
Open systems and modularity

Luca Geretti

University of Verona, Italy

1 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Outline

1 Introduction

2 Implementation of time-varying inputs

3 Decomposition

4 Assume-guarantee reasoning

5 Hands-on

2 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Design by contract

A formal approach used to handle complex systems:

� The system is specified as a set of components

� Each component is annotated with assumptions and
guarantees that represent a contract

I An assumption can be seen as a set of conditions on the inputs
to the component (i.e., the set of allowed inputs)

I A guarantee can be seen as a set of required outputs by the
component (i.e., the set of expected outputs)

� Contracts can be composed/decomposed horizontally to
handle complex hierarchical systems

I E.g., a contract on the full system can be decomposed into a
set of simpler contracts for each component that, if satisfied
separately, guarantee that the original contract is satisfied

� Also referred to as assume-guarantee reasoning

3 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The case for decomposition

Motivation

Validated reachability for nonlinear systems can be effectively
computed for a small number of coupled variables.

Approach

Instead of analysing a full system, we decouple it into subsystems
where we replace the coupling variables with proper time-varying
inputs.

� We settle on partial information over the dynamics of some
variables

� Inputs equivalently represent noise sources with bounded
values

4 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The case for decomposition

Motivation

Validated reachability for nonlinear systems can be effectively
computed for a small number of coupled variables.

Approach

Instead of analysing a full system, we decouple it into subsystems
where we replace the coupling variables with proper time-varying
inputs.

� We settle on partial information over the dynamics of some
variables

� Inputs equivalently represent noise sources with bounded
values

4 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Continuous vs hybrid decomposition

Continuous case

We decompose the dynamics on a specific location of the
composed hybrid system.

� We can handle a high-dimensional system in a flexible way,
where optimality depends on the decomposition criterion.

Hybrid case

We directly decompose the hybrid system, according to the defined
components.

� We can use a contract-based approach, focusing on
abstraction and refinement of the components of interest.

These are separate problems whose solutions can be combined.

5 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Continuous vs hybrid decomposition

Continuous case

We decompose the dynamics on a specific location of the
composed hybrid system.

� We can handle a high-dimensional system in a flexible way,
where optimality depends on the decomposition criterion.

Hybrid case

We directly decompose the hybrid system, according to the defined
components.

� We can use a contract-based approach, focusing on
abstraction and refinement of the components of interest.

These are separate problems whose solutions can be combined.

5 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Openness of components

� Unless we heavily abstract the original system, decomposition
introduces some decoupling in the continuous space.

� Decoupled components consequently have continuous
time-varying inputs that we must represent.

� These inputs should be representable by a generic set to cover
tightly the original behaviors of the variables.

6 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Openness of components

� Unless we heavily abstract the original system, decomposition
introduces some decoupling in the continuous space.

� Decoupled components consequently have continuous
time-varying inputs that we must represent.

� These inputs should be representable by a generic set to cover
tightly the original behaviors of the variables.

6 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Openness of components

� Unless we heavily abstract the original system, decomposition
introduces some decoupling in the continuous space.

� Decoupled components consequently have continuous
time-varying inputs that we must represent.

� These inputs should be representable by a generic set to cover
tightly the original behaviors of the variables.

6 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Model the behavior of time-varying inputs

1. Option 1: use interval coefficients in the dynamics:

I If we do not split the intervals, we can integrate the dynamics
as usual, obtaining an overapproximation of low order.

2. Option 2: use a differential inclusion:

I Higher order approximating functions can be used to represent
the behaviors of the inputs.

In the following we discuss the less common approach of
differential inclusions.

7 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Model the behavior of time-varying inputs

1. Option 1: use interval coefficients in the dynamics:

I If we do not split the intervals, we can integrate the dynamics
as usual, obtaining an overapproximation of low order.

2. Option 2: use a differential inclusion:

I Higher order approximating functions can be used to represent
the behaviors of the inputs.

In the following we discuss the less common approach of
differential inclusions.

7 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Model the behavior of time-varying inputs

1. Option 1: use interval coefficients in the dynamics:

I If we do not split the intervals, we can integrate the dynamics
as usual, obtaining an overapproximation of low order.

