Systems Design Laboratory

Extended Finite (State) Automata

1Department of Mathematics, University of Padova, ITALY

2Department of Computer Science, University of Verona, ITALY

Plant Level Synchronization

Graphical Description Parallel composition

remove

finish

finish

e \When the machine is BUSY and the warehouse is FULL,

despite that finish is uncontrollable, the machine cannot
execute it since finish is not executable by the warehouse.

Plant level synchronization can prevent (uncontrollable) events
from being executed. 1

Supervisor Synthesis: Workflow

FORMALIZATION OF PLANT MODULES

NATURAL LANGUAGE ‘NATURAL LANGUAGE
DEFINITION OF DEFINITION OF DEFINITION OF

PLANT MODULE 1 PLANT MODULE 2 PLANT MODULE N

v

ESSENTIAL ESSENTIAL ESSENTIAL
AN G, AN G, REQUIREMENT REQUIREMENT REQUIREMENT
o ~ AUTOMATON R, AUTOMATON R, AUTOMATON Ry,

‘NATURAL LANGUAGE

NATURAL LANGUAGE NATURAL LANGUAGE NATURAL LANGUAGE
oF oF oF
REQUIREMENT 1 REQUIREMENT 2 REQUIREMENT M

| PLANT.

[

N

PARALLEL COMPOSITION PARALLEL COMPOSITION
6:=61 11621111 G R1lIRy | Ry
(PLANT AUTOMATON G) (REQUIREMENT AUTOMATON R)

SUPERVISOR SYNTHESIS

Warning: in the parallel G||H we need:

1. Remove non-coaccessible states (blocking)
2. Remove states such that uncontrollable events are allowed by the plant but not
by the requirement.

Machine-Warehouse example

Requirement 1: The warehouse stores at most one workpiece

MACHINE MACHINE MACHINE

MACHINE MACHINE

(FuLL) (1oLE) (FuLL)

Example 1: Synthesis Algorithm - Tentative Supervisor

Plant Automaton G Requirement R;

remove

finish

start finish start

{B.E}
NG

remove

remove

start
Parallel composition G| Ry
remove

finish

remove

Example 1: thesis Algorithm - Removal of states

Plant Automaton G Requirement R;

remove

finish

start

remove

remove
(B.F} start m finish

We remove {B, H, H} since
{B, H} (plant) enables finish,

whereas {H} (requirement) does
not.

Parallel composition G| Ry

remove

start @ finish

Can we modify the approach to model the executions of G
that are forbidden by R as blocking problems?

Supervisor Synthesis: Forbidden Executions as Blocking

NATURAL LANGUAGE NATURAL LANGUAGE

FORMALIZATION OF PLANT MODULES
NATURAL LANGUAGE NATURAL LANGUAGE NATURAL LANGUAGE NATURAL LANGUAGE
DEFINITION OF DEFINITION OF DEFINITION OF oF oF oF
PLANT MODULE 1 PLANT MODULE 2 PLANT MODULE N REQUIREMENT 1 REQUIREMENT 2 REQUIREMENT M

o

ESSENTIAL ESSENTIAL ESSENTIAL
AN G, AN G, AN G, REQUIREMENT REQUIREMENT REQUIREMENT
g o ~ AUTOMATON R, AUTOMATON R, AUTOMATON Ry,

Ny

PARALLEL
6:=61116211. 116Gy 1R
(PLANT AUTOMATON G')
SUPERVISOR SYNTHESIS

| > SUPERVISOR SYNTHESIS
ALGORITHM RUNS ON G'
UNCONTROLLABLE SUPERVISOR
(EMPTY SUPERVISOR) (AUTOMATON)

Supervisor synthesis can be seen as a modified version of trim that also

PARALLEL COMPOSITION
INTO PLANT R:=Ry IRz
AUTOMATON R’ (REQUIREMENT AUTOMATON R)

takes into consideration the removal of uncontrollable events from G’.

This way, we only need to reason on G’.

Forbidden Plant Executions as Blocking Problems

Problem:

e Input: A plant G and a requirement R.
e Output: A requirement R’ that models the “forbidden”
executions of G in a way that such executions will appear as

blocking problems in G||R’.

Requirement R
finish A 2?27
start o

remove

Forbidden Plant Executions

Start with a copy of R;.

Requirement R; Requirement R}
finish ~ finish
start start
remove remove

Forbidden Plant Executions as Blocking Problems

Add a forbidden state ¢. Leave the state unmarked.

Requirement R; Requirement R]
finish finish
start start
remove

remove

©

Forbidden Plant Executions as Blocking Problems

For each state s of R and each event e of R{, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R;
finish A finish

Ctart start

(eqove remove

©

10

Forbidden Plant Executions as Blocking Problems

For each state s of R and each event e of R{, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R;
finish s finish

Etart start

LeqIove remove

©

What about state E?

