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The intuition

A hybrid automaton H is a finite-state automaton with continuous
variables Z

`1

Dyn|`1(Z )

Inv |`1(Z )

`2

Dyn|`2(Z )

Inv |`2(Z )

Res|e 12(Z )

Gua|e 12(Z )

Res|e 21(Z )

Gua|e 21(Z )

A state is a couple (`, r) where r is a valuation for Z
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The role of functions in hybrid automata

� dynamics Dyn|`: evolution of the variables in location `

� invariant Inv |`: conditions under which continuous evolution is
allowed in location `

� guard Gua|e : conditions under which discrete evolution is
allowed according to event e

� reset Res|e : transformation of the continuous state after
event e
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Non-determinism

Hybrid automata may be non-deterministic since:

� Different locations may partially share the invariants

� Different continuous trajectories may leave from the same
admissible state

� There may be arcs that go to different locations but partially
share the activation functions

� The activation functions are not necessarily on the frontiers of
the invariants

� The reset functions are not necessarily deterministic

� The dynamics may include uncertainties

Probabilistic generalisations add other levels of complexity:

� Discrete transitions form a Markov process

� Stochastic equations add probability to the continuous
dynamics
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Compositionality

We are not restricted to specifying the system as one ”monolithic”
automaton: we can have multiple automata that interact between
each other

� Compositionality refers to the capability of such interaction in
a coherent way

� Interaction may be through input/output variables or
input/output events
I Input variable: a variable for which the automaton does not

specify dynamics
I Input event: an event for which the activation does not depend

on the automaton variables
I In a simplified approach, everything that is not an input is an

output for the automaton
� Composition combines multiple automata in order to

construct (statically or dynamically) the fully specified system
I Example: the soil automaton has its own dynamics, but it also

reacts to the input coming from the weather automaton
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Example: thermostat

Example (Thermostat)

Let us consider a room heated by a radiator controlled by a
thermostat

� When the thermostat is on the temperature increases
exponentially in time

� When the thermostat is off the temperature decreases
exponentially in time

� The thermostat switches on the radiator when the
temperature decreases below 19C

� The thermostat switches off the radiator when the
temperature increases above 21C
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Example: thermostat

Let us model the behaviour of the temperature in time by a hybrid
automaton H with:

� 2 locations ON and OFF

� 2 arcs that join the two locations

� 1 continuous variable Z that represents the temperature
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Example: thermostat

H = 〈Z , Z ′, V, E , Inv , Dyn, Act, Reset〉 such that:

� Z e Z ′ are two variables

� V = {ON,OFF} and E = {(ON,OFF ), (OFF ,ON)}
� Inv(ON)[Z ] := Z ≤ 22 and

Dyn(ON)[Z ,Z ′,T ] := Z ′ = Z ∗ eT

� Inv(OFF )[Z ] := Z ≥ 18 and
Dyn(OFF )[Z ,Z ′,T ] := Z ′ = Z/eT

� Act((ON,OFF ))[Z ] := Z ≥ 21 and
Reset((ON,OFF ))[Z ,Z ′] := Z ′ = Z

� Act((OFF ,ON))[Z ] := Z ≤ 19 and
Reset((OFF ,ON))[Z ,Z ′] := Z ′ = Z
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Example: thermostat

ON

Z ≤ 22

Z ′ = ZeT

OFF

Z ≥ 18

Z ′ = Ze−T

Z ≥ 21

Z ′ = Z

Z ≤ 19

Z ′ = Z
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Semantics

` = 〈v , r〉 is admissible if Inv(v)[r ] holds

v v′

r

sf(t′)

Definition (Continuous transitions)

〈v , r〉 t−→C 〈v , s〉 ⇐⇒

There exists a continuous function
f : R+ 7→ Rk such that r =
f (0), s = f (t) and for each t ′ ∈
[0, t] the formulæ Inv(v)[f (t ′)] and
Dyn(v)[r , f (t ′), t ′] hold
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Semantics

` = 〈v , r〉 is admissible if Inv(v)[r ] holds

v v′

r s

Definition (Discrete transitions)

〈v , r〉 〈v ,v
′〉−−−→D 〈v ′, s〉 ⇐⇒

〈v , v ′〉 ∈ E , Inv(v)[r ],
Act(〈v , v ′〉)[r ],
Reset(〈v , v ′〉)[r , s] and
Inv(v ′)[s] hold
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Reachability

Let I ,F ∈ Rk . Can we reach 〈u,F 〉 from 〈v , I 〉?
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Trace and reachability

A trace of H is a sequence of admissible states
[`0, `1, . . . , `i , . . . , `n] such that `i−1 → `i holds ∀i ∈ [1, n].

Definition (Reachability)

The automaton H reaches 〈u, s〉, s ∈ Rk , from 〈v , r〉, r ∈ Rk , if
there exists a trace tr = [`0, . . . , `n] of H such that `0 = 〈v , r〉 and
`n = 〈u, s〉.

Definition (Reachability problem)

Given an automaton H, a set of starting points 〈v , I 〉, I ⊆ Rk , and
a set of ending points 〈u,F 〉, F ⊆ Rk , decide whether there exists
a point in 〈v , I 〉 from which a point in 〈u,F 〉 is reachable.
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Reachability and Verification

Reachability can be used for example to verify safety properties

ϕ is always true in H
if and only if

all states reachable from the initial states of H
are included in the safe set Sat(ϕ).

Question

Is the reachability problem for Hybrid Automata decidable?

Answer

No (Alur et al. 1995).
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Recover decidability by reducing expressivity

If we restrict the possible behaviors of the automaton, decidability
can be recovered.

� Restrictions mainly involve the dynamics, in the following
expressed by the derivatives ẋ of the continuous variables.

� Other restrictions may be placed on the transitions, in
particular the reset value x ′.

We also distinguish decidability for time-bounded reachability and
time-unbounded reachability (also called finite-time and
infinite-time reachabilities).
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Recover decidability by reducing expressivity
A table

automata derivatives conditions bounded unbounded

timed ẋ = 1 x ′ = x or x ′ = 0 Yes Yes

initialized
rectangular

ẋ ∈ [k1, k2]

x ′ ∈ [c1, c2]
when ẋ

changes otherwise
x ′ = x

Yes Yes

rectangular ẋ ∈ [k1, k2]
x ′ ∈ [c1, c2]

or x ′ = x
Yes No

linear ẋ = c Yes No

affine ẋ = Ax + b No No

nonlinear ẋ = f (x) No No
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