2. Option 2: use a differential inclusion:

I Higher order approximating functions can be used to represent
the behaviors of the inputs.

In the following we discuss the less common approach of
differential inclusions.

7 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Outline

1 Introduction

2 Implementation of time-varying inputs

3 Decomposition

4 Assume-guarantee reasoning

5 Hands-on

8 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

From differential equations to differential inclusions

We use differential inclusions (DI) to extend differential equations
to the presence of time-varying inputs.

The dynamics of the continuous state x ∈ Rn in a DI is expressed
as

ẋ ∈ F (x , v)

where v ∈ V ⊂ Rm are the inputs that represent the sources of
uncertainty in the dynamics, with V a compact bounding set.

9 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The general approach

� To compute the solution of ẋ(t) = F (x(t), v(t)), we
approximate each vi with a function we call wi , i = 1, . . . ,m.

� In order for the approximation to be tight, we perform it at
each integration step k.

I We call the resulting approximate solution y(tk).

� On each integration step k:

1. We identify proper wi,k , ∀i and compute y(tk) from x(tk−1).
2. We compute an approximation error εk such that
|x(tk)− y(tk)| ≤ εk

3. We over-approximate the exact solution with
x̃(tk) = y(tk)± εk .

4. We use x̃(tk) in place of x(tk) on the (k + 1)-th step.

10 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The general approach

� To compute the solution of ẋ(t) = F (x(t), v(t)), we
approximate each vi with a function we call wi , i = 1, . . . ,m.

� In order for the approximation to be tight, we perform it at
each integration step k.

I We call the resulting approximate solution y(tk).

� On each integration step k:

1. We identify proper wi,k , ∀i and compute y(tk) from x(tk−1).
2. We compute an approximation error εk such that
|x(tk)− y(tk)| ≤ εk

3. We over-approximate the exact solution with
x̃(tk) = y(tk)± εk .

4. We use x̃(tk) in place of x(tk) on the (k + 1)-th step.

10 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The general approach

� To compute the solution of ẋ(t) = F (x(t), v(t)), we
approximate each vi with a function we call wi , i = 1, . . . ,m.

� In order for the approximation to be tight, we perform it at
each integration step k.

I We call the resulting approximate solution y(tk).

� On each integration step k:

1. We identify proper wi,k , ∀i and compute y(tk) from x(tk−1).

2. We compute an approximation error εk such that
|x(tk)− y(tk)| ≤ εk

3. We over-approximate the exact solution with
x̃(tk) = y(tk)± εk .

4. We use x̃(tk) in place of x(tk) on the (k + 1)-th step.

10 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The general approach

� To compute the solution of ẋ(t) = F (x(t), v(t)), we
approximate each vi with a function we call wi , i = 1, . . . ,m.

� In order for the approximation to be tight, we perform it at
each integration step k.

I We call the resulting approximate solution y(tk).

� On each integration step k:

1. We identify proper wi,k , ∀i and compute y(tk) from x(tk−1).
2. We compute an approximation error εk such that
|x(tk)− y(tk)| ≤ εk

3. We over-approximate the exact solution with
x̃(tk) = y(tk)± εk .

4. We use x̃(tk) in place of x(tk) on the (k + 1)-th step.

10 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The general approach

� To compute the solution of ẋ(t) = F (x(t), v(t)), we
approximate each vi with a function we call wi , i = 1, . . . ,m.

� In order for the approximation to be tight, we perform it at
each integration step k.

I We call the resulting approximate solution y(tk).

� On each integration step k:

1. We identify proper wi,k , ∀i and compute y(tk) from x(tk−1).
2. We compute an approximation error εk such that
|x(tk)− y(tk)| ≤ εk

3. We over-approximate the exact solution with
x̃(tk) = y(tk)± εk .

4. We use x̃(tk) in place of x(tk) on the (k + 1)-th step.

10 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The general approach

� To compute the solution of ẋ(t) = F (x(t), v(t)), we
approximate each vi with a function we call wi , i = 1, . . . ,m.

� In order for the approximation to be tight, we perform it at
each integration step k.

I We call the resulting approximate solution y(tk).

