely on the spatial derivative terms in (2.1). The practical upshot
is that with B-splines the smoothness terms can be omitted, allowing a substantial
reduction in the number of nodal variables required, and improving computational
efficiency considerably. For this reason, the B-spline representation of curves is used
throughout this book. Details are given in chapter 3.

Robustness and stability

Regularising terms in the dynamical equations are helpful to stabilise snakes but are
rather restricted in their action. They represent very general constraints on shape,
encouraging the snake to be short and smooth. Very often this is simply not enough,
and more prior knowledge needs to be compiled into the snake model to achieve stable
behaviour. Consider the following example in which a snake is set up with internal
constraints reined back to allow the snake to follow the complex outline of the leaf in
figure 2.4. In fact it is realised as a B-spline snake with sufficient control points to do
justice to the geometric detail of the complex shape. Suppose now the snake is required
to follow an image sequence of the leaf in motion, seeking energy minima repeatedly,
on successive images in the sequence. If all those control points are allowed to vary
somewhat freely over time, the tracked curve can rapidly tie itself into unrecoverable
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Figure 2.4: The need for shape-spaces. The white curve is a B-spline with sufficient
control points to do justice to the complexity of the leaf ’s shape. Control point positions vary
over time in order to track the leaf outline. However, if the curve momentarily loses lock on the
outline it rapidly becomes too tangled to be able to recover. (Figure by courtesy of R. Curwen.)

knots, as the figure shows. This is a prime example of the sort of insight that can be
gained from real-time experimentation. A regular snake, with suitably chosen internal
energy may succeed in tracking several dozen frames off-line. However, once tracking
is seen as a continuous process, and this is the viewpoint that real-time experiments
enforce, the required standards of robustness are altogether more stringent. What was
an occasional failure in one computation out of every few, becomes virtually certain
eventual failure once the real-time process is allowed to run. It is of paramount
importance that recovery from transients — such as a gust of wind causing the leaf
to twitch — is robust.
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This need for robustness is what drives the account of active contours given in
this book. General mechanisms for setting internal shape models are not sufficient.
Finely tunable mechanisms are needed, representing specific prior knowledge about
classes of objects and their motions. The book aims to give a thorough understanding
of the components of such models, initially in geometric terms, and later in terms of
probability, as a means of describing families of plausible shapes and motions.

2.2 Deformable templates

The prior shape constraints implicit in a snake model are soft, encouraging rather
than enforcing a particular class of favoured shapes. What is more, those favoured
shapes have rather limited variety. For example, in the case that w1 = 0 in (2.1)),
they are solutions of

rss = 0

which are simply straight lines. Models of more specific classes of shapes demand
some use of hard constraints, and “default” shapes more interesting than a simple
straight line. This can be achieved by using a parametric shape-model r(s;X), with
relatively few degrees of freedom, known as a “deformable template.” The template is
matched to an image, in a manner similar to the snake, by searching for the value of
the parameter vector X that minimises an external energy Eext(X). Internal energy
Eint(X) may be included as a “regulariser” to favour certain shapes.

As an example of a deformable template, Yuille and Hallinan’s eye template is
illustrated in figure 2.5, showing how the template is parameterised, and results of
fitting to an image of a face. The template r(s;X) has a total of 11 geometric param-
eters in the parameter vector X and it varies non-linearly with X. The non-linearity
is evident because, for example, one of the parameters is an angle θ whose sine and
cosine appear in the functional form of r(s;X). The bounding curves of the eye are
parabolas which also vary non-linearly, as a function of length parameters a, b and c.
The internal energy Eint(X) is a quadratic function of X that encourages the template
to relax back to a default shape. The external energy Eext(X) comprises a sum of var-
ious integrals over the image-feature maps for edges, ridges and valleys. Each integral
is taken over one of the two regions delineated by the eye model or along a template
curve, which causes Eext to vary with X. Finally the total energy is minimised by
iterative, non-linear gradient descent which will tend to find a good minimum, in the
sense of giving a good fit to image data, provided the initial configuration is not too



