University of Verona Master's Program Mathematics

Representation Theory Exam 2016/17

1. Determine the Auslander-Reiten-quiver of the path algebra Λ given by the quiver

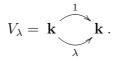
$$1 \longrightarrow 2 \longleftarrow 3 \longrightarrow 4$$

(hint: there are 10 indecomposables!)

Furthermore,

- (a) write down the almost split sequence starting at P_3 .
- (b) Is there an indecomposable module M such that $\dim \operatorname{Hom}(P_3, M) > 1$?
- (c) What is the maximal length of an indecomposable module?
- (d) Is there a non-split short exact sequence $0 \to P_3 \to X \to I_4 \to 0$? (8 points)
- 2. Let **k** be a field and consider the path algebra $\mathbf{k}\widetilde{\mathbb{A}_1}$, where $\widetilde{\mathbb{A}_1}$ is the quiver

Write down the representations of the indecomposable projective modules P_1 and P_2 . Moreover, for $\lambda \in \mathbf{k}^*$, consider the representation



At the level of representations, write down an injective map $f: P_2 \to P_1$ such that Coker $f = V_{\lambda}$. (5 points)

- 3. Let Λ be a finite-dimensional algebra over an algebraically closed field.
 - (a) Give the definition of a left almost split morphism. (2 points)
 - (b) Let $M, N \in \Lambda$ -mod and $f: M \to N$ be left almost split. Show that M is indecomposable. (4 points)
- 4. Let R be a ring with Jacobson radical J, and let S be a simple left R-module.
 - (a) Show that there is a left ideal I of R such that $S \cong R/I$. (2 points)
 - (b) Deduce that $J \cdot S = 0$. (3 points)

(6 points)