� On each integration step k:

1. We identify proper wi,k , ∀i and compute y(tk) from x(tk−1).
2. We compute an approximation error εk such that
|x(tk)− y(tk)| ≤ εk

3. We over-approximate the exact solution with
x̃(tk) = y(tk)± εk .

4. We use x̃(tk) in place of x(tk) on the (k + 1)-th step.

10 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Restrictions currently used in Ariadne

In order to identify tight analytical expressions for ε, some
restrictions are currently in place:

� We focus on input-affine dynamics of the form

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t))vi (t)

with {f , gi} non-linear.

I This represents a limitation in terms of ability to substitute
variables with inputs.

� We settle on a box V =
∏

i [−Vi , Vi], with |vi (t)| ≤ Vi

I This is quite coarse when input values represent sets, as
usually required by hybrid decomposition.

11 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Restrictions currently used in Ariadne

In order to identify tight analytical expressions for ε, some
restrictions are currently in place:

� We focus on input-affine dynamics of the form

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t))vi (t)

with {f , gi} non-linear.

I This represents a limitation in terms of ability to substitute
variables with inputs.

� We settle on a box V =
∏

i [−Vi , Vi], with |vi (t)| ≤ Vi

I This is quite coarse when input values represent sets, as
usually required by hybrid decomposition.

11 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Restrictions currently used in Ariadne

In order to identify tight analytical expressions for ε, some
restrictions are currently in place:

� We focus on input-affine dynamics of the form

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t))vi (t)

with {f , gi} non-linear.

I This represents a limitation in terms of ability to substitute
variables with inputs.

� We settle on a box V =
∏

i [−Vi , Vi], with |vi (t)| ≤ Vi

I This is quite coarse when input values represent sets, as
usually required by hybrid decomposition.

11 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The auxiliary functions wi ,k

The auxiliary system we construct relies on replacing vi at each
step k with a function wi ,k in a number of parameters ai ,k bounded
by Vi . We currently can use the following auxiliary functions:

0) Zero: wi ,k(t) = 0,

1) Constant: wi ,k(t) = a
(0)
i ,k ,

2a) Affine: wi ,k(t) = a
(0)
i ,k + a

(1)
i ,k (t − tk+1/2)/hk ,

2b) Sinusoidal: wi ,k(t) = a
(0)
i ,k + a

(1)
i ,k sin

(
γ(t − tk+1/2)/hk

)
,

2c) Piecewise: wi ,k(t) =

{
a

(0)
i ,k if t ∈ [tk , tk+1/2)

a
(1)
i ,k if t ∈ [tk+1/2, tk+1),

where hk = tk+1− tk is the integration step size and γ ≈ 4.163152.

12 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The approximation error εk

� In the most general case εk is a function of the C 2 norms of
f , gi on the domain Dk , and of the step size hk ;

� The error formula depends on the auxiliary functions chosen:
the more the parameters used, the tighter the result;

� For two-parameter auxiliary functions, it is specialised for the
cases of additive inputs or single input.

Order of the error based on the number of parameters:

– 0: O(hk),

– 1: O(h2
k),

– 2:

{
O(h2

k) + O(h3
k) but can get to O(h3

k),
O(h3

k) if additive inputs or 1-2 inputs.

13 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The approximation error εk

� In the most general case εk is a function of the C 2 norms of
f , gi on the domain Dk , and of the step size hk ;

� The error formula depends on the auxiliary functions chosen:
the more the parameters used, the tighter the result;

� For two-parameter auxiliary functions, it is specialised for the
cases of additive inputs or single input.

Order of the error based on the number of parameters:

– 0: O(hk),

– 1: O(h2
k),

– 2:

{
O(h2

k) + O(h3
k) but can get to O(h3

k),
O(h3

k) if additive inputs or 1-2 inputs.

13 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Number of parameters to get to O(h3
k)

Assumptions: system is input-affine, inputs are non-additive.

n. of inputs n. of equations = degree d for at
= total n. of parameters = least one wi =
m m(m + 3)/2 d(m + 1)/2e
1 2 1
2 5 2
3 9 2
4 14 3
5 20 3
6 27 4

10 65 5

14 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The algorithm for a single continuous step

Let Sk =
{
qk(p)± ek | p ∈ [−1, 1]Pk

}
be an over-approximation

of the set S(x0, tk).

