
Static analysis tools and the Ariadne approach

Luca Geretti

University of Verona, Italy

1 / 50

Tools Computability Ariadne

Outline

1 Current approaches and tools

2 Computability of the numerical approach

3 Ariadne

2 / 50

Tools Computability Ariadne

Many different approaches

Different approaches have been developed to address the reachability
problem, at least in some cases:

1. Restrict to special classes of Hybrid Automata that admit exact
verification

I Uppaal, HyTech

2. Compute approximations of the reachable set

I PHAVer, SpaceEx, CORA, COHO, Flow*, HyPro/HyDRA,
SAPO, Ariadne

3. Compute discrete abstractions of the system

I HSOLVER, HybridSAL, HyCOMP, dReach/dReal, nuXmv

4. Simulate the system to find a counterexample

I Breach, S-TaLiRo, C2E2, HyLAA

5. Use automated theorem proving techniques

I KeYmaera X, Isabelle/HOL-ODE-Numerics

6. Use quantitative finite abstractions and probabilistic model checking
to verify stochastic hybrid systems

I StocHy

3 / 50

Tools Computability Ariadne

Exact verification of hybrid systems

� For systems with simple dynamics, the evolution can be
computed exactly:

I timed automata (ẋ = 1, x ≈ c),
I initialized rectangular automata

(ẋ ∈ [cmin, cmax], x ≈ [cmin, cmax] needed when ẋ changes).
I restricted linear automata (ẋ = c , linear guards) for bounded

reachability.

� Verification techniques for finite-state systems can be used

� The state space of the system can be computed

PROS: definite YES/NO answer, high performances

CONS: can verify only systems with simple dynamics

4 / 50

Tools Computability Ariadne

Uppaal

http://www.uppaal.org/

� developed by the Uppsala University, Sweden and the Aalborg
University in Denmark

� written in Java and C++, graphical user interface

� limited to timed automata

� supports the composition of timed automata

� can verify complex properties in a subset of CTL temporal
logic

� results are formally sound

� scalability: up to 100 continuous variables

5 / 50

http://www.uppaal.org/

Tools Computability Ariadne

HyTech

http://embedded.eecs.berkeley.edu/research/hytech/

� developed at Cornell and Berkeley by Tom Henzinger,
Pei-Hsin Ho, and Howard Wong-Toi

� written in C++, textual scripting interface

� one of the first tools for the verification of hybrid systems

� limited to rectangular automata

� supports the composition of automata

� results are formally sound

� computation is not guaranteed to terminate

� scalability: up to 10 continuous variables

6 / 50

http://embedded.eecs.berkeley.edu/research/hytech/

Tools Computability Ariadne

Approximation of the reachable set

� For systems with complex dynamics we cannot compute the
exact evolution

� Approximations can give positive and negative answers:

I overapproximations ⇒ positive answers
I underapproximations ⇒ negative answers

PROS: approximation can be arbitrarily tight, can simulate the
system

CONS: requires complex numerical analysis techniques

7 / 50

Tools Computability Ariadne

PHAVer

http://www-verimag.imag.fr/~frehse/phaver_web/

� developed at Verimag by Goran Frehse

� written in C++, textual scripting interface

� one of the first tools that enabled verification of hybrid
automata

� affine dynamics and guards (ẋ = Ax + b)

� supports the composition of hybrid automata

� computes over-approximations of the reachable set

� state space is represented using polytopes

� results are formally sound (rational arithmetic with unlimited
precision)

� scalability: up to 10 continuous variables
8 / 50

http://www-verimag.imag.fr/~frehse/phaver_web/

Tools Computability Ariadne

SpaceEx

http://spaceex.imag.fr/

� developed at Verimag by a team led by Oded Maler and
Goran Frehse

� written in C++, graphical user interface

� affine dynamics and guards (ẋ = Ax + b)

� supports the composition of hybrid automata

� computes over-approximations of the reachable set

� state space is represented using support functions and
polytopes

� results are not guaranteed to be numerically sound (IEEE
floating point arithmetic)

