
CUDD
Colorado University Decision Diagram Package

Systems Design Laboratory (2022/2023)

Computer Engineering for Robotics and Smart Industry

Luigi Capogrosso Davide Bresolin Tiziano Villa

SDL (Lab) CUDD Lecture 01 1 / 34

Outline

1 Introduction

2 Basic Architecture

3 Basic Functions

4 Example: Half-Adder

5 Variable reordering

6 Converting BDDs to ZDDs and Vice Versa

SDL (Lab) CUDD Lecture 01 2 / 34

CUDD

CUDD is the Colorado University Decision Diagram package.

It is a C/C++ library for creating the following different types of
decision diagrams:

▶ BDD: Binary Decision Diagrams.
▶ ZDD: Zero-Suppressed BDDs.
▶ ADD: Algebraic Decision Diagrams.

The slides, source code, and all documentation related to this
lecture are available here:
https://github.com/luigicapogrosso/SDL

SDL (Lab) CUDD Lecture 01 3 / 34

https://github.com/luigicapogrosso/SDL

Getting CUDD

The CUDD package is available via anonymous FTP from
vlsi.colorado.edu.

You can download the CUDD package from the server using an
FTP client such as FileZilla or you can use the ftp command
from the command line.

Alternatively, you can download the latest version of CUDD
directly from the SDL GitHub repository, so:
$ git clone
https://github.com/luigicapogrosso/SDL.git

SDL (Lab) CUDD Lecture 01 4 / 34

https://filezilla-project.org/

Getting CUDD (cont’d)

The library is tested using GCC (9.4.0) and GNU Make (9.4.0). To
build the library from sources in a clean way, it is preferable that
you set up a build subdirectory, say:

$ cd SDL/lecture_01/cudd-3.0.0
$ mkdir objdir && cd objdir
$../configure --prefix=$HOME/<path>
$ make && make install

SDL (Lab) CUDD Lecture 01 5 / 34

Including and linking the CUDD library

To build an application that uses the CUDD package, you should
add, in your source code, the following lines:

▶ #include "cudd.h"
▶ #include "util.h"

To compile and link a C program that uses CUDD:

$ gcc -o main main.c -lcudd -lutil

Or, you can refer to the following Makefile:
https://github.com/luigicapogrosso/SDL/blob/
master/lecture_01/code/Makefile

SDL (Lab) CUDD Lecture 01 6 / 34

https://github.com/luigicapogrosso/SDL/blob/master/lecture_01/code/Makefile
https://github.com/luigicapogrosso/SDL/blob/master/lecture_01/code/Makefile

Outline

1 Introduction

2 Basic Architecture

3 Basic Functions

4 Example: Half-Adder

5 Variable reordering

6 Converting BDDs to ZDDs and Vice Versa

SDL (Lab) CUDD Lecture 01 7 / 34

Garbage Collection

CUDD has a built-in garbage collection system.

When a BDD is not used anymore, its memory can be reclaimed.

To facilitate the garbage collector, we need to “reference” and
“dereference” each node in our BDD:

▶ Cudd_Ref(DdNode*) to reference a node.
▶ Cudd_RecursiveDeref(DdNode*) to dereference a node and

all its descendants.

SDL (Lab) CUDD Lecture 01 8 / 34

Complemented arcs

Each node of a BDD can be:
▶ A variable with two children.
▶ A leaf with a constant value.

The two children of a node are referred to as the “then” child and
the “else” child.

To assign a value to a BDD, we follow “then” and “else” children
until we reach a leaf:

▶ The value of our assignment is the value of the leaf we reach.

However: “else” children can be complemented:
▶ When an “else” child is complemented, then we take the

complement of the value of the leaf:
⋆ i.e., if the value of the leaf is 1 and we have traversed an odd number

of complement arcs, the value of our assignment is 0.

SDL (Lab) CUDD Lecture 01 9 / 34

Complemented arcs: example

out = x0x1

“then” arcs are solid.
Normal “else” arcs are dashed.
Complemented “else” arcs are
dotted.