1. Choose auxiliary functions wi ,k(t, ai ,k);

2. Compute the flow φ̃k(xk , ak) of

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t))wi ,k(t, ai ,k)

for t ∈ [tk , tk+1], xk = x(tk) ∈ Sk ;

3. Add the uniform error bound εk ;

4. Compute the set Sk+1 which approximates S(x0, tk+1).

15 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Implementation aspects

Reconditioning the set

At each step the set S will increase its number of parameters

→ For efficiency purposes, we need to periodically simplify the
set by reducing such number at the cost of accuracy.

Choosing the auxiliary function dynamically

Finite accuracy in the representation of a set has an additional
effect on the approximation quality

� Using a high-order wi ,k , while yielding a lower ε, may not
result in the tightest Sk+1

→ Instead of using a fixed wi ,k , we dynamically evaluate each
auxiliary function and choose the one giving the tightest set.

16 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Implementation aspects

Reconditioning the set

At each step the set S will increase its number of parameters

→ For efficiency purposes, we need to periodically simplify the
set by reducing such number at the cost of accuracy.

Choosing the auxiliary function dynamically

Finite accuracy in the representation of a set has an additional
effect on the approximation quality

� Using a high-order wi ,k , while yielding a lower ε, may not
result in the tightest Sk+1

→ Instead of using a fixed wi ,k , we dynamically evaluate each
auxiliary function and choose the one giving the tightest set.

16 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Outline

1 Introduction

2 Implementation of time-varying inputs

3 Decomposition

4 Assume-guarantee reasoning

5 Hands-on

17 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
An example of a system

Source: M. T. Laub and W. F. Loomis. A molecular network that produces

spontaneous oscillations in excitable cells of dictyostelium. Molecular Biology of the

Cell, 9:3521–3532, 1998.



ẋ1 = 1.4x3 − 0.9x1

ẋ2 = 2.5x5 − 1.5x2

ẋ3 = 0.6x7 − 0.8x2x3

ẋ4 = 2− 1.3x3x4

ẋ5 = 0.7x1 − x4x5

ẋ6 = 0.3x1 − 3.1x6

ẋ7 = 1.8x6 − 1.5x2x7

Dynamics

x1 x4

x5

x2

x3

x6

x7

Static dependency graph

18 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A partially distributed approach

On each continuous integration step k :
1. Compute the bounding box of the flow Bk

I Gives the bounds for an input that replaces a variable
I May not converge, as usual

2. Choose a decomposition of the variables into Q disjoint sets
that minimises a chosen cost function
I Static decomposition, valid ∀k: minimise the number of arcs

removed from the dependency graph
I Dynamic decomposition: weight each arc with the impact on

the dynamics in terms of range width (using Bk), minimize the
sum of the weights

3. For each set of variables:
3.1 Replace the external variables with inputs
3.2 Compute the flow function

4. Combine the flow functions
5. Evaluate the set at the end of the continuous step

19 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A partially distributed approach

On each continuous integration step k :
1. Compute the bounding box of the flow Bk

I Gives the bounds for an input that replaces a variable
I May not converge, as usual

2. Choose a decomposition of the variables into Q disjoint sets
that minimises a chosen cost function
I Static decomposition, valid ∀k : minimise the number of arcs

removed from the dependency graph
I Dynamic decomposition: weight each arc with the impact on

the dynamics in terms of range width (using Bk), minimize the
sum of the weights

3. For each set of variables:
3.1 Replace the external variables with inputs
3.2 Compute the flow function

4. Combine the flow functions
5. Evaluate the set at the end of the continuous step

19 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A partially distributed approach

On each continuous integration step k :
1. Compute the bounding box of the flow Bk

I Gives the bounds for an input that replaces a variable
I May not converge, as usual

2. Choose a decomposition of the variables into Q disjoint sets
that minimises a chosen cost function
I Static decomposition, valid ∀k : minimise the number of arcs

removed from the dependency graph
I Dynamic decomposition: weight each arc with the impact on

the dynamics in terms of range width (using Bk), minimize the
sum of the weights

3. For each set of variables:
3.1 Replace the external variables with inputs
3.2 Compute the flow function

4. Combine the flow functions
5. Evaluate the set at the end of the continuous step

19 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A partially distributed approach

