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Hybrid evolution of a set

Continuous step

1. From the starting set, given a time step h, construct the flow
set

2. Apply to the whole [0, h] time interval to get the reached set

3. Apply to the h time value to get the finishing set

Discrete step

1. From the flow set, identify the presence of crossings with
guards

2. Compute the kinds of crossings

3. Compute the crossing times

4. Apply the constraints for the intersection

5. Apply the resets
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How to construct a flow set

We need to find a set Φ for which the Picard operator applied on
itself is a contraction:

Φk+1(x , t) = x +

∫ t

0
f (Φk(x , s))ds ⊆ Φk(x , t) , ∀x ∈ X0

where f is the ODE function and X0 is the starting set.

There are two approaches:

1. Get a bounding for Φ and refine Φ until satisfied with the
result;

2. Construct a polynomial with desired order for Φ, then find a
uniform error e for which the contraction is satisfied.
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How to construct a flow set - Method 1

1. Use the Euler Method on the bounding box of X0, called X bb
0 :

if the result is contained in X bb
0 , then it is a valid Φ0.

2. Use the Picard operator, integrating using automatic
differentiation, to refine Φ from Φ0 as many times as desired.

→ The temporal order increases, the uniform error decreases.
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How to construct a flow set - Method 2

1. Construct a polynomial expansion for Φ called p, using
automatic differentiation;

2. Try a value of the uniform error e such that p + e is a
contraction:
I If successful, repeat 2. using the uniform error obtained from

the contraction (until satisfied with the result);
I If not, try with a larger value of e.

→ The temporal order is fixed, the uniform error decreases.
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Pros and cons of each method

Method 1

+ We get flow bounds (including the step size) early;

- The temporal order must grow to reduce the error;

- Being low-order, the Euler Method might be incapable of
verifying a step size for which a contraction is actually
possible.

Method 2

+ It decouples the temporal order from the error;

- It chooses the temporal order in advance, hence we can’t
adapt the order to account for local contractibility properties;

- It is more expensive to compute in general.
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A graphical overview of discrete steps
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Identify the presence of crossings

In order to identify crossings between a guard function
g : Rm → R and points subject to a (nonlinear) vector field
function f : Rm → Rm, the Lie derivative is fundamental:

Lf g = ∇g · f =
m∑
i=1

∂g

∂xi
fi

When Lf g is evaluated for the reached set s after one continuous
step, we get an interval for which we can conclude the following
for the event e associated to the guard:

� Lf g(s) < 0: inactive event (no crossing);

� Lf g(s) > 0: initially active event (already completely crossed);

� Lf g(s) crosses 0: partially active (there exists a crossing at a
time 0 < γ < δ, with δ the time step size).
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When the concavity is relevant

If no definite positivity/negativity is gathered from Lf g(s), then we
can resort to the second derivative: L2f g = Lf Lf g .

� L2f g(s) > 0: convex, which means that the event is either:
I initially active;
I never active;
I not initially active but becomes active due to a transverse

crossing;
I the initial set is on the boundary of the guard set, possibly

with the flow tangent to this set.

� L2f g(s) < 0: concave, which means that the event is either:
I initially active;
I not initially active, but becomes active later;
I never active, and the maximum of the guard along the flow

lines is zero;
I the state touches the guard at a point of tangency.

� L2f g(s) crosses 0: degenerate, can’t say anything.
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Compute the crossing time

� A crossing time is necessary to associate an accurate evolution
time to the crossing set

� It is also useful to discriminate in which case we lie when
concavity is relevant

� It is computed as g ◦ φ (D), with φ the flow function and D
the flow+time domain

Hence in Ariadne the evolution time is a function, possibly
dependent on spacial parameters, in order to accommodate the
fact that points that cross may do it at different times.

� Other tools might settle with an upper bound on the
evolution time or a simple interval, which however do not
allow to split sets along time anymore or to introduce
constraints that depend on time.
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Summarizing

� The crossing kind and time direct us to the operations
required to obtain the evolved set for each event.

� Unfortunately, based on the actual shape of the crossing and
the set, computing the crossing time may fail numerically,
which requires to introduce constraints in the set to account
for the crossing, which delegates resolution to a later time

I It is possible that constraints along evolution can be resolved
better, numerically.
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Continuous evolution on the van der Pol oscillator

� Found at examples/continuous/vanderpol.cpp

1. Run with verbosity 2
2. set animated(true) and use the Gnuplot backend
3. Run with verbosity 3, commenting simulation and graphics
4. Run with verbosity 4 up to 7
5. Change the integrator’s maximum error per step
6. Change the evolver’s step size
7. Enlarge the initial set
8. Change the integrator with GradedTaylorSeriesIntegrator
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Hybrid evolution on the watertank system

� Found at
tutorials/hybrid evolution/hybrid evolution tutorial.cpp

1. Run with verbosity 3, commenting simulate evolution and
compute reachability and disabling graphics with the -d

none -g none command line flags
2. Change delta to zero to remove nondeterminism
3. Increase the maximum step size
4. Run with verbosity 4 and the flags above
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