
Introduction to the Hybrid Systems module
of the Systems Design Laboratory course

Luca Geretti

University of Verona, Italy

1 / 11

Summary of the module

� The focus is on the analysis of systems whose state is defined
not only by a valuation on discrete variables, but also on
continuous variables, i.e., the system has a hybrid nature.

I We describe hybrid automata as a modeling formalism and
introduce the concept of their reachability

� Due to the complexity of the reachability problem, we
distinguish between static and dynamic analysis of a system.

I For each of the two categories we discuss specific aspects and
use a software to experiment with the topic

2 / 11

Summary of the module

� The focus is on the analysis of systems whose state is defined
not only by a valuation on discrete variables, but also on
continuous variables, i.e., the system has a hybrid nature.

I We describe hybrid automata as a modeling formalism and
introduce the concept of their reachability

� Due to the complexity of the reachability problem, we
distinguish between static and dynamic analysis of a system.

I For each of the two categories we discuss specific aspects and
use a software to experiment with the topic

2 / 11

Lectures

→ 1. Introduction to the analysis of hybrid systems

2. Hybrid automata and the reachability problem

3. A survey of tools and the rigorous numerical approach

4. Representations of reachable sets

5. Bounded reachability

6. Unbounded reachability

7. Open systems and modularity

8. A specific domain: human-robot interaction

9. A specific application: collision prediction

3 / 11

Hybrid systems

Many real systems have a double nature. They:

� evolve with a given continuous law

� such law may change after specific discrete events

Such systems are called hybrid systems because they mix discrete
and continuous behaviours

4 / 11

Engineering example: 4-strokes engine

� Intake stroke: air and vaporized fuel are
drawn in

� Compression stroke: fuel vapor and air
are compressed and ignited

� Combustion stroke: fuel combusts and
piston is pushed downwards

� Exhaust/Emission stroke: exhaust is
driven out

� During the 1st, 2nd and 4th strokes the
piston is relying on the power and
momentum generated by the pistons of
the other cylinders

During the 4 strokes pression, temperature, . . . , vary continuously

5 / 11

Biology example: escherichia coli

Escherichia coli is a bacterium detecting the food concentration
through a set of receptors.

It responds in one of two ways:

� Directed motion: moves in a straight line by moving its
flagella counterclockwise

� Tumbling: randomly changes its heading by moving its flagella
clockwise

In either case, each variable changes continuously (or it is
constant). Discontinuities in the direction of the flagella are
handled by changing between the two discrete receptor responses.

6 / 11

The cost of errors and failures

� Often hybrid systems represent safety-critical systems:

I airplane control systems, medical care systems, train signalling
systems, automotive systems, . . .

� Bugs, design errors and failures can cause catastrophic loss of
money, time or even human life:

I Ariane 5 explosion (1996,
approx $500 million)

I Therac 25 accident (1985-87, six
patients seriously injured or
killed)

7 / 11

Testing and simulation

� The usual methods for analyzing the behavior of a hybrid
system are:

I Testing (using the system itself)
I Simulation (using a model of the system)

� They can cover only a subset of possible behaviors of the
system

� They can only prove the existence of errors, not their
in-existence

� Hybrid systems are reactive systems: they maintain an
ongoing interaction with the environment

I errors and failures caused by the interaction with the
environment can be very difficult to discover!

8 / 11

Testing and simulation

� The usual methods for analyzing the behavior of a hybrid
system are:

I Testing (using the system itself)
I Simulation (using a model of the system)

� They can cover only a subset of possible behaviors of the
system

� They can only prove the existence of errors, not their
in-existence

� Hybrid systems are reactive systems: they maintain an
ongoing interaction with the environment

I errors and failures caused by the interaction with the
environment can be very difficult to discover!

8 / 11

Testing and simulation

� The usual methods for analyzing the behavior of a hybrid
system are:

I Testing (using the system itself)
I Simulation (using a model of the system)

� They can cover only a subset of possible behaviors of the
system

� They can only prove the existence of errors, not their
in-existence

� Hybrid systems are reactive systems: they maintain an
ongoing interaction with the environment

I errors and failures caused by the interaction with the
environment can be very difficult to discover!

8 / 11

Testing and simulation

� The usual methods for analyzing the behavior of a hybrid
system are:

I Testing (using the system itself)
I Simulation (using a model of the system)

� They can cover only a subset of possible behaviors of the
system

� They can only prove the existence of errors, not their
in-existence

� Hybrid systems are reactive systems: they maintain an
ongoing interaction with the environment

I errors and failures caused by the interaction with the
environment can be very difficult to discover!