The out arc is complemented:

out = x0 + x1

= x0 + x0x1

 x0

 x1

 out

0xd

0xc

1

SDL (Lab) CUDD Lecture 01 10 / 34

The DdManager

The DdManager is the key data structure of CUDD:
▶ It must be created before calling any other CUDD function.
▶ It needs to be passed to almost every CUDD function.

To initialize the DdManager, we use the following function:

there is one caveat with CUDD. ”else” children can be complemented. If the else child is complemented, then
when we reach a leaf node, we would take the complement of the value of the leaf. i.e., if the value of the leaf is
1 and we have traversed through and odd number of complement arcs, the value of our assignment is 0. In 5.4.3,
we will discuss how to deal with complement arcs.

5.4 Data Structures

The two most important data structures within CUDD are the DdManager and the DdNode. We will now briefly
discuss each.

5.4.1 DdManager

The DdManager is the central struct of CUDD. Creating this struct is the first thing you do when writing a CUDD
program and it needs to be passed to almost every CUDD api function. It is never necessary to manipulate or
inspect this struct directly, instead we will use the CUDD api. In order to initialize the DdManager, we use the
following function:

Listing 2: The function to initialize the DdManager:

DdManager ∗ Cudd Init (
unsigned int numVars , // i n i t i a l number o f BDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numVarsZ , // i n i t i a l number o f ZDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numSlots , // i n i t i a l s i z e o f the unique t a b l e s
unsigned int cacheSize , // i n i t i a l s i z e o f the cache
unsigned long maxMemory // t a r g e t maximum memory occupat ion . (0 means un l imi t ed)

) ;

Listing 3: For our purposes, we can call Cudd Init like this:

Cudd Init (0 , 0 ,CUDD UNIQUE SLOTS, CUDD CACHE SLOTS, 0) ;

5.4.2 Useful DdManager functions:

• int Cudd ReadSize(DdManager * dd): Returns the number of variables stored in the manager.

• int Cudd ReadNodeCount(DdManager * dd): Returns the number of nodes stored in the manager.
(i.e., many nodes can represent the same variable)

5.4.3 DdNode

The DdNode is the core building block of BDDs. It is defined as follows:

Listing 4: The decision diagram node:

struct DdNode {
DdHalfWord index ; // Index o f the v a r i a b l e reprented by t h i s node
DdHalfWord r e f ; // re f e r ence count
DdNode ∗next ; // next po in t e r f o r unique t a b l e
union {
CUDD VALUE TYPE value ; // f o r cons tant nodes
DdChildren k ids ; // f o r i n t e r n a l nodes
} type ;

} ;

4

SDL (Lab) CUDD Lecture 01 11 / 34

The DdManager: C code

#include<stdio.h>
#include"cudd.h"

int main()
{
DdManager* manager = Cudd_Init(0, 0,

CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0);
if(manager == NULL)
{
printf("Error when initalizing CUDD.\n");
return 1;

}
...

return 0;
}

SDL (Lab) CUDD Lecture 01 12 / 34

The DdNode

The DdNode is the core building block of BDDs:

there is one caveat with CUDD. ”else” children can be complemented. If the else child is complemented, then
when we reach a leaf node, we would take the complement of the value of the leaf. i.e., if the value of the leaf is
1 and we have traversed through and odd number of complement arcs, the value of our assignment is 0. In 5.4.3,
we will discuss how to deal with complement arcs.

5.4 Data Structures

The two most important data structures within CUDD are the DdManager and the DdNode. We will now briefly
discuss each.

