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Operations expected from a set

� Essential:

I Nonlinear transformation: required by both continuous and
discrete evolution steps

I Evaluation / Projection: necessary for observing the state
I Test for membership: we need to check if a point is in the

reachable set

� Very important:

I Union: subsets need to be aggregated in order to reason on the
complete reachable set in a scalable way

I Intersection: useful for guard activations
I Difference: necessary to understand when new points are

reached, for infinite-time reachability

� Still quite relevant:

I Splitting: since a large set is difficult to handle numerically, we
might want to separate it into pieces

I Test for emptiness: it’s useful to know efficiently when the set
is to be discarded

I Bounding box evaluation: more specific that generic evaluation,
this is useful for many methods and it should be as tight as
possible
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Closure is desirable for operations

� Some set representations might not be closed under specific
operations.

� It is usually possibile to convert into an enclosing set in the
same or a different representation, but at the expense of an
overapproximation error of varying degree

� When closure is not guaranteed and conversion is undesired,
either a grouping (specifically a ”cover”) of sets or a symbolic
storage of the operation with its operands are possible

I Both approaches are meant to preserve representation when
the cost of conversion is unaffordable

I In general, these solutions are not good for scalability
I In particular cases, however, such composite set might be

simplified along evolution
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Some representations in the literature

� Geometric objects:

I boxes (hyper-rectangles) [Moore et al., 2009]
I oriented rectangular hulls [Stursberg et al., 2003]
I convex polyhedra [Ziegler, 1995]
I template polyhedra [Sankaranarayanan et al., 2008]
I orthogonal polyhedra [Bournez et al., 1999]
I zonotopes [Girard, 2005])
I ellipsoids [Kurzhanski et al., 2000]

� Other (symbolic) representations:

I support functions [Le Guernic et al., 2009]
I Taylor models [Berz and Makino, 1998]
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Examples

� Intersection is closed

� Difference is not

� Union is easy to perform

� Intersection and difference
are not closed

� Union is not that trivial
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Switching between representations might be required

� Accurate representations are useful for frequent events (such
as continuous steps of evolution), in order to limit
accumulation of overapproximation error;

� Coarse representations are useful for sporadic events, where
operations such as intersection, joining and splitting are
required and would be inefficient/ineffective on accurate
representations.
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In the following

We will provide details regarding two specific set representations:

1. Grid paving set (or simply ”grid set”): it represents a union of
boxes with particular limits in their sizes that allows for
efficient operations.

2. Polynomial enclosure set (or simply ”Polynomial set”): it
symbolically represents a set by a vector of polynomial
functions in a chosen basis; we will focus on the Taylor basis,
from which a Taylor set (i.e., a vector of Taylor models) is
derived.

A grid set and a Taylor set are at opposite ends of the spectrum:

1. A collection of boxes with additional constraints in the sizes;

vs

2. A generic vector of polynomials with no limit in the accuracy.

8 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

In the following

We will provide details regarding two specific set representations:

1. Grid paving set (or simply ”grid set”): it represents a union of
boxes with particular limits in their sizes that allows for
efficient operations.

2. Polynomial enclosure set (or simply ”Polynomial set”): it
symbolically represents a set by a vector of polynomial
functions in a chosen basis; we will focus on the Taylor basis,
from which a Taylor set (i.e., a vector of Taylor models) is
derived.

A grid set and a Taylor set are at opposite ends of the spectrum:

1. A collection of boxes with additional constraints in the sizes;

vs

2. A generic vector of polynomials with no limit in the accuracy.

8 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

In the following

We will provide details regarding two specific set representations:

1. Grid paving set (or simply ”grid set”): it represents a union of
boxes with particular limits in their sizes that allows for
efficient operations.

2. Polynomial enclosure set (or simply ”Polynomial set”): it
symbolically represents a set by a vector of polynomial
functions in a chosen basis; we will focus on the Taylor basis,
from which a Taylor set (i.e., a vector of Taylor models) is
derived.