8 / 11

Rigorous analysis

To provide guarantees on the results of analysis, it is necessary to
resort to formal methods.

� Rigorous models with well-defined semantics

� Set-based computation instead of (multiple) point-based

� Proper termination guarantees in order not to miss any
behaviors

A rigorous approach requires a significantly larger computational
cost, which scales with the dimension of the system worse than
non-rigorous approaches.

9 / 11

Rigorous analysis

To provide guarantees on the results of analysis, it is necessary to
resort to formal methods.

� Rigorous models with well-defined semantics

� Set-based computation instead of (multiple) point-based

� Proper termination guarantees in order not to miss any
behaviors

A rigorous approach requires a significantly larger computational
cost, which scales with the dimension of the system worse than
non-rigorous approaches.

9 / 11

Static vs dynamic analysis

Static (a.k.a. offline or design-time)

In this “conventional” approach we analyze a model of the system
in isolation with respect to the system modeled.

� The model may be arbitrarily inaccurate

� There is no time budget on the analysis

Dynamic (a.k.a. online or run-time)

In this alternative approach there is a real time interaction between
the running model of the system and the actual system.

� Model evolution and system evolution can be compared,
allowing model refinement

� The analysis is expected to be performed periodically while
the system evolves, hence a time budget is enforced

10 / 11

Static vs dynamic analysis

Static (a.k.a. offline or design-time)

In this “conventional” approach we analyze a model of the system
in isolation with respect to the system modeled.

� The model may be arbitrarily inaccurate

� There is no time budget on the analysis

Dynamic (a.k.a. online or run-time)

In this alternative approach there is a real time interaction between
the running model of the system and the actual system.

� Model evolution and system evolution can be compared,
allowing model refinement

� The analysis is expected to be performed periodically while
the system evolves, hence a time budget is enforced

10 / 11

Static vs dynamic analysis

Static (a.k.a. offline or design-time)

In this “conventional” approach we analyze a model of the system
in isolation with respect to the system modeled.

� The model may be arbitrarily inaccurate

� There is no time budget on the analysis

Dynamic (a.k.a. online or run-time)

In this alternative approach there is a real time interaction between
the running model of the system and the actual system.

� Model evolution and system evolution can be compared,
allowing model refinement

� The analysis is expected to be performed periodically while
the system evolves, hence a time budget is enforced

10 / 11

Static vs dynamic analysis

Static (a.k.a. offline or design-time)

In this “conventional” approach we analyze a model of the system
in isolation with respect to the system modeled.

� The model may be arbitrarily inaccurate

� There is no time budget on the analysis

Dynamic (a.k.a. online or run-time)

In this alternative approach there is a real time interaction between
the running model of the system and the actual system.

� Model evolution and system evolution can be compared,
allowing model refinement

� The analysis is expected to be performed periodically while
the system evolves, hence a time budget is enforced

10 / 11

Static vs dynamic analysis

Static (a.k.a. offline or design-time)

In this “conventional” approach we analyze a model of the system
in isolation with respect to the system modeled.

� The model may be arbitrarily inaccurate

� There is no time budget on the analysis

Dynamic (a.k.a. online or run-time)

In this alternative approach there is a real time interaction between
the running model of the system and the actual system.

� Model evolution and system evolution can be compared,
allowing model refinement

� The analysis is expected to be performed periodically while
the system evolves, hence a time budget is enforced

10 / 11

Static vs dynamic analysis

Static (a.k.a. offline or design-time)

In this “conventional” approach we analyze a model of the system
in isolation with respect to the system modeled.

� The model may be arbitrarily inaccurate

� There is no time budget on the analysis

Dynamic (a.k.a. online or run-time)

In this alternative approach there is a real time interaction between
the running model of the system and the actual system.

� Model evolution and system evolution can be compared,
allowing model refinement

� The analysis is expected to be performed periodically while
the system evolves, hence a time budget is enforced

10 / 11

Tools we will use in the module

Static analysis: Ariadne

Library for rigorous numerical analysis and
synthesis of hybrid automata.

� Open source C++ with Python bindings

� Runs on macOS and Linux

Dynamic analysis: Opera

Runtime for analysis and control of interaction
between humans and robots.

� Open source C++

� Runs on macOS, Linux and Windows

11 / 11

Tools we will use in the module

Static analysis: Ariadne

Library for rigorous numerical analysis and
synthesis of hybrid automata.

� Open source C++ with Python bindings

� Runs on macOS and Linux

Dynamic analysis: Opera

Runtime for analysis and control of interaction
between humans and robots.

� Open source C++

� Runs on macOS, Linux and Windows

11 / 11