5.4.1 DdManager

The DdManager is the central struct of CUDD. Creating this struct is the first thing you do when writing a CUDD
program and it needs to be passed to almost every CUDD api function. It is never necessary to manipulate or
inspect this struct directly, instead we will use the CUDD api. In order to initialize the DdManager, we use the
following function:

Listing 2: The function to initialize the DdManager:

DdManager ∗ Cudd Init (
unsigned int numVars , // i n i t i a l number o f BDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numVarsZ , // i n i t i a l number o f ZDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numSlots , // i n i t i a l s i z e o f the unique t a b l e s
unsigned int cacheSize , // i n i t i a l s i z e o f the cache
unsigned long maxMemory // t a r g e t maximum memory occupat ion . (0 means un l imi t ed)

) ;

Listing 3: For our purposes, we can call Cudd Init like this:

Cudd Init (0 , 0 ,CUDD UNIQUE SLOTS, CUDD CACHE SLOTS, 0) ;

5.4.2 Useful DdManager functions:

• int Cudd ReadSize(DdManager * dd): Returns the number of variables stored in the manager.

• int Cudd ReadNodeCount(DdManager * dd): Returns the number of nodes stored in the manager.
(i.e., many nodes can represent the same variable)

5.4.3 DdNode

The DdNode is the core building block of BDDs. It is defined as follows:

Listing 4: The decision diagram node:

struct DdNode {
DdHalfWord index ; // Index o f the v a r i a b l e reprented by t h i s node
DdHalfWord r e f ; // re f e r ence count
DdNode ∗next ; // next po in t e r f o r unique t a b l e
union {
CUDD VALUE TYPE value ; // f o r cons tant nodes
DdChildren k ids ; // f o r i n t e r n a l nodes
} type ;

} ;

4
index is a unique index for the variable represented by this node.

▶ It is permanent: if we reorder variables, the idx remains the same.

ref stores the reference count for this node.
▶ It is incremented by Cudd_Ref() and decremented by
Cudd_Recursive_Deref().

SDL (Lab) CUDD Lecture 01 13 / 34

Outline

1 Introduction

2 Basic Architecture

3 Basic Functions

4 Example: Half-Adder

5 Variable reordering

6 Converting BDDs to ZDDs and Vice Versa

SDL (Lab) CUDD Lecture 01 14 / 34

BDD of Boolean functions

Common manipulations of BDDs can be accomplished by
calling operators on variables.

The CUDD package includes Boolean functions that can be used
for BDD operations such as: NOT, AND, NAND, OR, NOR,
Exclusive-OR, XNOR, and etc.

SDL (Lab) CUDD Lecture 01 15 / 34

BDD for the NOT Boolean function

For the NOT Boolean function, we use Cudd_Not().

The truth table for a NOT:

x1 f
0 1
1 0

Exercise: write the code to build the BDD for the function f = ¬x1.

SDL (Lab) CUDD Lecture 01 16 / 34

BDD for the AND Boolean function

For the AND Boolean function, we use Cudd_bddAnd().

The truth table for an AND:

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

Exercise: write the code to build the BDD for the function
f = x1 ∧ x2.

SDL (Lab) CUDD Lecture 01 17 / 34

BDD for the NAND Boolean function

For the NAND Boolean function, we use Cudd_bddNand().

The truth table for a NAND:

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

Exercise: write the code to build the BDD for the function
f = ¬(x1 ∧ x2).

SDL (Lab) CUDD Lecture 01 18 / 34

BDD for the OR Boolean function

For the OR Boolean function, we use Cudd_bddOr().

The truth table for a logic OR:

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

Exercise: write the code to build the BDD for the function
f = x1 ∨ x2.

SDL (Lab) CUDD Lecture 01 19 / 34

BDD for the NOR Boolean function

For the NOR Boolean function, we use Cudd_bddNor().

The truth table for a NOR:

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

Exercise: write the code to build the BDD for the function
f = ¬(x1 ∨ x2).

SDL (Lab) CUDD Lecture 01 20 / 34

BDD for Exclusive-OR Boolean function

For the Exclusive-OR Boolean function, we use
Cudd_bddXor().

The truth table for an Exclusive-OR:

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 0

Exercise: write the code to build the BDD for the function
f = x1 ⊕ x2.

SDL (Lab) CUDD Lecture 01 21 / 34

BDD for the XNOR Boolean function

For the XNOR Boolean function, we use Cudd_bddXnor().

The truth table for an XNOR:

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 1

Exercise: write the code to build the BDD for the function
f = ¬(x1 ⊕ x2).