� one of the most scalable tools: up to a hundred continuous
variables

9 / 50

http://spaceex.imag.fr/

Tools Computability Ariadne

CORA

https://tumcps.github.io/CORA/

� developed at TU Munich by a team led by Matthias Althoff

� written as a set of scripts on top of MATLAB

� nonlinear dynamics

� computes over-approximations of the reachable set

� performs internal linearisations

� state space is represented using zonotopes and ”nonlinear
zonotopes”

� results are not guaranteed to be numerically sound (IEEE
floating point arithmetic)

� scalability: between 10 and 20 continuous variables

10 / 50

https://tumcps.github.io/CORA/

Tools Computability Ariadne

COHO

https://www.cs.ubc.ca/~chaoyan/cra.html

� written by Yan Chao, Mark Greenstreet and Ian Mitchell at
the University of British Columbia (Canada)

� CRA (COHO-Reach, COHO Reachability Analysis tool)
developed for reachability analysis of analog mixed signal
circuits (AMS), and for hybrid systems

� it models reachability analysis as solving differential inclusions
ẋ ∈ F (x),X0 ⊆ Ω

� it overapproximates F (x) by linear differential inclusions and
Ω by projectagons

� projectagons represent high-dimensional polyhedra by their
projections onto two-dimensional planes, where these
projection polygons are not required to be convex

11 / 50

https://www.cs.ubc.ca/~chaoyan/cra.html

Tools Computability Ariadne

Flow*

https://flowstar.org/

� developed at RWTH Aachen University (Germany) and at UC
Boulder (USA) by Xin Chen, Erika Ábrahám and Sriram
Sankaranarayanan

� written in C++

� nonlinear dynamics (with polyhedral guards on discrete
transitions)

� computes over-approximations of the reachable set

� state space is represented by Taylor models

� results are guaranteed to be numerically sound

� scalability: up to a dozen variables

12 / 50

https://flowstar.org/

Tools Computability Ariadne

HyPro/HyDRA

https://ths.rwth-aachen.de/research/projects/hypro/

� developed at RWTH Aachen University, Germany, by a team
led by Erika Ábrahám

� C++ library for state set representations

� linear dynamics and guards

� different representations supported, with conversion between
representations

� templated number type

� fast implementation of specialized reachability analysis
methods

� results are numerically sound only for some representations

13 / 50

https://ths.rwth-aachen.de/research/projects/hypro/

Tools Computability Ariadne

SAPO

https://github.com/dreossi/sapo

� authors: Tommaso Dreossi and Thao Dang (VERIMAG,
Grenoble), Carla Piazza (University of Udine)

� C++ tool designed to solve the reachability and parameter
synthesis problem for discrete-time polynomial dynamical
systems.

� the sets reachable by the system can be represented with
boxes, parallelotopes, while the parameter sets are represented
by polytopes

� The reachability computation and parameters refinement are
carried out representing the polynomials in Bernstein form and
transforming the problems into linear programs

14 / 50

https://github.com/dreossi/sapo

Tools Computability Ariadne

Ariadne

http://www.ariadne-cps.org

� developed by a joint team including the University of
Maastricht and the University of Verona

� C++ library, with Python bindings

� nonlinear dynamics and guards

� supports the composition of hybrid automata

� computes both over- and lower- approximations of the
reachable set

� state space is represented using polynomial enclosure sets and
grid paving sets

� results are guaranteed to be sound (rigorous interval
arithmetic)

� scalability: up to a dozen of continuous variables
15 / 50

http://www.ariadne-cps.org

Tools Computability Ariadne

Verification by discrete abstraction

An alternative approach, which approximates the system instead of
the reachable set:

� compute a discrete abstract system that overapproximates the
behavior of the original system

� does the abstract system satisfy the property?

I YES: the original system is safe
I NO: reject spurious counterexamples, refine the abstraction

and repeat the verification

PROS: can obtain a result in a few steps even for complex systems

CONS: no graphical output of the results, cannot simulate the
system

16 / 50

Tools Computability Ariadne

HSOLVER

http://hsolver.sourceforge.net/

� developed by Stefan Ratschan

� written in C++, textual scripting interface

� nonlinear dynamics and guards

� no support for the composition of hybrid automata

� uses constraint propagation techniques to approximate the
system

� results are guaranteed to be sound (rational arithmetic with
unlimited precision)