On each continuous integration step k :
1. Compute the bounding box of the flow Bk

I Gives the bounds for an input that replaces a variable
I May not converge, as usual

2. Choose a decomposition of the variables into Q disjoint sets
that minimises a chosen cost function
I Static decomposition, valid ∀k : minimise the number of arcs

removed from the dependency graph
I Dynamic decomposition: weight each arc with the impact on

the dynamics in terms of range width (using Bk), minimize the
sum of the weights

3. For each set of variables:
3.1 Replace the external variables with inputs
3.2 Compute the flow function

4. Combine the flow functions

5. Evaluate the set at the end of the continuous step

19 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A partially distributed approach

On each continuous integration step k :
1. Compute the bounding box of the flow Bk

I Gives the bounds for an input that replaces a variable
I May not converge, as usual

2. Choose a decomposition of the variables into Q disjoint sets
that minimises a chosen cost function
I Static decomposition, valid ∀k : minimise the number of arcs

removed from the dependency graph
I Dynamic decomposition: weight each arc with the impact on

the dynamics in terms of range width (using Bk), minimize the
sum of the weights

3. For each set of variables:
3.1 Replace the external variables with inputs
3.2 Compute the flow function

4. Combine the flow functions
5. Evaluate the set at the end of the continuous step

19 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A totally distributed approach

Differences

� We don’t compute a global bounding box

� We introduce initial assumptions on the range of the inputs
along the flow

I If the input ranges obtained from the flow functions do not
refine the assumptions, we relax those assumptions

I Using the obtained refinement, we can subsequently refine the
flow functions

Issues

� Numerical convergence is slightly more delicate, since we need
to guess input ranges

� Multiple iterations to refine the input ranges is more costly

→ Try this approach only if Bk cannot be obtained.

20 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
A totally distributed approach

Differences

� We don’t compute a global bounding box

� We introduce initial assumptions on the range of the inputs
along the flow

I If the input ranges obtained from the flow functions do not
refine the assumptions, we relax those assumptions

I Using the obtained refinement, we can subsequently refine the
flow functions

Issues

� Numerical convergence is slightly more delicate, since we need
to guess input ranges

� Multiple iterations to refine the input ranges is more costly

→ Try this approach only if Bk cannot be obtained.
20 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
Our example in two subsets

Static decomposition for Q = 2 suggests {x1, x4, x5} and
{x2, x3, x6, x7} sets, yielding

C1 :


ẋ1 = 1.4v3 − 0.9x1

ẋ4 = 2− 1.3v3x4

ẋ5 = 0.7x1 − x4x5

C2 :


ẋ2 = 2.5v5 − 1.5x2

ẋ3 = 0.6x7 − 0.8x2x3

ẋ6 = 0.3v1 − 3.1x6

ẋ7 = 1.8x6 − 1.5x2x7

Hence we have {n = 3,m = 1} and {n = 4,m = 2} components.

The resulting solution will be coarser but faster to calculate.

21 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the continuous space
Our example in three subsets

Static decomposition for Q = 3 suggests {x1, x2, x3}, {x4, x5} and
{x6, x7} sets, yielding

C1 :


ẋ1 = 1.4x3 − 0.9x1

ẋ2 = 2.5v5 − 1.5x2

ẋ3 = 0.6v7 − 0.8x2x3

C2 :

{
ẋ4 = 2− 1.3v3x4

ẋ5 = 0.7v1 − x4x5

C3 :

{
ẋ6 = 0.3v1 − 3.1x6

ẋ7 = 1.8x6 − 1.5v2x7

Hence we have {n = 3,m = 2}, {n = 2,m = 2} and
{n = 2,m = 2} components.

Note that v1 is a shared parameter for C2 and C3, hence we have
only 5 actual inputs.

22 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the hybrid space
An open loop system

Objective

Keep the water
level x in each tank
within a required
range, using a valve
aperture control u.

a. The first component C1 can be analyzed in isolation

b. The second component C2 can be analyzed in isolation if we replace
its dependency from C1 with a time-varying input.

23 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the hybrid space
Model details

� Each controller 1,2 switches between several operating
modes/locations `1,`2 as a function of the water level.