SDL (Lab) CUDD Lecture 01 22 / 34

Outline

1 Introduction

2 Basic Architecture

3 Basic Functions

4 Example: Half-Adder

5 Variable reordering

6 Converting BDDs to ZDDs and Vice Versa

SDL (Lab) CUDD Lecture 01 23 / 34

The Half-Adder circuit
6 Sample Program - Half-Adder

6.1 Creating the BDD

1x x2

and1 and2

sum carry

This is a half adder circuit that we will compile into
an OBDD. It has the following truth table:

x1 x2 sum carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Listing 5: C++ code to generate the Half-Adder circuit above as an OBDD in Cudd.

1 DdNode∗∗ createHalfAdderBDD (DdManager ∗manager)
2 {
3 DdNode ∗x0 = Cudd bddIthVar (manager , 0) ;
4 DdNode ∗x1 = Cudd bddIthVar (manager , 1) ;
5

6 DdNode ∗and1 = Cudd bddAnd(manager , x0 , Cudd Not (x1)) ;
7 Cudd Ref (and1) ;
8

9 DdNode ∗and2 = Cudd bddAnd(manager , Cudd Not (x0) , x1) ;
10 Cudd Ref (and2) ;
11

12 DdNode ∗sum = Cudd bddOr (manager , and1 , and2) ;
13 Cudd Ref (sum) ;
14

15 Cudd RecursiveDeref (manager , and1) ;
16 Cudd RecursiveDeref (manager , and2) ;
17

18 DdNode ∗ carry = Cudd bddAnd(manager , x0 , x1) ;
19 Cudd Ref (car ry) ;
20

21 // There are two BDD roo t s so we re turn both o f them .
22 DdNode ∗∗ outputs = new DdNode ∗ [2] ;
23 outputs [0] = sum ;
24 outputs [1] = carry ;
25

26 return outputs ;
27 }

6

This is the schematic of a half-
adder circuit that we want to com-
pile into an OBDD. It has the follow-
ing truth table:

x1 x2 sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

SDL (Lab) CUDD Lecture 01 24 / 34

Create the BDD for sum

DdNode *x1 = Cudd_bddIthVar(manager, 0);
DdNode *x2 = Cudd_bddIthVar(manager, 1);

DdNode *and1;
and1 = Cudd_bddAnd(manager, x1, Cudd_Not(x2));
Cudd_Ref(and1);

DdNode *and2;
and2 = Cudd_bddAnd(manager, Cudd_Not(x1), x2);
Cudd_Ref(and2);

DdNode *sum;
sum = Cudd_bddOr(manager, and1, and2);
Cudd_Ref(sum);

Cudd_RecursiveDeref(manager, and1);
Cudd_RecursiveDeref(manager, and2);

Exercise: write the code for carry.

SDL (Lab) CUDD Lecture 01 25 / 34

Restricting the BDD

Restricting a BDD means assigning a truth value to some of
the variables.
The Cudd_bddRestrict() function returns the restricted BDD.

6.3 Restricting the BDD

Listing 12: This function will restrict BDD to the BDD represented by restrictBy

DdNode ∗ Cudd bddRestrict (
DdManager ∗ manager , // DD manager
DdNode ∗ BDD, // The BDD to r e s t r i c t
DdNode ∗ r e s t r i c tBy) // The BDD to r e s t r i c t by .

The following is code to restrict a BDD to a set of assignments to its inputs. It takes a node to restrict and a
map of assignments to inputs. The key of the map is the index of the variable to assign and the value is whether
to assign it to true or to false. The function returns the original BDD restricted to the assignment.