11

Forbidden Plant Executions as Blocking Problems

For each state s of R] and each event e of Ry, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R]
finish XA finish
start start

remove remove

remove

©

Add a transition E — ¢ labeled by remove.

12

Forbidden Plant Executions as Blocking Problems

For each state s of R and each event e of R{, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R;
finish s finish

Etart start

LeqIove remove

remove

©

What about state H?

13

Forbidden Plant Executions as Blocking Problems

For each state s of R] and each event e of Ry, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R]
finish A finish

start start

remove remove

remove finish

Add a transition H — ¢ labeled by finish.

14

Forbidden Plant Executions as Blocking Problems

For each state s of R] and each event e of Ry, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R]
finish A finish

start start

remove remove

remove finish

What about ¢ itself?

15

Forbidden Plant Executions as Blocking Problems

For each state s of R] and each event e of Ry, if e cannot be
executed from s add a transition from s to ¢ labeled by e.

Requirement R; Requirement R;
finish

finish A

start start

remove remove

%

remove, finish

remove

finish

Add self-loops transitions for all events of Rj (special cases of the
statement above: “for each state” = ¢ included).

16

The parallel composition

Plant G Requirement R]

remove

finish

start

remove

finish

remove

remove, finish

remove

Executions of G allowed by R (i.e., G||R])

remove remove

finish

remove

remove

finish

Executions of G allowed by Ry Executions of G forbidden by R

17

Supervisor Synthesis

Executions of G allowed by Ry (i.e., G||R;)

remove remove

remove
finish

Executions of G allowed by Ry Executions of G forbidden by R;

What next? Can you think about a straightforward algorithm to
synthesize a supervisor (or prove than none exists)?

18

Forbidden states

Some states are more equal than others.

Executions of G allowed by R; (i.e., G||R})

remove remove

remove
finish

Executions of G allowed by Ry Executions of G forbidden by R;

Forbidden(G||Ry) := {(g, r) € States(G||Ry) | r = ¢}

19

Borderline forbidden states

Executions of G allowed by Ry (i.e., G||Ry)

remove remove

remove

Executions of G allowed by Ry Executions of G forbidden by Ry

A forbidden state (g, ¢) is called border forbidden if there exists a
non-forbidden state (g, r’) from which we can reach (g, ®) by

executing some transition.

What is/are the border forbidden state/s in this example?

20

Borderline forbidden states

Executions of G allowed by Ry (i.e., G||R})

remove remove

finish

remove
finish

Executions of G allowed by Ry Executions of G forbidden by Ry

{I,F, ¢} is border forbidden.

21

Considerations on forbidden states

Executions of G allowed by R (i.e., G||R])

remove remove

remove
finish

Executions of G allowed by Ry Executions of G forbidden by Ry

e Once we enter a forbidden state, we remain in forbidden states
(why?).
e What about keeping only the border forbidden ones?

22

Supervisor Synthesis

Executions of G allowed by Ry (i.e., G||Ry)

remove remove

remove

Executions of G allowed by Ry Executions of G forbidden by Ry

Step 1: remove all forbidden states that are not border forbidden.

23

Supervisor Synthesis

Executions of G allowed by Ry (i.e., G||Ry)

remove

finish

Executions of G allowed by Ry Executions of G forbidden by Ry

Step 1: remove all forbidden states that are not border forbidden.

24

Supervisor Synthesis

Executions of G allowed by Ry (i.e.. G||R;)

remove

finish

Executions of G allowed by Ry Executions of G forbidden by R;
o_{]
Step 2: S := Trim'(G||Ry).

Trim' is an extension of the classic trim such that every time a
transition with an uncontrollable event is removed, the trim
removes also the source state of that transition (even if that state

is both accessible and coaccessible). .

Supervisor Synthesis

Executions of G allowed by Ry (i.e., G||R;)

remove

finish

Executions of G allowed by Ry Executions of G forbidden by R;

e {/,F,¢} is non-coaccessible, thus we need to remove it.

e Watch out! The removal of {/, F, ¢} causes the removal of
finish which is uncontrollable. Thus, {B, H, H} must be
removed too.

26

Supervisor Synthesis

Executions of G allowed by Ry (i.e.. G||R;)

remove

Executions of G allowed by Ry Executions of G forbidden by R;

e {B H, H} is both accessible and non-coaccessible but needs to
be removed because of the removal of a blocking state.

e Notice that a controllability problem is cast as a blocking
problem.

e We no longer need to reason on the original G!
27

Supervisor Synthesis

Executions of G allowed by Ry (i.e., G||Ry)

remove

Executions of G allowed by Ry Executions of G forbidden by Ry

Final supervisor! Looks familiar?

28

Supervisor Synthesis

Executions of G allowed by R; (i.e., G||R})

remove

finish

Executions of G allowed by Ry Executions of G forbidden by R;

Can we improve R] so as to generate directly this G||R;?