� For the two components and a given composed discrete
location `1 ⊕ `2, the dynamics are:

ẋ1 = α1u1 − β1
√
x1

u̇1 = ψ1,`1(x1)

ẋ2 = α2u2 x1 − β2
√
x2

u̇2 = ψ2,`2(x2)

where the constants α, β depend on the tank and pipe
sections, and ψ depends on the specific controller (e.g.,
hysteretic, proportional) and the location/mode.

� To remove the dependency from x1, we introduce an input v
that overapproximates the behavior of C1 in respect to x1.

24 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the hybrid space
Analyzing the decoupled component (basic approach)

1. First, we analyze C1 separately, obtaining the reachable set
Re 1.

2. Then, we analyze the decoupled C2 on each location `2:

ẋ2 = α2u2 v − β2
√
x2

u̇2 = ψ2,`2(x2)

where we set v ∈ Re 1 ↓x1 as an input.

By decoupling we discarded all discrete synchronisation information
between C1 and C2: hence we need to restrict v to the whole Re 1.

25 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the hybrid space
Analyzing the decoupled component (improved approach)

1. First, we analyze C1 separately, obtaining the reachable set
Re 1.

2. Then, we analyze the decoupled C2:

v̇ = z

ẋ2 = α2u2 v − β2
√
x2

u̇2 = ψ2,`(x2)

where we set z ∈ {ẋ1(x1, u1)}(x1,u1)∈Re 1
as an input.

While v becomes an extra variable, we can set an initial value
v(0) = x1(0) along with an invariant v ∈ Re 1 ↓x1 .

26 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the hybrid space
General issues

Reachable sets might be significantly large

We need an appropriate representation for a reachable set to
minimise the corresponding ranges of the introduced inputs.

→ We need to supply traces rather than time-invariant sets.

Closed loop systems require initial assumptions on inputs

This translates into successive refinements of the inputs until
convergence, if numerically possible, is obtained.

→ We need to identify abstractions of components providing
such inputs.

27 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Decomposition in the hybrid space
General issues

Reachable sets might be significantly large

We need an appropriate representation for a reachable set to
minimise the corresponding ranges of the introduced inputs.

→ We need to supply traces rather than time-invariant sets.

Closed loop systems require initial assumptions on inputs

This translates into successive refinements of the inputs until
convergence, if numerically possible, is obtained.

→ We need to identify abstractions of components providing
such inputs.

27 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Outline

1 Introduction

2 Implementation of time-varying inputs

3 Decomposition

4 Assume-guarantee reasoning

5 Hands-on

28 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Assume-guarantee system specification

� The system is specified as a set of components.

� Every component is annotated with a pair (Ai ,Gi) of
assumptions and guarantees.

� The requirements (A,G) of the whole system are decomposed
into a set of simpler requirements (Ai ,Gi) that, if satisfied,
guarantee that the overall requirements (A,G) are satisfied.

We will evaluate two problems in terms of assume-guarantee:
safety and dominance.

29 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Assume-guarantee system specification

� The system is specified as a set of components.

� Every component is annotated with a pair (Ai ,Gi) of
assumptions and guarantees.

� The requirements (A,G) of the whole system are decomposed
into a set of simpler requirements (Ai ,Gi) that, if satisfied,
guarantee that the overall requirements (A,G) are satisfied.

We will evaluate two problems in terms of assume-guarantee:
safety and dominance.

29 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Safety checking

Let C be a component of the system, annotated with assumptions
A and guarantees G . We can verify whether the component C
respects the safety guarantees G or not given the assumptions A.

� Represent the component C by a hybrid automaton H with
inputs and outputs.

� Assumptions A are represented by a hybrid automaton HA

that specifies the possible inputs U for H.

� Guarantees G specify the possible outputs Y of automaton H.

This is a reachability analysis problem:

Reach(H‖HA) ⊆ Sat(G).

30 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Safety checking by grid refinement

1. Compute an outer-approximation O of Reach(H‖HA) using a
grid of a given size.

2. If O ⊆ Sat(G), the system is verified to be safe. Exit with
success.

3. Otherwise, compute an ε-lower approximation Lε of
Reach(H‖HA). The value of ε depends on the size of the grid
(typically, ε is a small multiple of the size of a grid cell).