A grid set and a Taylor set are at opposite ends of the spectrum:

1. A collection of boxes with additional constraints in the sizes;

vs

2. A generic vector of polynomials with no limit in the accuracy.
8 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Outline

1 An overview of set representations

2 Grid paving set

3 Polynomial set

4 Combining representations

5 Hands-on

9 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Definitions

Definition (Grid)

A coordinate-aligned discrete partitioning of the variables space,
which identifies cells of different sizes.

Definition (Grid paving set)

A marking of cells locked to a grid.

10 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Definitions

Definition (Grid)

A coordinate-aligned discrete partitioning of the variables space,
which identifies cells of different sizes.

Definition (Grid paving set)

A marking of cells locked to a grid.

10 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Identify cells in a compact way

Referring to each cell can be done symbolically by exploiting the
tiling of the state space that results from the grid. We also are not
restricted to using cells of the same size.

In particular, if we identify a ”root cell” with reference center and
widths, we can refer to a specific sub-cell by a binary word that
represents a path downwards from the root:

� Each bit identifies one of the two halves of the given cell in a
given dimension;

� The dimension is given by the position of the bit within the
word;

� Which half and which dimension is a fixed convention, not
encoded
I Typically 1 is for the upper half, and the dimensions are visited

in order;
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Graphical example of a grid cell

Given a 2-dimensional space (x,y) with a chosen root cell, this
means taking the left half of the root cell on x, then the top half
on y, again the left half on x, the bottom half on y and the right
half on x.

� Since the order of the dimensions is fixed,
not all cells can be represented:
rectangles wider on x are excluded

� A shorter word of the same prefix
identifies a cell containing this one

� Words of the same length identify cells of
the same widths

� Another word with different bit values
identifies a disjoint cell

12 / 34
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Store a grid set in a compact way

� Since each cell is identified by a binary path from a root, a
binary tree is the first natural choice

I The root node is the root cell
I Each node can have zero or two child nodes
I Each leaf node can be marked to identify a cell in the set
I If two child nodes are marked with the same value, they can be

removed and the parent node marked with that value →
joining of the cells

� However, a binary decision diagram is more efficient at storing
the necessary bits.
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Example of paving a set with a grid set

� The grid set in the second figure is useful for splitting a large
set into smaller, more numerically amenable, subsets

� The grid set on the third figure is the most efficient when
evolution is not considered

� The choice of the root cell (which can be any rectangle
centered anywhere) is essential to the efficiency of the grid set
approximation
I In the third figure we have 28 cells, in the fourth 31
I However, if we want to combine sets, the root cell must be

common to all sets in the reachable set

14 / 34
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Pros and cons of grid sets

Pros

1. No geometric limitations: it can represent even the union of
disjoint non-convex sets;

2. Being based on boxes, it converts easily from/to (a collection
of) more complex representations;

3. Allows a compact internal representation;
4. Union, intersection, difference and membership test can be

performed very efficiently.

Cons

1. It is still an explicit representation: the number of cells grows
exponentially in the number of dimensions.

2. Being its cells aligned to the coordinates, it produces poor
approximations when the set is ”diagonal” and in particular
when it is ”long and thin”.

3. Being unable to choose the coordinate to split/join into, the
number of cells is not always optimal.
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Symbolic representation

To represent the set we use the image of a function mapping a
parameter space into the state space: f : Rn 7→ Rm, i.e.,
{fj : Rn 7→ R}mj=1.

� For numerical reasons, the domain is the [−1, 1]n hypercube.

� We want fj = cj +
∑Nj

i=0 aijΠij(p), i.e., a linear combination of
products of terms, where each term is chosen in the
polynomial basis of a parameter.

I e.g., if the basis for a generic parameter pk is
{1, pk , p2k , p3k , . . . }, then a valid product Πij could be p21p3.