� scalability: up to 10 continuous variables

17 / 50

http://hsolver.sourceforge.net/

Tools Computability Ariadne

HybridSAL

http://sal.csl.sri.com/hybridsal/

� developed by Ashish Tiwari

� written in Java and LISP, textual scripting interface

� polynomial dynamics and guards

� supports the composition of hybrid automata

� uses predicate abstraction to abstract the discrete dynamics
and qualitative reasoning to abstract the continuous dynamics

� results are guaranteed to be sound

� scalability: up to 10 continuous variables

18 / 50

http://sal.csl.sri.com/hybridsal/

Tools Computability Ariadne

dReach/dReal

http://dreal.github.io/dReach/

� developed at CMU by Soonho Kong, Sicun Gao, Wei Chen,
and Edmund Clarke

� dReach is a bounded reachability analysis tool for nonlinear
hybrid systems

� it encodes reachability problems of hybrid systems to
first-order formulas over real numbers, which are solved by
delta-decision procedures in the SMT solver dReal

� dReach is able to handle a wide range of highly nonlinear
hybrid systems

� it has scaled well on various realistic models from biomedical
and robotics applications

19 / 50

http://dreal.github.io/dReach/

Tools Computability Ariadne

HyCOMP

https://es.fbk.eu/tools/hycomp/

� developed at FBK by Alessandro Cimatti, Sergio Mover,
Stefano Tonetta.

� written in C, textual scripting interface

� piece-wise linear and affine dynamics

� supports the composition of hybrid automata

� solves different tasks: verification of invariant and LTL
properties, verification of scenario specifications, parameter
synthesis

� verification algorithms based on Satisfiability Modulo Theory

� results are sound (infinite-precision arithmetic)

� scalability: up to 60 continuous variables
20 / 50

https://es.fbk.eu/tools/hycomp/

Tools Computability Ariadne

nuXmv

https://nuxmv.fbk.eu/

� nuXmv is a symbolic model checker for the analysis of
synchronous finite-state and infinite-state systems

� for the finite-state case, nuXmv features a strong verification
engine based on state-of-the-art SAT-based algorithms

� For the infinite-state case, nuXmv features SMT-based
verification techniques, implemented through a tight
integration with MathSAT5

21 / 50

https://nuxmv.fbk.eu/

Tools Computability Ariadne

Falsification by simulation

� Explore the state space of the system by computing a bunch
of trajectories

� If one of the trajectories violates the property, a
counterexample is found

� If no counterexample is found, no conclusion can be made on
the truth of the property

� Can be used to verify black-box systems

PROS: can manage complex properties and black-box systems

CONS: can only falsify the property

22 / 50

Tools Computability Ariadne

Breach

https://www.eecs.berkeley.edu/~donze/breach_page.html

� developed by Alexandre Donzé

� Matlab/C++ toolbox

� Systematic simulation is used to compute an
underapproximation of the reachable set

� supports complex properties in Signal Temporal Logic

� supports parametric systems

23 / 50

https://www.eecs.berkeley.edu/~donze/breach_page.html

Tools Computability Ariadne

S-TaLiRo

https://sites.google.com/a/asu.edu/s-taliro/

� developed by Sriram Sankaranarayanan

� Matlab toolbox

� uses a robustness metric to search for a counterexample

� randomized testing and stochastic optimization techniques are
used to maximize the chance of finding the counterexample

� supports complex properties in Metric Temporal Logic

� supports parametric systems

24 / 50

https://sites.google.com/a/asu.edu/s-taliro/

Tools Computability Ariadne

C2E2

https://publish.illinois.edu/c2e2-tool/

� developed by the C2E2 development team at University of
Illinois at Urbana-Champaign

� can verify bounded-time invariants of hybrid automata and
Stateflow models

� it generates numerical simulations, and it iteratively refines
reach set over-approximations to prove invariants

� it can also find counterexamples or bug traces

25 / 50

https://publish.illinois.edu/c2e2-tool/

Tools Computability Ariadne

HyLAA

http://stanleybak.com/hylaa/

� developed by Stanley Bak with input from Parasara Sridhar
Duggirala

� verification tool for system models with linear ODEs,
time-varying inputs, and hybrid dynamics

� computes simulation-equivalent reachability: the set of states
that can be reached by any fixed-step simulation under any
possible input

� results are exact (under some restrictions)