Active shape models 33

image x

image y

θ

r

a

xt, yt
xc, yc

The First Eye Template

Whites

Iris & Pupil

b

cb p2

p1

Figure 2.5: Deformable eye template An eye template is defined (top) in terms of a mod-
est number of variable geometric parameters. In successive iterations of a “gradient descent”
algorithm, an equilibrium configuration is reached in which the template fits the eye closely.
(Figure reprinted from (Yuille and Hallinan, 1992) which also gives details of external and
internal energy functions.)
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far from the desired final fit.
A methodology for setting up linearly parameterised deformable templates — we

term them “shape-spaces” — will be described in chapter 4. Restriction to linear
parameterisation has certain advantages in simplifying fitting algorithms and avoiding
problems with local minima. It is nonetheless surprisingly versatile geometrically. It
should be pointed out that some elegant work has been done with three-dimensional
parametric models (see bibliographic notes) but this is somewhat outside the scope
of this book. Here we deal with three-dimensional motion by modelling directly its
effects on image-based contour models using “affine spaces” amongst other devices.

2.3 Dynamic contours

Active contours can be applied either statically, to single images, or dynamically, to
temporal image sequences. In dynamic applications, an additional layer of modelling is
required to convey any prior knowledge about likely object motions and deformations.
Now both the active contour r(s, t) and the feature map F (t) vary over time. The
contour r(s, t) is drawn towards high responses of F (t) as if it were riding the crest
of a wave on the feature map. The equation of motion for such a system extends the
snake in (2.1) with additional terms governing inertia and viscosity

ρ rtt︸ ︷︷ ︸
inertial force

= −
(

γrt − ∂(w1r)
∂s

+
∂2(w2r)

∂s2

)
︸ ︷︷ ︸

internal forces

+ ∇F︸ ︷︷ ︸
external force

. (2.2)

This is Newton’s law of motion for a snake with mass, driven by internal and exter-
nal forces. New coefficients in (2.2), in addition to w1 and w2 the elastic coefficients
from (2.1), are ρ the mass density and γ the viscous resistance from a medium sur-
rounding the snake. Given that all coefficients are allowed to vary spatially, there is
clearly considerable scope for setting them to impose different forms of prior knowl-
edge. The spatial variation also introduces a multiplicity of degrees of freedom and
potentially complex effects. One of the principal aims of the book is to attain a
detailed understanding of those effects, and to harness them in the design of active
contours.

Most powerful of all is to combine dynamical modelling as in (2.2) with the rich
geometrical structures used in deformable templates, and this is the basis of the dy-
namic contour. It involves defining parameterised shapes r(s;X) as for deformable
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templates and then specifying a dynamical equation for the shape parameter X. In
the dynamic contour equation (2.2), prior constraints on shape and motion were im-
plicit, but to facilitate systematic design it is far more attractive that they should be
explicit. This can be achieved by separating out a dynamical model for likely motions
from the influence of image measurements. The dynamic contour becomes a two-phase
process in which a dynamical model is used for prediction, to extrapolate motion from
one discrete time to the next. Then the predicted position for each new time-step
is refined using measured image features, as in figure 2.6. The “Kalman filter” is a

prediction

estimate from
previous time

object motion

prediction

    new 
estimate

Figure 2.6: Prediction and measurement. Dynamic contour tracking involves a
two-phase process at each successive time. Past motion history and prior knowledge of motion
are extrapolated to predict the displacement between successive times, then predicted position
is refined using image features.

ready made engine for applying the two-phase cycle, and for this reason has been a
very popular and successful paradigm for tracking (see bibliographic notes). It is a
probabilistic mechanism and this is one reason that probabilistic modelling pervades
the treatment of the second part of this book.