� Coefficients cj , aij may be singleton reals or real intervals.
� Since we bound the accuracy, and since each operation on the

set must be correctly rounded for overapproximation, we also
introduce a uniform error term ±e.

I Everything not symbolically represented is ”swept” into the
error term.

I See the uniform error as the remainder of a polynomial
expansion.

17 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Symbolic representation

To represent the set we use the image of a function mapping a
parameter space into the state space: f : Rn 7→ Rm, i.e.,
{fj : Rn 7→ R}mj=1.

� For numerical reasons, the domain is the [−1, 1]n hypercube.

� We want fj = cj +
∑Nj

i=0 aijΠij(p), i.e., a linear combination of
products of terms, where each term is chosen in the
polynomial basis of a parameter.

I e.g., if the basis for a generic parameter pk is
{1, pk , p2k , p3k , . . . }, then a valid product Πij could be p21p3.

� Coefficients cj , aij may be singleton reals or real intervals.
� Since we bound the accuracy, and since each operation on the

set must be correctly rounded for overapproximation, we also
introduce a uniform error term ±e.

I Everything not symbolically represented is ”swept” into the
error term.

I See the uniform error as the remainder of a polynomial
expansion.

17 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Symbolic representation

To represent the set we use the image of a function mapping a
parameter space into the state space: f : Rn 7→ Rm, i.e.,
{fj : Rn 7→ R}mj=1.

� For numerical reasons, the domain is the [−1, 1]n hypercube.

� We want fj = cj +
∑Nj

i=0 aijΠij(p), i.e., a linear combination of
products of terms, where each term is chosen in the
polynomial basis of a parameter.

I e.g., if the basis for a generic parameter pk is
{1, pk , p2k , p3k , . . . }, then a valid product Πij could be p21p3.

� Coefficients cj , aij may be singleton reals or real intervals.
� Since we bound the accuracy, and since each operation on the

set must be correctly rounded for overapproximation, we also
introduce a uniform error term ±e.

I Everything not symbolically represented is ”swept” into the
error term.

I See the uniform error as the remainder of a polynomial
expansion.

17 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Symbolic representation

To represent the set we use the image of a function mapping a
parameter space into the state space: f : Rn 7→ Rm, i.e.,
{fj : Rn 7→ R}mj=1.

� For numerical reasons, the domain is the [−1, 1]n hypercube.

� We want fj = cj +
∑Nj

i=0 aijΠij(p), i.e., a linear combination of
products of terms, where each term is chosen in the
polynomial basis of a parameter.

I e.g., if the basis for a generic parameter pk is
{1, pk , p2k , p3k , . . . }, then a valid product Πij could be p21p3.

� Coefficients cj , aij may be singleton reals or real intervals.

� Since we bound the accuracy, and since each operation on the
set must be correctly rounded for overapproximation, we also
introduce a uniform error term ±e.

I Everything not symbolically represented is ”swept” into the
error term.

I See the uniform error as the remainder of a polynomial
expansion.

17 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Symbolic representation

To represent the set we use the image of a function mapping a
parameter space into the state space: f : Rn 7→ Rm, i.e.,
{fj : Rn 7→ R}mj=1.

� For numerical reasons, the domain is the [−1, 1]n hypercube.

� We want fj = cj +
∑Nj

i=0 aijΠij(p), i.e., a linear combination of
products of terms, where each term is chosen in the
polynomial basis of a parameter.

I e.g., if the basis for a generic parameter pk is
{1, pk , p2k , p3k , . . . }, then a valid product Πij could be p21p3.

� Coefficients cj , aij may be singleton reals or real intervals.
� Since we bound the accuracy, and since each operation on the

set must be correctly rounded for overapproximation, we also
introduce a uniform error term ±e.

I Everything not symbolically represented is ”swept” into the
error term.

I See the uniform error as the remainder of a polynomial
expansion.

