2.9 Exercises - Part 1

(published on October 13, solutions to be submitted on October 27, 2016).

Exercise 1. (a) Let $_RM$ be a R-module and $_RR$ the regular module. Show that the abelian group $\operatorname{Hom}_R(R, M)$ is a left R-module and that the map

$$\varphi : \operatorname{Hom}_R(R, M) \to M, f \mapsto f(1)$$

is an isomorphism of R-modules.

- (b) Let $f \in \text{Hom}_R(M, N)$ be a homomorphism of R-modules. Show that f is a monomorphism if and only if fg = 0 implies g = 0 for any $g \in \text{Hom}_R(L, M)$. Show f is an epimorphism if and only if gf = 0 implies g = 0 for any $g \in \text{Hom}_R(N, L)$. (4 points)
- **Exercise 2.** (a) Let $_{R}L_{,R}N \leq _{R}M$. Show that M is the direct sum of L and N if and only if L + N = M and $L \cap N = 0$. Does the same hold true for more than two summands? (4 points)
- (b) Given $f \in \operatorname{Hom}_R(L, M)$ and $g \in \operatorname{Hom}_R(M, L)$ such that $gf = \operatorname{id}_L$, show that $M = \operatorname{Im} f \oplus \ker g$. (3 points)

Exercise 3. Given a field k, consider the ring $R = \begin{pmatrix} k & 0 \\ k & k \end{pmatrix} = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a, b, c \in k \}.$

- (a) Show that $P_1 = \{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in k \}$ and $P_2 = \{ \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix} \mid c \in k \}$ are left ideals of $_RR$ and that $I_1 = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in k \}$ and $I_2 = \{ \begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix} \mid b, c \in k \}$ are right ideals of R_R . (4 points)
- (b) Recall that R is isomorphic to the path algebra of the quiver $\mathbb{A}_2: \bullet \xrightarrow{\alpha} \bullet$. Find representations of \mathbb{A}_2 corresponding to P_1 and P_2 under the isomorphism $k\mathbb{A}_2 \cong R$. (4 points)
- **Exercise 4.** (a) Let $\varphi : S \to R$ a ring homomorphism. Show that any left *R*-module *M* is also a left *S*-module via the map $S \times M \to M$, $(s, m) \mapsto \varphi(s)m$. (4 points)
- (b) Let $_RM$ and define $\operatorname{Ann}_R(M) = \{r \in R \mid rm = 0 \text{ for any } m \in M\}$. M is called faithful if $\operatorname{Ann}_R(M) = 0$. Check that $\operatorname{Ann}_R(M)$ is a two-sided ideal of R, and set $S = R / \operatorname{Ann}_R(M)$. Verify that M has a natural structure of S-module, given by the map $S \times M \to M$, $(\bar{r}, m) \mapsto rm$. Show that M is a faithful S-module. (4 points)

(3 points)