� can generate counter-example traces when an error is found

26 / 50

http://stanleybak.com/hylaa/

Tools Computability Ariadne

Verification by theorem proving

� System under verification represented by a logical formula Sys

� Properties of interest represented by a logical formula Prop

� The verification problem is reduced to testing whether the
formula Sys → Prop is valid (a logical tautology)

� Systems can be parametric and/or partially specified

� Very complex properties can be tested

� User intervention is needed to guide the proof

PROS: can manage complex properties and partially specified
systems

CONS: semi-automatic approach

27 / 50

Tools Computability Ariadne

KeYmaera X

http://www.ls.cs.cmu.edu/KeYmaeraX/

� developed by André Platzer

� written in Java, graphical user interface

� hybrid systems are specified using a programming language

� nonlinear dynamics and guards

� supports complex properties written in Differential Dynamic
Logic

� pre-defined and custom tactics drive the automated proof
search

28 / 50

http://www.ls.cs.cmu.edu/KeYmaeraX/

Tools Computability Ariadne

Isabelle/HOL-ODE-Numerics

https://isabelle.in.tum.de/

� developed by the University of Cambridge and TU Munich

� written in Standard ML, graphical user interface

� nonlinear dynamics and guards

� based on Runge-Kutta methods with affine arithmetic

� no builtin support for describing hybrid systems

29 / 50

https://isabelle.in.tum.de/

Tools Computability Ariadne

Verification of Stochastic Hybrid Systems

� Stochastic hybrid systems extend hybrid systems with
probabilistic aspects

� Explicitly probabilistic models are useful in a number of
applicative instances:

I when the uncertainty of the system cannot be “averaged out”
I when the knowledge of the system is too coarse
I when stochastic mechanisms play a role in the system under

study

PROS: a richer class of models that extends deterministic ones

CONS: more and deeper technicalities that are required in the
analysis

30 / 50

Tools Computability Ariadne

StocHy

https://gitlab.com/natchi92/StocHy

� developed at the Oxford Control and Verification group
(OXCAV) led by Alessandro Abate

� C++ tool

� support discrete time stochastic hybrid systems

� can parse well known state space models

� three analysis tasks:

1. simulation of stochastic processes
2. formal verification via abstractions
3. strategy synthesis

31 / 50

https://gitlab.com/natchi92/StocHy

Tools Computability Ariadne

The approach we focus on

Approximation of the reachable set

In particular, for nonlinear continuous-time systems.

� Maximum expressivity in order to match the real system

� Full observability of the evolution trace

32 / 50

Tools Computability Ariadne

Outline

1 Current approaches and tools

2 Computability of the numerical approach

3 Ariadne

33 / 50

Tools Computability Ariadne

Computing on continuous spaces

“Classical” computability theory

� is a function on the natural numbers f : Nn 7→ Nm

computable by a Turing Machine?

What happens for functions on continuous spaces?

� e.g. function on the reals f : Rn 7→ Rm

� how do we represent inputs and outputs?

� how are computations performed?

� which classes of functions are computable? And which are
not?

34 / 50

Tools Computability Ariadne

Computable Analysis
A different notion of computability

� Introduced by Klaus Weihrauch and co-workers

� Computation is performed by Turing Machines acting on
infinite streams of data

� Data streams encode a sequence of approximations to some
quantity

� A function is computable in this theory if:
given a data stream encoding a sequence of approximations
converging to the input
it is possible to calculate a data stream encoding a sequence of
approximations converging to the output

� Finite computations are obtained by terminating when a given
accuracy criterion is satisfied:
I computable functions can be approximated to any desired

accuracy

35 / 50

Tools Computability Ariadne

A simple problem

Let p(x) be a polynomial with rational coefficients:
is p(x) = 0 ?

� Classical computability: if x is a rational, then the problem is
decidable.

� Computable analysis: if x is a real number, then the problem
is semi-decidable:

I when p(x) 6= 0 we can find a sufficiently accurate x̃ to give a
negative answer

I when p(x) = 0, no matter how accurate x̃ is, we cannot
exclude the possibility that p(x) 6= 0, and thus we cannot give
a positive answer

36 / 50

Tools Computability Ariadne

The fundamental theorem

Only continuous functions are computable, with respect to a given
representation for the data and to the corresponding topology

� a necessary (but not sufficient) condition:

I if a function is discontinuous, then it is uncomputable
I a continuous function may be uncomputable

� The choice of the representation is essential:

I we can make a function computable by requiring more
information on the inputs, and/or less information on the
outputs

37 / 50

Tools Computability Ariadne

Are hybrid automata computable?