17 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Storing the set

Given that the basis is fixed for all parameters, we only need to
store the coefficients and the index in the base for each
multiplicand. Summarising, we need:

1. an array of reals or real intervals;

2. an array of multi-index naturals;

3. the real modulus of the error term;

for each dimension of the continuous state space.
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Manipulating the set

While the operations of interest in the evolution of a set are done
efficiently using Interval Analysis, most other operations are
problematic:

� Union is rather coarse;

� Difference is not computable;

� Splitting can be done, but only on the parameter space: this
yields overlapping sets in general;

� Testing for membership and intersection are not computable
in general;

Actually to observe most geometrical properties of the set it is
necessary to pass through range evaluation

� e.g., by iterative splitting and range evaluation, we can draw
an overapproximation of the set boundary

19 / 34
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Range evaluation

For p ∈ [−1, 1], it holds that the range of ap2 + bp is:

a([−1, 1] + b/2a)2 − b2/4a

Generalised to multiple parameters, the range of
∑

j ajp
2
j + bjpj is

obtained as the sum of the ranges.

� If a ≈ 0, we use (|a|+ |b|) [−1, 1] instead.

Hence, for each dimension whose range we want to evaluate:

1. We initialise the range with the coefficient of the order 0 term
(i.e., the constant in the polynomial)

2. We collect the coefficients of order 1 and pure order 2 terms

3. For each parameter, we use the formula above and add the
result to the range

4. All other terms are swept into the uniform error e

5. We add [−e, e].

20 / 34
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Example of a polynomial set

Set [−1, 1]2 7→ R2 given by

x = p0 + p1 + p21

y = p0 + p1 + p20

Evaluation yields for both:

[−1, 1] +

(
[−1, 1] +

1

2

)2

− 1

4
=

[−1, 1] +

[
−1

2
,

3

2

]2
− 1

4
=

[−1, 1] +

[
0,

9

4

]
− 1

4
=

[
−5

4
, 3

]

21 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Example of a polynomial set

Set [−1, 1]2 7→ R2 given by

x = p0 + p1 + p21

y = p0 + p1 + p20

Evaluation yields for both:

[−1, 1] +

(
[−1, 1] +

1

2

)2

− 1

4
=

[−1, 1] +

[
−1

2
,

3

2

]2
− 1

4
=

[−1, 1] +

[
0,

9

4

]
− 1

4
=

[
−5

4
, 3

]
By splitting along p0, i.e. p′0 = [−1, 0] and p′′0 = [0, 1] we obtain
partially overlapping sets.
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The choice of the base

� A set is usually created from a function in the first place.

I e.g., a constraint, a vector field for the dynamics)

� The degree used for the base is bounded, and the remainder
allows to overapproximate the function.

� The base respects the property that the overapproximation
error of the expansion goes to zero for degree n→∞.

� While the ”expanded” representation is polynomial regardless
of the bases, different bases at the same degree produce
different polynomials.

� The choice of the base affects the number of terms (hence
coefficients stored) and the complexity of the operations
involved.
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Three bases of interest

� Each has its own
generating function, in
close form or recursive.

� The simpler the basis,
the easier the algebra.

� The more complex the
basis, the faster the
decay of the coefficients
(but this still depends on
the function to
approximate)

- Taylor (Bn = xn)

(0) 1
(1) 1, x
(2) 1, x , x2

(3) 1, x , x2, x3

- Chebyshev (Bn = 2x Bn−1 − Bn−2)

(0) 1
(1) 1, x
(2) 1, x , 2x2 − 1
(3) 1, x , 2x2 − 1, 4x3 − 3x

- Bernstein (Bk,n =
(n
k

)
xk(1− x)n−k)

(0) 1
(1) 1− x , x

(2) (1− x)2, 2x(1− x), x2

(3) (1− x)3, 3x(1− x)2, 3x2(1− x), x3
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The focus is on the Taylor basis

� In practice the basis of choice for tools dealing with nonlinear
dynamics.