29

Current R]

Plant G Requirement R;

remove

finish

remove

finish

remove

finish

remove, finish

remove

Executions of G allowed by Ry (i.e., G||R;)
remove remove

finish finish

remove

finish

- remove
finish

30
Executions of G allowed by Ry Executions of G forbidden by R;

Improvement 1: Add self-loops

Plant G

remove

remove

remove

Executions of G allowed by Ry

all missing events

Requirement R;

start start

remove

finish

remove, finish, start

Executions of G allowed by Ry (i.e., G||R;)
remove

finish finish

remove

finish

- remove
finish

Executions of G forbidden by Ry

31

Remove all self-loops at ¢

Plant G Requirement R;

remove

start start

remove

finish

finish

remove

Executions of G allowed by Ry (i.e., G||R;)

remove

finish

finish

32
Executions of G allowed by Ry Executions of G forbidden by R;

Remove all controllable transition leading to ¢

Plant G Requirement R;

remove

start start

start

remove

finish
remove

finish

remove

Executions of G allowed by Ry (i.e., G||R;)

remove

finish

finish

Executions of G allowed by Ry Executions of G forbidden by R;

33

Extended Finite Automata: Locations and marking

©

The nodes of the graph representation.

34

Extended Finite Automata: (Un)Controllable events

€1

start 0

Events still label transitions.

35

Extended Finite Automata: Variables
®

€

There is an underlying layer of discrete variables.

e Each variable x has a finite domain D(x).

e Each variable x has an initialization value /(x) € D(x).
Here, x € D(x) ={0,1,2,3,4,5,6,7,8,9} and /(x) := 0.
We show x in a minute.

36

CIF basics: Discrete variables with finite domain

e A discrete variable is specified by the
controllable el;

uncontrollable e2: keyword “disc” followed by:

e its type;
plant G: i £ val £ i
disc int[0..9] x = O; e its range of values (if we want its
location LO: initial; marked; domain to befﬂﬂtex

e its initialization (default O for
integers).
location L1: g)

end

More on initialization and types: https://www.eclipse.org/escet/
37
cif/language-tutorial/data/discvar-init.html

https://www.eclipse.org/escet/cif/language-tutorial/data/discvar-init.html
https://www.eclipse.org/escet/cif/language-tutorial/data/discvar-init.html

CIF basics: Transition guards

Transition guards are predicates over the variables.

e1;x <8

controllable el;
uncontrollable e2;
e A guard is specified by
pilemE Ge the keyword “when”.
disc int[0..9] x = 0;
location LO: initial; marked;
edge el when x < 8 goto L1;

location L1:
edge e2 when x <= 9 goto LO;

end
38

Extended Finite Automata: Transition updates

fi(x)
—
e x <8 x:=x+2

©

ex<9x =x+1
——
f2(x)
e Transition updates are functions of the variables guaranteeing that
the new value of each variable x remains in D(x).
e E.g., assuming that the current value of x € D(x) :={0,...,9}
fi(x) :=(x +2) mod 10
fr(x) :==(x+1) mod 10

guarantee that the new value of x remains in D(x) :={0,...,9}

(similar to the overflow semantics of unsigned integers in C/C++). 4

Extended Finite Automata: Transition updates

e; true;

x=y+1ly=x+1
start —(Lo :@

Suppose D(x) = D(y) ={0,...,9} and /(x) = I(y) = 1.

Question: what are the values of x and y after executing the
transition?

1) x=2and y =3
2) x=3and y =2
3) x=2and y =2

40

Extended Finite Automata: Transition updates

e; true;

x=y+1ly=x+1
start —(Lo :@

Suppose D(x) = D(y) ={0,...,9} and /(x) = I(y) = 1.

Question: what are the values of x and y after executing the

transition?
1) x= = e Updates are not sensitive to the order in
2) x= _ which we execute the statements.
3) x=2and y =2 e x:=y+1,y:=x+1is equivalent to

y=x+1lx:=y+1

e What really happens is x := y’ + 1 and
y :=x"+ 1, where x’ and y’ are the values of
x and y before executing the transition. 41

CIF basics: Transition updates

controllable el;
uncontrollable e2;
e An update is specified
plantiGh by the keyword “do”.
disc int[0..9] x = 0;
location LO: initial; marked;
edge el when x < 8 do x := x + 2 goto L1;

location L1:

edge e2 when x <= 9 do x := x + 1 goto LO;

end

42

Extended Finite Automata: Transition execution

e x <8 x:=x+4+2

e x<9%x:=x+1

e Transition guards are predicates over the variables

e A transition (no matter if the labeling event is controllable or
uncontrollable) can be executed from a location L if:

1. the current location is L;
2. the current value of the variables satisfies the guard.