Theorem (Collins 2011)

For any coherent semantics of evolution, the finite-time reachable
set of a hybrid automaton is uncomputable.

� Discrete transitions can cause discontinuities in both space
and time, even for simple systems

� By the fundamental theorem of computable analysis, this
means that the reachable set of hybrid automata is, in
general, uncomputable.

38 / 50

Tools Computability Ariadne

Can we recover computability?

� By imposing restrictions on dynamics, reset functions, guards
and invariants we can regularize the evolution to make it
approximable either from above or from below

. . . however . . .

� the conditions for approximation of the reachable set from
above are different from the ones for approximation from
below

� we can only obtain a semi-decidable problem

39 / 50

Tools Computability Ariadne

Upper and lower semantics
Definitions

Theorem

Given a Hybrid Automaton with continuous dynamics and reset
functions:

Upper semantics if guards and invariants are closed, then the
finite-time reachable set is approximable from above;

Lower semantics if guards and invariants are open, then the
finite-time reachable set is approximable from below.

40 / 50

Tools Computability Ariadne

Upper and lower semantics
An example

Consider a location l0 with invariant x ≤ a and a transition that
leaves l0 when x ≥ b

a < b a = b a > b

Upper: No Transition Upper: Transition Upper: Transition

Lower: No Transition Lower: No Transition Lower: Transition

41 / 50

Tools Computability Ariadne

Approximations to the reachable set

Given a hybrid automaton H and an initial set I , it is possible to
compute two approximations of the reachable set Re up to a given
time t (including the infinite-time case):

� an outer approximation O of the states reached by H starting
from I such that:

Re ⊂ O

� for a given ε > 0, an ε-lower approximation Lε of the states
reached by H starting from I such that:

∃ x ∈ Re s.t. ||x − Lε|| ≤ ε

Lε is an overapproximation of a subset of Re.

42 / 50

Tools Computability Ariadne

Approximations to the reachable set

Given a hybrid automaton H and an initial set I , it is possible to
compute two approximations of the reachable set Re up to a given
time t (including the infinite-time case):

� an outer approximation O of the states reached by H starting
from I such that:

Re ⊂ O

� for a given ε > 0, an ε-lower approximation Lε of the states
reached by H starting from I such that:

∃ x ∈ Re s.t. ||x − Lε|| ≤ ε

Lε is an overapproximation of a subset of Re.
42 / 50

Tools Computability Ariadne

Outer approximation O

� Blue: reachable set

This is a sequence of
approximations from above:

� Red + Orange + Yellow
+ Blue: coarse O

� Orange + Yellow +
Blue: finer O

� Yellow + Blue: finest O

A valid, albeit useless, O is the whole continuous space.

43 / 50

Tools Computability Ariadne

Outer approximation O

� Blue: reachable set

This is a sequence of
approximations from above:

� Red + Orange + Yellow
+ Blue: coarse O

� Orange + Yellow +
Blue: finer O

� Yellow + Blue: finest O

A valid, albeit useless, O is the whole continuous space.

43 / 50

Tools Computability Ariadne

ε-lower approximation Lε

� Blue: reachable set

This is a sequence of
approximations from below:

� Interior of outline of Red:
coarse Lε

� Interior of outline of
Orange: finer Lε

� Interior of outline of
Yellow: finest Lε

A valid, albeit useless, Lε is the empty set.

44 / 50

Tools Computability Ariadne

ε-lower approximation Lε

� Blue: reachable set

This is a sequence of
approximations from below:

� Interior of outline of Red:
coarse Lε

� Interior of outline of
Orange: finer Lε

� Interior of outline of
Yellow: finest Lε

A valid, albeit useless, Lε is the empty set.

44 / 50

Tools Computability Ariadne

How to use approximations to verify properties

� S1, S2 are sets
within which a
property is
satisfied

� O ⊂ S1 →
Re ⊂ S1

� ||S2 − Lε|| > ε→
Re 6⊆ S2

If for a given set of accuracy parameters no
answer is found, we can recalculate the
approximations with a finer accuracy.