Intuitively, predictive models demand probabilistic treatment in order to avoid
being too strong. The two-phase cycle fuses a prediction with some measurements. If
the prediction were deterministic with no allowance for uncertainty, it would dominate
the measurements, which would therefore be ignored. As an example, consider the
task of tracking a pendulum in motion. If the pendulum is believed to be executing
perfect harmonic motion, free of external disturbances, then provided initial condi-
tions are known, the future motion of the pendulum is entirely determined. Knowing
initial conditions, any subsequent observation of the pendulum is redundant. Realistic
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visual tracking problems are more like observing a pendulum oscillating in a turbulent
airflow. The mean behaviour of the pendulum may be explained as deterministic sim-
ple harmonic motion, but the airflow drives the motion with random external forces.
In terms of the shape parameter X, this implies a dynamical equation of the form

Ẍ = f(Ẋ,X,w), (2.3)

where Ẋ and Ẍ are the first and second temporal derivatives of X and w is a random
disturbance. Thus the value of initial conditions weaken over time, as the motion of the
pendulum is progressively perturbed away from the ideal deterministic motion. This
increasing uncertainty generates a “gap” in information which sensory observations
can fill. A primary aim of the book is to define design principles for probabilistic
models of shape and motion and explain those principles in terms of their effects both
on representation of prior knowledge and in constraining and conditioning tracking
performance.

Bibliographic notes

The seminal paper on snakes is (Kass et al., 1987). This spawned many variations
and extensions including the use of Fourier parameterisation (Scott, 1987), incorpo-
ration of hard constraints (Amini et al., 1988) and incorporation of explicit dynamics
(Terzopoulos and Waters, 1990; Terzopoulos and Szeliski, 1992). Realisation of snakes
using B-splines was developed by (Cipolla and Blake, 1990; Menet et al., 1990; Hin-
ton et al., 1992) and combined with Lagrangian dynamics in (Curwen et al., 1991).
B-splines used in this way are a form of “finite element,” a standard technique of nu-
merical analysis for solving differential equations by computer (Strang and Fix, 1973;
Zinkiewicz and Morgan, 1983).

The idea of deformable templates predates the development of snakes (Fischler
and Elschlager, 1973; Burr, 1981; Bookstein, 1989) but has enjoyed a revival inspired
by the snake. Variations on the deformable template theme rapidly emerged (Yuille
et al., 1989; Yuille, 1990; Bennett and Craw, 1991; Yuille and Hallinan, 1992; Hinton
et al., 1992; Cootes and Taylor, 1992; Cootes et al., 1993; Cootes et al., 1995). A good
deal of research has been done on matching with three-dimensional models, both rigid
(Thompson and Mundy, 1987; Lowe, 1991; Sullivan, 1992; Lowe, 1992; Harris, 1992b;
Gennery, 1992) and deformable (Terzopoulos et al., 1988; Terzopoulos and Fleischer,
1988; Cohen, 1991; Terzopoulos and Metaxas, 1991; Rehg and Kanade, 1994) but
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is somewhat outside the scope of this book. As models become more detailed, and
search becomes more exhaustive, the three-dimensional approach merges into visual
object recognition (Grimson, 1990).

The Kalman filter (Gelb, 1974; Bar-Shalom and Fortmann, 1988) is very widely
used in control theory and for target tracking (Rao et al., 1993) and sensor fusion
(Hallam, 1983; Durrant-Whyte, 1988; Hager, 1990) and has become a standard tool
of computer vision (Ayache and Faugeras, 1987; Dickmanns and Graefe, 1988b; Dick-
manns and Graefe, 1988a; Matthies et al., 1989; Deriche and Faugeras, 1990; Harris,
1992b; Terzopoulos and Szeliski, 1992; Faugeras, 1993).

Finally, it seems appropriate at least to give some pointers to approaches to visual
tracking that are rather outside the active contour paradigm.

• (Black and Yacoob, 1995) uses the visual motion field over a region to track and
identify movement

• (Bray, 1990) tracks using a mixture of polyhedral, model-based vision to initialise
and optic-flow vectors along contours for incremental displacement

• (Fischler and Bolles, 1981; Gee and Cipolla, 1996) are very elegant uses of
random generation and testing of point-correspondence hypotheses, respectively
for static and dynamic image matching problems

• (Huttenlocher et al., 1993) used the “Hausdorff metric” to match successive
views in a sequence; the beauty of the approach is that it requires almost no
prior model of shape or motion

• (Allen et al., 1991; Papanikolopoulos et al., 1991; Mayhew et al., 1992; Brown
et al., 1992; Murray et al., 1992; Heuring and Murray, 1996) are control theoretic
approaches to visual-servoing, real-time tracking with robot hands and heads