For example, if in L1 we have that x = 10, then the uncontrollable
transition labeled by e; cannot be executed.

43

Extended Finite Automata: Non-determinism

e-
SO

In general, two transitions are non deterministic if:
1. they are labeled by the same event;
2. the intersection of their guards is non empty.

Note that non determinism might not actually exist if the values of the
variables exclude it. Suppose D(x) := {0,...,9} and that the current
location is L. We have three cases:

1. if x < 3, then only the transition above can be executed;
2. if x > 8, then only the transition below can be executed;

. . 44
3. if 3 < x < 8, then both transitions can be executed.

Extended Finite Automata: States

State = (Location, values of the variables)

e x <8 x:=x+42

@

e x <9 x:=x+1

E.g., if I(x) = 0, then at the beginning the initial state is (Lo, 0).

45

Extended Finite Automata: Expressiveness

State = (L, x)

ex <8 x:=x+4+2

e:x<9x:=x+1

Extended Finite Automata have the same expressive power of Finite
State Automata. Indeed, every Extended Finite Automata can be easily

encoded into a Finite State Automata. For our example:

start

In ESCET see CIF miscellaneous tools -> Explore untimed

46
state space

Parallel composition of extended finite automata

Assumption regarding variables

Like events, a variable x may appear in different automata provided
it complies with the following “local write/global read” contract.

Local write: x is written by one and only one automaton only;
Global read: x can be read by all automata.

This way, we avoid

1. mismatching domains for the same variable in different automata;

2. mismatching initial values for the same variable in different
automata;

3. transitions that due to synchronization write conflicting values for
the same variable.

- x . 47
In other words, it is a form of “concurrency safety”.

Parallel composition of extended finite automata

Automaton A Automaton B
ax <8 x:=x+2 ajy <3y :=2x
Start @ start e
bix <9 x:=x+1 Cx+y=6

Automaton A||B
When synchronizing over the

C-,x+yf;6

same events, the parallel
composition:

ax<8Ay<3; 5 .
R B 1. conjuncts the guards

2. joins the updates

48

Supervisory control of extended finite automata

Plant G Requirement R
e, x <8 x:=x+2 e1:x < 8

start e start @
e x<9x:=x+1 e x <7

Automaton G|R

e x <8 x:=x+2

start
e x<Tix:=x+1
Suppose that D(x) := {0,...,9} and /(x) = 0.
Can you spot any problem?

49

Supervisory control of extended finite automata

Plant G Requirement R Automaton G|R

e;;x <8 x:=x+2 e x <8

7 N\
O ey (®) s
=
;X <
.

e;x <9 x:=x+1 =7
1

- e x <8 x:=x+2

start

Problem: Consider the state ((G1, R1),8) of G||R. Then,

e the plant G is in state (Gi,8) and in that state G can actually
take the uncontrollable transition labeled by e; since x < 9;

e the requirement R is in state (R, 8) and disables the
transition labeled by e since R requires that x < 7, which is
not. But e is uncontrollable, so R can’t actually do that. 50

Supervisory control of extended finite automata

Plant G Requirement R Automaton G|R

e x <8 x:=x+2 e;;x <8 e x <8 x:=x+2

- .
start
sor () O

e;x<9x:=x+1 eix <7

In supervisory control of extended finite automata:

1. we do not explode the original extended finite automata into finite
state automata;

2. we work symbolically by tightening the guards of the controllable
transitions of the initial supervisor rather than removing locations.

51

Supervisory control of extended finite automata

However, we need to keep track of all executions that are:
1. possible in the plant;
2. forbidden by the requirement.

Plant G Requirement R Automaton G||R

e x <8 x:=x+2 eix <8

start
@ Stet @ e start

e;x<9%x:=x+1 eix <7

e x <8 x:=x+2

Is G||R OK for this purpose?

52

Supervisory control of extended finite automata

We need to keep track of all executions that are:
1. possible in the plant;

2. forbidden by the requirement.

Plant G Requirement R Automaton G|R

enx <8 x:=x+2 e1;x <8

start @.@ start @ e start

e;x<9%x:=x+1

e;x <8 x:=x+2

g ex<T;x:=x+1

Is G||R OK for this purpose?
No! It totally misses all executions of G that are forbidden by R.

However, we know how to rewrite R into an R’ so that all forbidden

executions of the plant are kept in G||R’, don’t we?

53

Forbidden Plant Executions

Plant G Requirement R Requirement R’

e;;x < 8 x:i=x+2 e;x<8 e;;x <8

start (o) st (%)

e;x<9x:=x+1 enx <7

€.