→ (possibly infinite) sequence of
approximations

45 / 50

Tools Computability Ariadne

How to use approximations to verify properties

� S1, S2 are sets
within which a
property is
satisfied

� O ⊂ S1 →
Re ⊂ S1

� ||S2 − Lε|| > ε→
Re 6⊆ S2

If for a given set of accuracy parameters no
answer is found, we can recalculate the
approximations with a finer accuracy.

→ (possibly infinite) sequence of
approximations

45 / 50

Tools Computability Ariadne

Outline

1 Current approaches and tools

2 Computability of the numerical approach

3 Ariadne

46 / 50

Tools Computability Ariadne

Ariadne functionalities

Built upon the foundation of computable analysis, it provides a
library for rigorous numerical analysis.
Fundamental modules:

� Numerics

� Algebra

� Geometry

� Solving

� Continuous dynamics

� Hybrid extension

along with modules for function definition, symbolic expressions,
I/O, concurrency and generic utilities.

� Mainly concerned with reachability computation, verification
routines can be written with little effort using the library.

47 / 50

Tools Computability Ariadne

Ariadne functionalities

Built upon the foundation of computable analysis, it provides a
library for rigorous numerical analysis.
Fundamental modules:

� Numerics

� Algebra

� Geometry

� Solving

� Continuous dynamics

� Hybrid extension

along with modules for function definition, symbolic expressions,
I/O, concurrency and generic utilities.

� Mainly concerned with reachability computation, verification
routines can be written with little effort using the library.

47 / 50

Tools Computability Ariadne

The Ariadne code

� Open source GPL license

� Written in C++20, it additionally offers most of its
functionality as Python

� Uses CMake as build automation software

� Only mandatory external dependency related to a
multiple-precision floating point library

� Packaged at Launchpad for Ubuntu, and as a Homebrew
package for macOS

� Official website with news, installation instructions and a
tutorial: https://www.ariadne-cps.org

For the course, we prefer to install from the most recent sources
according to https://www.ariadne-cps.org/installation.

48 / 50

https://www.ariadne-cps.org
https://www.ariadne-cps.org/installation

Tools Computability Ariadne

The Ariadne code

� Open source GPL license

� Written in C++20, it additionally offers most of its
functionality as Python

� Uses CMake as build automation software

� Only mandatory external dependency related to a
multiple-precision floating point library

� Packaged at Launchpad for Ubuntu, and as a Homebrew
package for macOS

� Official website with news, installation instructions and a
tutorial: https://www.ariadne-cps.org

For the course, we prefer to install from the most recent sources
according to https://www.ariadne-cps.org/installation.

48 / 50

https://www.ariadne-cps.org
https://www.ariadne-cps.org/installation

Tools Computability Ariadne

A first exercise

Experiment with hybrid automata definition

In particular, with the impact on finite-time simulation and
bounded/unbounded reachability (called evolution and outer chain
reach, respectively).

� cmake --build . --target tutorials

to build the tutorials after each change and

� tutorials/hybrid evolution tutorial -v 1 -t dark

to run the hybrid evolution tutorial with verbosity 1 and using the
dark color theme.

You can use the argument -h to get all the command line
arguments supported. In particular, you can increase verbosity to
get more information on what is happening.

49 / 50

Tools Computability Ariadne

A first exercise

Experiment with hybrid automata definition

In particular, with the impact on finite-time simulation and
bounded/unbounded reachability (called evolution and outer chain
reach, respectively).

� cmake --build . --target tutorials

to build the tutorials after each change and

� tutorials/hybrid evolution tutorial -v 1 -t dark

to run the hybrid evolution tutorial with verbosity 1 and using the
dark color theme.

You can use the argument -h to get all the command line
arguments supported. In particular, you can increase verbosity to
get more information on what is happening.

49 / 50

Tools Computability Ariadne

Modify the system

Try the effect of the following changes to the system definition:

� Modify the controller’s thresholds

� Modify the controller’s delta

� Modify alpha and beta, in particular to overspill or empty the
tank

50 / 50

	Current approaches and tools
	Computability of the numerical approach
	Ariadne