Listing 13: This function uses restrict to test the BDDs created in listing 5

void t e s t (DdManager∗ manager , DdNode ∗∗node)
{

DdNode ∗x0 = Cudd bddIthVar (manager , 0) ;
DdNode ∗x1 = Cudd bddIthVar (manager , 1) ;

const int SIZE=4;
DdNode∗ r e s t r i c tBy [SIZE] ;
DdNode∗ testSum [SIZE] ;
DdNode∗ t e s tCarry [SIZE] ;

// Re s t r i c t by the f o l l ow i n g ass ignments
r e s t r i c tBy [0] = Cudd bddAnd(manager , Cudd Not (x0) , Cudd Not (x1)) ; // x1=0 and x2=0
r e s t r i c tBy [1] = Cudd bddAnd(manager , Cudd Not (x0) , x1) ; // x1=0 and x2=1
r e s t r i c tBy [2] = Cudd bddAnd(manager , x0 , Cudd Not (x1)) ; // x1=1 and x2=0
r e s t r i c tBy [3] = Cudd bddAnd(manager , x0 , x1) ; // x1=1 and x2=1

for (int i =0; i<SIZE ; i++) {

Cudd Ref (r e s t r i c tBy [i]) ; // Reference r e s t r i c tBy

// Now r e s t r i c t by the new func t i on s
testSum [i] = Cudd bddRestrict (manager , node [0] , r e s t r i c tBy [i]) ;
t e s tCarry [i] = Cudd bddRestrict (manager , node [1] , r e s t r i c tBy [i]) ;

Cudd RecursiveDeref (manager , r e s t r i c tBy [i]) ; // c l ean up r e s t r i c tBy
}

c e r r << ” (x1=0, x2=0): sum = ” << 1−Cudd IsComplement (testSum [0])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [0]) << endl
<< ” (x1=0, x2=1): sum = ” << 1−Cudd IsComplement (testSum [1])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [1]) << endl
<< ” (x1=1, x2=0): sum = ” << 1−Cudd IsComplement (testSum [2])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [2]) << endl
<< ” (x1=1, x2=1): sum = ” << 1−Cudd IsComplement (testSum [3])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [3]) << endl ;

for (int i =0; i<SIZE ; i++) {
Cudd RecursiveDeref (manager , testSum [i]) ;
Cudd RecursiveDeref (manager , t e s tCarry [i]) ;

}
}

9

BDD is the original BDD to restrict.
restrictBy is the truth assignment of the variables.

SDL (Lab) CUDD Lecture 01 26 / 34

Print the truth table

DdNode *restrictBy;
restrictBy = Cudd_bddAnd(manager, x1, Cudd_Not(x2));
Cudd_Ref(restrictBy);

DdNode *testSum;
testSum = Cudd_bddRestrict(manager, sum, restrictBy);
Cudd_Ref(testSum);
DdNode *testCarry;
testCarry = Cudd_bddRestrict(manager, carry, restrictBy);
Cudd_Ref(testCarry);

printf("x1 = 1, x2 = 0: sum = %d, carry = %d\n",
1 - Cudd_IsComplement(testSum),
1 - Cudd_IsComplement(testCarry));

Cudd_RecursiveDeref(manager, restrictBy);
Cudd_RecursiveDeref(manager, testSum);
Cudd_RecursiveDeref(manager, testCarry);

Exercise: Write the code for the complete truth table.

SDL (Lab) CUDD Lecture 01 27 / 34

Print the BDD with graphviz

The function Cudd_DumpDot() dumps the BDD to a file in
GraphViz format.

The .dot file can be converted to a PDF by the command dot:

$ dot -O -Tpdf half_adder.dot

SDL (Lab) CUDD Lecture 01 28 / 34

Print the BDD: C code

char *inputNames[2];
inputNames[0] = "x1";
inputNames[1] = "x2";
char *outputNames[2];
outputNames[0] = "sum";
outputNames[1] = "carry";

DdNode *outputs[2];
outputs[0] = sum;
Cudd_Ref(outputs[0]);
outputs[1] = carry;
Cudd_Ref(outputs[1]);

FILE *f = fopen("half_adder.dot", "w");

Cudd_DumpDot(manager, 2, outputs, inputNames, outputNames, f);

Cudd_RecursiveDeref(manager, outputs[0]);
Cudd_RecursiveDeref(manager, outputs[1]);
fclose(f);

SDL (Lab) CUDD Lecture 01 29 / 34

Variable reordering

The order of variables can have a tremendous effect on the
size of BDDs.