Automaton G| R’

Executions of G allowed by R’ (i.e., G||R’)

e;x <BAx2>8x:=x+2

enx <8 x=x+2 e x <8 x:=x+2

e;x<9x:=x+1

e 7<x<9x:=x+1
e;x <Tjx:=x+1

Executions of G allowed by R Executions of G forbidden by R 54

Essential R’ - Keep Border Forbidden State Only

Plant G Requirement R

e;;x <8 x:=x+2

Requirement R’

e;x <8

e;x <8
® - ® ®

e;x<9x:=x+1 eix <7

Automaton G| R’

Executions of G allowed by R’ (i.e., G||R’)

e;x <8 x:=x+2

eyx<Tix:=x+1

Executions of G allowed by R Executions of G forbidden by R

e Now we can work at plant level

55
e Controllability problems will be modeled as blocking problems

Supervisory control of extended finite automata

560 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 8, NO. 3, JULY 2011

Nonblocking and Safe Control of Discrete-Event
Systems Modeled as Extended Finite Automata

Lucien Ouedraogo, Member, IEEE, Ratnesh Kumar, Fellow, IEEE, Robi Malik, and Knut Akesson

Abstract- Finite (EFA), i.e., finite automata
with vari are a suitable modeling framework for
discrete event systems owing to their compactness, resulting from
the use of variables. In this paper, we propose a symbolic algorithm
that efficiently synthesizes a supervisor for a plant modeled by an
EFA and a speclﬁcatmn defined by another EFA. The principle of
the is to iteratively hen the guards of the plant
EFA so that forbidden or blocking states become unreachable in
the lled plant. As a of the algorithm, the con-
trolled behavior is modeled by an EFA having the same structure
as the plant EFA, having stronger guards and is shown to be max-
imally permissive. We illustrate our algorithm via a simple manu-
facturing example.

Note to Practitioners—A compact way of modeling event-driven
systems is to use state-variables, instead of an explicit enumera-
tion of the states. This paper uses such a model for representing
the system to be controlled as well as its desired behaviors, and de-
velops a symbolic approach, that avoids explicit enumeration of the
state-space, for control synthesis. The contribution is the symbolic
computation of a safe (avoids reaching forbidden states) and non-
blocking (avoids getting blocked at non final states) controller that
is also maximal (permits all safe and nonblocking behaviors). The
results are i via a simple f: ing system.

Index Te -Discrete t-systems, finite
(EFA), supervisory control.

The extended finite (EFA) fi k, obtained by
ing a standard finite-stat on (FSA) with vari-
ables and predicates over them [3]-[6], provides a compact rep-
resentation of a DES. In this paper, we propose a symbahc ap-
proach for synthesizing the most p ive locking and
safe supervisor for DES modeled by EFA with data varlables
of finite domains. Our approach resolves some limitations of
the existing approaches and is efficient in exploiting the model
structure due to the symbolic representation and symbolic com-
putations (i.e., over sets of states, rather states). Moreover, our
algorithm leads to more efficient representation of controllers
(symbolic representation instead of state-transitions representa-
tion) and the symbolic computation of guards and predicates,
that are Boolean operations, can be efficiently implemented by
BDDs .

Supervisory control methods that use the EFA framework are
proposed in [5]-[11]. The method of [5] does not preserve the
structure of the plant EFA in control computation, and does not
consider blocking issues or nondeterminism. References [6] and
[7] propose methods for representing a supervisor synthesized
in the FSA modeling framework by EFA. In [8], the supervisory
control problem for EFA is solved by transforming the EFA into
ordinary FSA, and [9] proposes a method for converting EFA

56

Supervisory control of extended finite automata - algorithm

We start from the parallel composition G||R’, where R’ is
augmented to keep track of forbidden plant executions.

e x <8 x:=x+2

e 7T<x<9x:=x+1

e x<T;x:=x+1

After that we repeat the following three steps until fixpoint:

1. compute the non-blocking conditions;
2. compute the bad state conditions;

3. tighten guards of transitions with controllable events only.

The resulting extended finite automaton is the supervisor if and
only if the initial state is not bad (we'll see later).

57

Before we start

In the following, we will often use this notation
Plu]

The meaning of this notation is a predicate obtained by P in which all
occurrences of the variables of P are replaced by the right-hand sides of
their updates in u.

To give some examples:

e x = 3[x := 5] becomes 5 = 3 and thus false;
e x > T7[x:=y+ 1] becomes y +1 > 7 and thus to y > 6;
e x>y —3[x:=y—x,y:=2] becomes y — x > 2 — 3 and thus
y—x>-1;
e x+y=7z[x:=y,y:=x,z:=x+y] becomes y + x = x + y and
thus true.
58

Non-blocking conditions

e The first phase of the algorithm requires to compute for each
location of G||R’ a predicate that states for which values of
the variables the location is nonblocking.

e This is done iteratively until such predicates no longer change.