I The Bernstein basis is used in the tool Sapo.

� Very simple algebra, though potentially the coefficients decay
slower with the degree.

I Lack of multi-basis tools prevents a solid comparison yet.

� It can be seen as a nonlinear extension of a zonotope.
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Controlling the set representation quality

� The higher the degree used, the better the approximation.

I However, algebraic operations during evolution could produce
a lot of terms in the polynomial representation, even if those
have very small coefficients.

� We have two main mechanisms for controlling set quality:
enforcing a bounded accuracy at all times and performing
reconditioning periodically.
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Bounded accuracy

Allow to decide if a polynomial term should be added into the error
e after an algebraic operation (or after the initial construction of
the set). We can enforce either or both:

1. maximum polynomial degree;

2. minimum coefficient value.

� Bounded accuracy causes the error to increase along evolution
(”wrapping effect”);

� A large error is numerically bad for any algebraic operation;

� In particular, if the uniform error is treated as an extra
parameter, it can be reduced whenever the set contracts along
evolution.
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Reconditioning

Trade between accuracy and domain space complexity.

a. Parametrise: convert e into an additional parameter
→ increase n.

I This causes no loss of information.

b. Sweep: add the absolute value of the coefficients of the terms
where a parameter appears into e
→ reduce n.

I This is destructive and can introduce an overapproximation.
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A linear example on the effects of reconditioning

Original set

x = p0 + 0.25p1 ± 0
y = 0.5p0 + p1 ± 0

Add error and convert

x = p0 + 0.25p1 ± 0
y = 0.5p0 + p1 + p2 ± 0
i.e. y = 0.5p0 + p1 ± 1

Sweep everything and
convert

x = 1.25p0 ± 0
y = 2.5p1 ± 0
i.e. x = ±1.25, y = ±2.5

28 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Pros and cons of polynomial sets

Pros

1. Can be as accurate as desired while being a single vector
function;

2. Algebraic operations are very efficient using Interval Arithmetic;

Cons

1. Being symbolic, almost all geometric operations are not
computable;

2. To recover some observability, evaluation on a splitting of the
set is necessary;

3. Splitting can be performed only on the parameter space,
leading to overlapping.

29 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Pros and cons of polynomial sets

Pros

1. Can be as accurate as desired while being a single vector
function;

2. Algebraic operations are very efficient using Interval Arithmetic;

Cons

1. Being symbolic, almost all geometric operations are not
computable;

2. To recover some observability, evaluation on a splitting of the
set is necessary;

3. Splitting can be performed only on the parameter space,
leading to overlapping.

29 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Outline

1 An overview of set representations

2 Grid paving set

3 Polynomial set

4 Combining representations

5 Hands-on

30 / 34



Overview Grid paving set Polynomial set Combining representations Hands-on

Grid sets vs polynomial sets

� They have opposite geometric properties in terms of accuracy
and computability.

� We should use grid sets only when absolutely necessary, when
computability demands it, in order to avoid the conversion
error into cells.

When is it absolutely necessary?

As we will see, infinite-time reachability requires to compute the
set of new points reached, until no new points are found. This in
turn requires the set difference operation, which can not be
computed between polynomial sets.
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Improvements over this approach?

� Arguably, set representation is the most important aspect of
numerical reachability;

� No clear-cut choices exist in the nonlinear case, research is
still very active;

� The use of a secondary representation for set difference (and
consequently infinite-time reachability) is almost unexplored
territory

I Apart from Ariadne, all libraries using the numerical
approximation approach focus on the finite-time reachable set

� Is a more flexible secondary representation worth the
inevitable computation overhead?

I Template grid set? Orthogonal polyhedra?
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Try constrained image sets and grid sets

� Constrained image sets are more convenient representations
than Taylor sets for plotting and discretising, for these
exercises;

� Actual Taylor sets will be displayed when working with
continuous evolution.
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