CUDD provides a rich set of tools for reordering BDDs:
▶ Automatic reordering (using heuristics) when the number of nodes

in the BDD passes a certain threshold.
▶ Manual reordering using different heuristics.
▶ Manual reordering with a user-specified variable order.

The function Cudd_ShuffleHeap() is used to define the
variable order:

The final parameter is the minimum number of nodes that must be in the BDD in order to reorder. This
prevents the cost of reordering small enough BDDs.

6.2.2 Automatic Reordering

Alternatively, ordering can be triggered automatically when the number of nodes in the BDD passes a certain
threshold. The following is the functions used for dynamic reordering (it is tuned off by default):

Listing 7: Function to turn on automatic reordering of variables.

Cudd AutodynEnable (
DdManager ∗ manager , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing

)

The parameters passed are the same as for Cudd ReduceHeap.

Listing 8: Function to turn on automatic reordering of variables.

Cudd AutodynEnable (
DdManager ∗ unique , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing

)

6.2.3 Other useful reordering functions

Listing 9: A function to order variables according to a specified order as opposed to a heuristic.

int Cudd ShuffleHeap (
DdManager ∗ manager , // DD manager
int ∗ permutation // requ i r ed v a r i a b l e permutat ion

)

The permutation is an array of positions in the order. The value of the ith slot in the array represents the position
of the variable with index i.

Listing 10: A function to return the position in the order of the ith variable.

int Cudd ReadPerm(
DdManager ∗ manager , // DD manager
int i // The v a r i a b l e to g e t the p o s i t i o n o f

)

Listing 11: A function to return the variable index of the variable currently at position pos.

int Cudd ReadInvPerm(
DdManager ∗ manager , // DD manager
int pos // The po s i t i o n o f the v a r i a b l e index to ge t

)

8

SDL (Lab) CUDD Lecture 01 30 / 34

Exercise: play with the variable order!

Create the BDD for the function x1x2 + x3x4 + x5x6.

Try the following variable orders and compare the results:
▶ x1 < x2 < x3 < x4 < x5 < x6
▶ x1 < x3 < x5 < x2 < x4 < x6

HINTS
int Cudd_ReadPerm(manager, x2->index) returns the
position of variable x2 in the order.
int Cudd_ReadNodeCount(manager) returns the number of
nodes in the BDD.

SDL (Lab) CUDD Lecture 01 31 / 34

Converting BDDs to ZDDs

Many applications first build a set of BDDs and then derive
ZDDs from the BDDs.

These applications should create the manager with 0 ZDD
variables and create the BDDs.

Then they should call Cudd_zddVarsFromBddVars() to create
the necessary ZDD variables–whose number is known once the
BDDs are available.

SDL (Lab) CUDD Lecture 01 32 / 34

Converting BDDs to ZDDs (cont’d)

The simplest conversion from BDDs to ZDDs is a simple change
of representation, which preserves the functions.

Simply put, given a BDD for f , a ZDD for f is requested. In this
case the correspondence between the BDD variables and ZDD
variables is one-to-one.

Hence, Cudd_zddVarsFromBddVars() should be called with
the multiplicity parameter equal to 1.

The conversion can then be performed by calling:
Cudd_zddPortFromBdd().

The inverse transformation is performed by calling:
Cudd_zddPortToBdd().

SDL (Lab) CUDD Lecture 01 33 / 34

The N-Queens problem

The N-Queens problem is the
problem of placing N
non-attacking queens on an
N × N chessboard.

Our implementation of these
benchmarks is based on the
description of Kunkle10. We
construct a ZDD row-by-row to
represent whether the row is in a
legal state.

On the accumulated ZDD we then
count the number of satisfying
assignments.

SDL (Lab) CUDD Lecture 01 34 / 34

https://dl.acm.org/doi/abs/10.1145/1837210.1837222

	Introduction
	Basic Architecture
	Basic Functions
	Example: Half-Adder
	Variable reordering
	Converting BDDs to ZDDs and Vice Versa