The concrete operations are the following.

true if L is a marked location

e Initialization: N, :=]
false otherwise

[) Update: N[_ = N[_ \/ (\/L e;g;u L/(g /\ NLI[U]))

59

Step 1 - Non-blocking conditions - Iteration 1

o true if L is a marked location
Initialization: N; :=
false otherwise

e x <8 x:=x+2

e, 7T<x<9%x:=x+1
start (GLRI) ;7 < x < 9;x:=x (Gos 9)

e x<Tx=x+1

Iteration N(GO,Ro) N(Gl,Rl) N(Go,¢)

1 true false false

60

Step 1 - Non-blocking conditions - Iteration 2

Update: Ny := N,V (\/L eigiu L,(g A N [ul))

«; [, 2
;7T <x<9x:=x+1

e x<Tx=x+1

Iteration NG, ry) Nir) NG

1 ‘true false false

2 true

N ey = B (R e)

= true V (x < 8 A false)

= true

61

Step 1 - Non-blocking conditions - Iteration 2

Update: Ny := N,V (\/L eigiu L,(g A N [ul))

e;x <8 x:=x+2

T<x<9%x:=x+1
start (GLRI) e;7<x<9;x:=x (Go, 9)

ex<T;x:=x+1

Iteration Nig, ry) Nir) NG

1 true false false
2 true x <7

NG, ry) = false V ((x <7 A true[x := x +1]) V (7 < x < 9 A false[x := x 4 1]))
= false V (x < 7V false)
= false V x <7

=x<7
62

Step 1 - Non-blocking conditions - Iteration 2

Update: NL = NL V (\/L eigiu L’(g AN NL/[U]))

e x <8 x:=x+2

T<x<9x:=x+1
start (oW) R [7)

e x<Tix=x+1

Iteration NG, ry) Nir) NG

1 true false false
2 true x <7 false

N(G,,¢) := false

63

Step 1 - Non-blocking conditions - Iteration 3

Update: Ny := N,V (\/L eigiu L,(g A N [ul))

e x <8 x:=x+2

T<x<9x:=x+1
start (GLRI) e;7<x<9;x:=x (Go, 9)

ex<T,x:=x+1

Iteration Nig, ry) Nir) NG

1 true false false
2 true x <7 false
3 true

N(Go,Ro) = true V (x <8 A x < 7[x := x +2])

= true

64

Step 1 - Non-blocking conditions - Iteration 3

Update: Ny := N,V (\/L eigiu L,(g A N [ul))

e;x <8 x:=x+2

T<x<9%x:=x+1
start (GLRI) e;7<x<9;x:=x (Go, 9)

ex<T;x:=x+1

Iteration Nig, ry) Nir) NG

1 true false false
2 true x <7 false
3 true x <7

NG, ry) = x < TV ((x <7 Atrue[x := x4+ 1]) V (7 < x <9 A false[x := x +1]))
=x<TV(x<TV false)

=x<7
65

Step 1 - Non-blocking conditions - Iteration 3

Update: Ny := N,V (\/L eigiu L,(g A N [ul))

e;x <8 x:=x+2

T<x<9%x:=x+1
start (GLRI) e;7<x<9;x:=x (Go, 9)

ex<T;x:=x+1

Iteration Nig, ry) Nir) NG

1 true false false
2 true x <7 false
3 true x <7 false

N(G,,¢) := false

We reached a fixpoint so we are done with this step for the

moment. 66

Bad state conditions

The synthesis algorithm must not restrict uncontrollable events

Restrictions on uncontrollable events are propagated backwards
until an edge with a controllable event is encountered.

This is achieved by the bad state condition computation.

We compute a bad state condition for each location.

This is done iteratively until such predicates no longer change.

The concrete operations are the following.

e Initialization: By := N,

[] Update B[_ = BL V (\/L e;g;u L/7e€Eu
an uncontrollable event.

(g A Bps[u])) where e is

67

Step 2 - Bad state conditions - Iteration 1

Initialization: B, := —N|

e;x <8 x:=x+2

e 7T<x<9x:=x+1
start (GLRI) ;7 < x < 9;x:=x (Go, 9)

e x<Tx=x+1

Iteration NG, ry) Nir) NG

3 true x <7 false

!

Iteration B(g, r,) Bici.ri) B(Go.o)
1 false x>17 true

68

Step 2 - Bad state conditions - Iteration 2

Update: By := B V (\/L 81 e (g A Brr[u]))

e x <8 x:=x+2

TT<x<9%x:=x+1
start (G1, R1) L (Go, b)

e x<T;x=x+1

Iteration B, r,) BiGi,ri) B(Goo)
1 false x=>7 true
D false

B(Go,Ro) := false

69

Step 2 - Bad state conditions - Iteration 2

Update: By := B V (\/L 81 e (g A Brr[u]))

e;x <8 x:=x+2

start (G, Ry) - ; (Go,)

Iteration B(Go,Ro) B(Gl,Rl) B(G0,¢>)

1 false - true

2 false x>7

Bc vy — D (O e) (BN
x >7V (falsev7 < x<9)
=x>7V (7T <x<9)