4. If there exists at least a point in Lε that is outside Sat(G) by
more than ε, the system is verified to be unsafe. Exit with
failure.

5. Otherwise, set the grid to a finer size and restart from point 1.

31 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

First iteration:
grid 1/8× 1/80
(x-axis: x(t), y -axis:
α(t)).

Outer reach is not safe, try
lower reach.

Green: safe set Orange: ε-tolerance Red: computed set

32 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

First iteration:
grid 1/8× 1/80
(x-axis: x(t), y -axis:
α(t)).

Lower reach is not unsafe,
refine grid.

Green: safe set Orange: ε-tolerance Red: computed set

32 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Second iteration:
grid 1/16× 1/160
(x-axis: x(t), y -axis:
α(t)).

Outer reach is not safe, try
lower reach.

Green: safe set Orange: ε-tolerance Red: computed set

32 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Second iteration:
grid 1/16× 1/160
(x-axis: x(t), y -axis:
α(t)).

Lower reach is not unsafe,
refine grid.

Green: safe set Orange: ε-tolerance Red: computed set

32 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Verifying the water tank

Safety property: the water level between 5.25 and 8.25 meters.

����

�

���

���

���

���

�

���

� ��� � ��� � ��� � ���

Third iteration:
grid 1/32× 1/320
(x-axis: x(t), y -axis:
α(t)).

Outer reach is safe, system
is proved safe.

Green: safe set Orange: ε-tolerance Red: computed set

32 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Verifying the water tank

1. In this example, we could prove safety by outer reach.

2. Variations of the parameters could yield systems where lower
reach would prove unsafety or where no conclusions could be
drawn (smallest precision of the parameters reached without
proving safety or unsafety).

33 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Dominance checking

Definition

Given two components C1 and C2, with assumptions and
guarantees (A1,G1) and (A2,G2), we say that C1 dominates C2 if
and only if under weaker assumptions (A2 ⊆ A1), stronger
promises are guaranteed (G1 ⊆ G2).

If this is the case, the component C2 can be replaced with C1 in
the system without affecting the whole system behaviour.

Intuitively, the component C1 dominates C2 if it issues sharper
outputs (G1 ⊆ G2) with looser inputs (A2 ⊆ A1), e.g., a
dominating controller can issue a subset of the control commands
to cope with an environment which is allowed more freedom.

34 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Dominance checking by reachability analysis

1. Represent the two components by two hybrid automata H1

and H2 with inputs and outputs.

2. Assumptions A1 and A2 are represented by hybrid automata
HA1 and HA2 that specify the possible inputs U1,U2 for the
components.

3. Guarantees G1 and G2 specify the possible outputs Y1,Y2 of
the automata H1 and H2.

4. H1 dominates H2 if and only if G1 ⊆ G2 and A2 ⊆ A1.

This is a reachability analysis problem:

Reach(HA1‖H1)|Y1 ⊆ Reach(HA2‖H2)|Y2 .

35 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Dominance checking using approximations

Approximate reachability routines can be used to test dominance
of components:

1. Compute an ε-lower approximation Lε2 of Reach(HA2‖H2)|Y2 .

2. Remove a border of size ε from Lε2.

3. Compute an outer approximation O1 of Reach(HA1‖H1)|Y1 .

4. If O1 ⊆ Lε2 − ε then Reach(HA1‖H1)|Y1 ⊆ Reach(HA2‖H2)|Y2

and thus H1 dominates H2.

5. If not, we cannot say anything about H1 and H2, and we retry
with a finer approximation.

36 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Correctness aspects

The proof of correctness of the procedure relies on the following
steps:

1. Reach(HA1‖H1)|Y1 ⊆ O1 by definition.

2. O1 ⊆ Lε2 − ε to be verified.

3. Lε2 − ε ⊆ Inner2 under suitable hypotheses.

4. Inner2 ⊆ Reach(HA2‖H2)|Y2 by definition.

Therefore Reach(HA1‖H1)|Y1 ⊆ Reach(HA2‖H2)|Y2 and thus H1

dominates H2.

A sufficient hypothesis to guarantee that Lε2 − ε ⊆ Inner2 is that
Reach(HA2‖H2)|Y2 is a ε-regular set, i.e., there are no holes
“smaller than ε” in the set.

