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Infinite vs finite time evolution

Finite time is simple, but may not be usable

Using finite time evolution to verify a system which evolves for
infinite time requires the manual identification of a time interval
that still gives formal guarantees.

� Example: if the behavior is guaranteed to be periodic, analyze
only one period.

Infinite-time evolution in practice

A sequence of finite-time evolutions, which terminates if no
additional state space can be reached after a while.

In general, to verify some properties of the system we need to
evolve the system for infinite time.
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Convergence for infinite-time evolution

To obtain convergence, we have two requirements:

1. Be able to identify when no new state space is reached;

2. Limit the growth of the overapproximation error.

We need a set representation with

� operations like subtraction, intersection, splitting and merging;

� small memory usage, fast operations and good scalability;

� small overapproximation error.

We use Taylor Sets to respect 2., switching temporarily to (Hybrid)
Grid Sets for 1.
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How and when to convert into a grid set

1. First, a proper choice of the root cell shape is important to
partition the state space.
I Slower changing variables require finer observation, hence a

smaller root cell width (recall here that cells are split
progressively across all dimensions).

I By analysing the vector field in a given location, we can gather
how fast each variable changes.

2. Conversion ideally should happen periodically with the same
period of evolution, if any exists.
I A point-based simulation of the system can identify any cycles

and is fast enough to be performed before rigorous evolution;
it can be improved upon subsequent refinements.

3. The obtained lock-to-grid strategy is a sufficiently long
sequence of (hybrid) times that guess the finite-time evolution
to be performed.
I A sensibly less sophisticated choice of an infinite sequence of

hybrid times is perfectly acceptable, e.g., convert after either
one transition or 10 seconds have passed.
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Infinite-time reachability at a glance

1. Identify a bounding set B to constrain evolution;

2. Identify a lock-to-grid strategy;

3. Compute the finite-time hybrid evolution of the automaton up
to the next lock-to-grid time;

4. If the reached set is outside the bounding set, stop with
failure;

5. If new cells have been found in this iteration, resume from (3);

6. Stop with success.
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Specific comments on computing O

1. We resume evolution from the new intermediate cells,
converted into Taylor sets.

I This is also able to address the problem of merging multiple
trajectories (e.g., after a transition), and of splitting a set
when too large.

2. The new intermediate cells after one round of finite evolution
must be obtained by comparison with the accumulated
intermediate cells instead of the accumulated reached cells.

I Not all points in the reached cells have been actually evolved.

3. If B is crossed, no information can be gathered: either the
infinite-time reachable set is actually outside B, or the
accuracy is insufficient for convergence.
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Specific comments on computing Lε (1)

We cannot split a set

We would lose the information on which cells contain points of the
reachable set: ||Re − Lε|| would be untrackable.

−→ We cannot resume evolution from cells.

Any Lε of a subset of Re is still a valid Lε of Re

An empty set for example is valid, while uninformative.

� The termination clause can be relaxed: we may stop as soon
as the set width becomes as large as ε

� For efficiency purposes we can still evolve subsets of initial
sets: particularly useful when large sets would be involved
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Specific comments on computing Lε (2)

How can we ”approximate” infinite-time reachability?

� We maintain a separate grid set, which is updated in parallel
only to check if no new cells are reached.

� We do not resume from the intermediate cells, but from the
original intermediate Taylor sets (or any subset of them).

� We may terminate prematurely, but that is fine: if convergence
is possible, with increasing accuracy we converge from below.

An invalid B can be detected using Lε

If the reached set is outside B more than ε, then B is too
restrictive with respect to Re and should be enlarged.
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The watertank example

� Outlet flow Fout depends on
the water level x(t):
Fout(t) = λ

√
x(t)

� Inlet flow Fin is controlled by
the valve position α(t):
Fin(t) = Kp · α(t)

� The controller senses the
water level and sends the
appropriate commands to the
valve.
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The watertank automaton

open

ẋ = λ
√
x + Kp

α = 1
x ≤ hmax + δ

closing

ẋ = λ
√
x + Kpα

α̇ = −1/T
α ≥ 0

closed

ẋ = λ
√
x

α = 0
x ≥ hmin − δ

opening

ẋ = λ
√
x + Kpα

α̇ = 1/T
α ≤ 1

x ≥ hmax − δ

α ≤ 0

x ≤ hmin + δ

α ≥ 1
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Reachability results
On the watertank example
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Hands-on

� We use again
tutorials/hybrid evolution/hybrid evolution tutorial.cpp

1. Run with verbosity 2, commenting compute evolution and
uncomment compute reachability

2. Change the maximum grid fineness down
3. Run with verbosity 3, commenting graphical output
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