= x>7
70

Step 2 - Bad state conditions - Iteration 2

Update: By := B V (\/L 81 e (g A Brr[u]))

e x <8 x:=x+2

i T<x<9x:=x+1
start (G1, R1) 2 . SR (Go, b)

e x<T;x=x+1

Iteration B, r,) BiGi,ri) B(Goo)
1 false x>7 true
2 false x>7 true

B(G07¢) = true

71

Tightening of controllable guards

e Bad state conditions express which combinations of values of
variables need to be avoided in a specific location, considering
that guards of uncontrollable events can’t be touched.

e The guards of the edges with a controllable event are updated
by adding as a conjunct the expression =B [u] where By [u] is
the bad state condition of the target location L.

The concrete operation is the following.

o L SEY 17 with e € E, is tightened to L SEA28ule),

72

Step 3 - Tightening of guards labeled by controllable events

Tightening the transition labeled by e;.

€1;

e 7T<x<9x:=x+1

e x<Tx=x+1

=BGy ,Ry) [x:=x+2]

B 1 (x> 7 ()
=x<8AN(x+2>7)
=x <8A-(x >5)

Iteration B(Go,Ro) B(G1«,R1) B(Goxb)

2 false x>7 true =Xx<8AXx<5

= PEES

e; x<5;x:=x+2

7T<x<9;x:= 1
start (G1,R1) ;7 <x<9x:=x+ (Go, 9)
73

enx<T,x:=x+1

Are we ready to go?

o If we iterate all three steps again (on the tightened G||R’)
nothing changes.
e This resulting automaton is our tentative supervisor.

e x <5 x:=x+2

T<x<9x:=x+1
start (G Ry) == T L ((Gov)

ex<T;x:=x+1

Control exists if the initial conditions on the variables do not satisfy
the bad location predicate of the initial location.

Iteration B, r) Bii.r) BiGes) x =0} B(Go,Ro)
2 false x>7 true x=0 F& false
true

74
We have control!

State-based requirements

e When looking at case studies, we often observe that system
requirements are naturally expressed in terms of conditions
over states.

e Designers can express requirements more easily by using such
state-based specifications because they naturally follow from
informal, intuitive requirements

Two kinds of state-based requirements:

1. Event conditions;

2. Invariants.

75

State-based requirements: event conditions

Let E :={e1,...,e,} be a set of events. An event condition is an

expression of the form:
E = Pred

meaning that the events in E can only be executed if Pred is

satisfied.
start requirement R:

location:

initial;

en; Pred @ er; Pred marked:
edge el,...,en when Pred;

e Pred end
More compactly: requirement R: {el,...,en} needs Pred;

76

State-based requirements: event conditions

Let x be a discrete variable with Consider the following extended
domain D(x) :={0,...,10} and finite automaton
initial value /(x) :=5 S
Initial v. dec: inc:
x > 0; @ x < 10;
x:=x-1 x:=x+1

Event condition requirements:

Increment is possible only if x <8 Decrement is possible only if x > 2
{inc} == x<8 {dec} = x>2

start start dec;x > 2
@ inc;x <8

77

State-based requirements: event conditions

Plant: controllable inc, dec;
start plant G:
dec; inc: disc int[0..10] x = 5;
x>0 @ x < 10: location: initial; marked;
edge inc when x < 10 do x

Re=mn=1l x=x+1
edge dec when x > 0 do x

end

x+1;

x-1;

Requirement R;: {inc} = x <8

. requirement R1:
start inc;x <8 . s
location: initial; marked;

edge inc when G.x <= 8;
end

Requirement R;: {dec} = x > 2

- d >0 requirement R2:
star CC 1y location: initial; marked;

edge dec when G.x >= 2;
end

78

State-based requirements: event conditions

Plant:
start controllable inc, dec;
dec: inc: plant G:
disc int[0..10] x = b5;
x>0; @ x <10; location: initial; marked;
xi=x-1 x=x+1 edge inc when x < 10 do x := x+1;
edge dec when x > 0 do x := x-1;

end

Requirement R;: {inc} = x <8

Starti”C;X§8 requirement R1: inc needs G.x <= 8;

Requirement Ry: {dec} = x > 2

startdec;x22 requirement R2: dec needs G.x >= 2;

79

State-based requirements: invariants

Plant:
start
dec; inc;
x > 0; @ x < 10;
x:=x-—1 x =x+1

Invariant requirement: x must always be between 2 and 8.

start

inc;x >2Ax<8 @ dec;x >2Ax<8

Can we use the same idea discussed before and add self-loop

transitions for all edges enforcing Pred?
80

State-based requirements: invariants

Plant:
start
dec; inc;
x> 0; @ x < 10;
x:=x—1 x:=x+1

Invariant requirement: x must always be between 2 and 8.

start

inc;x>2/\x<8dec;x22/\x§8

No! As well as holding before taking any transition, Pred must also hold
after taking any transition. In this case,

State-based requirements: invariants

Plant:
start
dec; inc;
x> 0; @ x < 10;
x:=x—1 x:=x+1

Invariant requirement: x must always be between 2 and 8.

e For each plant automaton writing a variable in Pred we create
a requirement automaton as a copy of the original plant
automaton where each transition of the original plan
automaton L =5 | is tightened to L cnPredlul, 41 in the

requirement automaton.