37 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The water tank again

We want to replace the controller and the valve.

Controller Actuator:
valve

Plant:
tank

w(t) u(t)

xs(t)

p(t)

Sensor
x(t)

δ

� The valve is slower than the previous one

� The controller is smarter and can fix the valve aperture to any
value w(t) ∈ [0, 1]

Does the system still operate correctly?

38 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

The water tank again

Application of dominance relation in this example:

1. The automaton H1 represents the whole system with new
components (proportional controller, slower valve, sensor,
plant).

2. The automaton H2 represents the whole system with old
components (hysteresis controller, original faster valve, sensor,
plant).

3. A1 and A2 specify the same external input U1 = U2 = p(t),
i.e. the pressure on the valve, so it is A2 = A1.

4. G1 and G2 specify the same output Y1 = Y2 = x(t), i.e., the
water level of the tank, for which it is requested G1 ⊆ G2.

39 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

A proportional controller

w(t) = 1

c0 c1

w(t) = 0

c2
xs(t) ≥ R − 1

KP
xs(t) ≤ Rw(t) = KP (R − xs(t))

xs(t) ≤ R − 1

KP
R − 1

KP
≤ xs(t) ≤ R

xs(t) ≤ R − 1

KP

xs(t) ≥ R xs(t) ≥ R

� The input is the measured water level xs(t) provided by the
sensor.

� The output is a command signal w(t) ∈ [0, 1] for the valve
position regulation.

� The controller computes the output w(t) from the measured
level xs(t) and the water level reference R.

� In response to a command w(t) the valve aperture a(t) varies
with the first-order linear dynamics ȧ(t) = 1

τ (w(t)− a(t)).

40 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

A proportional controller

1. Location c0 models when the controller saturates the opening
valve command to w(t) = 1.

2. Location c1 models when the controller tracks the water
reference level R.

3. Location c2 models when the controller saturates the closing
valve command to w(t) = 0.

41 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Results

ε-lower approximation of the reachable set of the hysteresis
controller:

Assumptions:

� Inlet pressure p
between 50 and 60
KPa (KiloPascal)

� Sensor’s error between
−0.05 and 0.05 m

The proportional controller dominates the hysteresis controller.

42 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Results

Outer approximation of the reachable set of the proportional
controller:

Assumptions:

� Inlet pressure p
between 50 and 60
KPa (KiloPascal)

� Sensor’s error between
−0.05 and 0.05 m

The proportional controller dominates the hysteresis controller.

42 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

References

� Continuous decomposition
Chen, X. and Sankaranarayanan, S. ”Decomposed Reachability Analysis for Nonlinear Systems,” 2016 IEEE
Real-Time Systems Symposium (RTSS), Porto, 2016, pp. 13-24

� Differential inclusions
Gonzalez, S.; Collins, P.; Geretti, L.; Bresolin, D.; Villa, T. ”Higher Order Method for Differential
Inclusions”, arXiv preprint arXiv:2001.11330

� Assume-guarantee verification
Benvenuti, L.; Bresolin, D.; Collins, P.; Ferrari, A.; Geretti, L.; Villa, T. ”Assume-guarantee verification of
nonlinear hybrid systems with Ariadne”, International Journal of Robust and Nonlinear Control, Volume 24,
Issue 4, Mar. 2014, pg. 699-724, ISSN: 1049-8923, DOI: 10.1002/RNC.2914

43 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Outline

1 Introduction

2 Implementation of time-varying inputs

3 Decomposition

4 Assume-guarantee reasoning

5 Hands-on

44 / 45

Introduction Time-varying inputs Decomposition Assume-guarantee reasoning Hands-on

Hands-on

We focus on differential inclusions only.

� We use examples/continuous/noisy/higgins-selkov.*pp

(though any example in noisy/ would work)

1. set draw to true in noisy-utilities.hpp

2. Run with verbosity 2
3. Run with -v 4 -c max -g none -d none

4. Try with verbosity 6
5. Enlarge the initial set
6. (alternatively) Enlarge the input set

� Try with other examples.

45 / 45

	Introduction
	Implementation of time-varying inputs
	Decomposition
	Assume-guarantee reasoning
	Hands-on