This way, if a transition is taken its guard already guarantees that
Pred will hold after taking the transition. 82

State-based requirements: invariants

start

Plant: dec; inc;
B () B

Invariant requirement: x > 2 A x §%?'t

dec; inc;
. e S W —

e (x>2Ax<38) [_] is equivalent to (x >3Ax <9)
o (x>2Ax<38) [_] is equivalent to _

start

d

ec; C‘Q inc;
B >3 0 <o S(O° pmmm e

83

State-based requirements: invariants

start
Plant:

Invariant requirement: x >2Ax <8

start

dec; C‘Q inc;
v 3nx <0 SR

requirement invariant R: G.x >= 2 and G.x <= §;

84

Locations vs Variables

(IDLE)

(ACTIVE) Machine /

Machine i starts start;

processing a workpiece,

S —ischine rimishes

processing a workpiece

start

finish;

A
Machine i Machine i
Is repaired breaks down
(the workpiece (DOWN)
is discarded)

finishy
rocessing a workpi

start

~ "©000

Machine 2 starts (FULL)

processing a workpiece start2

Can we encode locations as variables?

85

Locations encoded as Variables: Machines

start;;
Machine i Machine i idle; := false,
start; active; := true,
down; := false

start
finish;
finish;;
idle; := true,

active; := false,
down; := false

break; repair;;

idle; := true,
active; := false,
down; := false

break;;
idle; := false,

down; := true

e Variables idle;, active;, down;
e Domains D(idle;) = D(active;) = D(down;) = {true, false};

e Initialization /(idle;) = true, I(active;) = I(down;) = false;
Yes! Just add one Boolean variable /; for each location L such that:

1. [; is set true upon entering L;

2. [; is set false upon leaving L.

active; := false,

86

Locations encoded as Variables: Buffer

finishy finishy ;

empty := false,
full := true

start

Start) -

Starty;
empty = true,
full = false

e Variables empty, full,
e Domains D(empty) = D(full) = {true, false};
e Initialization /(empty) = true, I(full) = false;

e Now we can use event and invariant conditions by using location
names (internally they will be replaced by the corresponding
Boolean variables).

e For example, E = A.L says that the events in E can be executed

only if the automaton A is in location L.
87

Manufacturing process requirements

start;;
Machine / idle; := false, finishy:
active; := true,
down; := false empty := false,

full := true

start
start

finish;;

repair;; idle; := true, break;; Starty;
idle; = true, active; := false, idle; := false, L
active; := false, \ down; := false active; := false, 21y & Ui,
down; := false down; := true full := false

R;: Machine 1 can start processing a workpiece only if the Buffer

is empty

Event condition CIF code

{start1} = B.empty .
requirement R1: startl needs B.EMPTY;

88

Manufacturing process requirements

start;;
Machine / idle; := false, finishy
active; := true,
down; := false empty := false,

full := true

start
start

finish;;

repair;; idle; := true, break;; Starty;
idle; := true, active; := false, idle; := false, L
active; := false, \ down; := false active; := false, 21y & Ui,
down; := false down; := true full := false

R>: Machine 2 can start processing a workpiece only if the Buffer
is full

Event condition CIF code

{starta} = B.full i
requirement R2: start2 needs B.FULL;

89

Manufacturing process requirements

start;;
Machine / idle; := false, finishy
active; := true,
down; := false empty := false,

full := true

start
start

finish;;

repair;; idle; := true, break;; Starty;
idle; := true, active; := false, idle; := false, L
active; := false, \ down; := false active; := false, 21y & Ui,
down; := false down; := true full := false

R3: Machine 1 cannot start processing a workpiece if Machine 2 is

down.

Event condition CIF code

{start1} = —Ma.down .
requirement R3: startl needs not M2.DOWN;

90

requirements

Manufacturing process
start;;
Machine i idle; := false,
active; := true,
down; := false

start

finish;;

repair;; idle; := true, break;;
idle; := true, active; := false, idle; := false,
active; := false, \ down; := false active; := false,
down; := false down; := true

finishy ;
empty := false,
full := true

start

Starty;
empty = true,
full = false

R,: If both Machines are down, then Machine 2 is repaired before

Machine 1.

Event condition CIF code

{repair;} = —M>.down

requirement R4:

repairl needs not M2.DOWN;
91

