
Introduction to Program Analysis

Herbert Wiklicky
herbert@doc.ic.ac.uk

www.doc.ic.ac.uk/∼herbert

Department of Computing
Imperial College London

Verona, April 2012

Wiklicky Program Analysis

Static Program Analysis

Program Analysis is an automated technique for determining
properties of programs without having to execute them.
We can distinguish in particular between:

Static Analysis vs Dynamic Testing

The results obtained by static program analysis can be used in:

Compiler Optimisation
Program Verification
Security Analysis

Wiklicky Program Analysis

Techniques

The techniques used in program analysis include e.g.:

Data Flow Analysis
Control Flow Analysis
Types and Effects Systems
Abstract Interpretation

A comprehensive introduction and details can be found in:

Flemming Nielson, Hanne Riis Nielson and Chris Hankin:
Principles of Program Analysis. Springer Verlag, 1999/2005.

Wiklicky Program Analysis

A First Example

Consider the following fragment in some procedural language.

1: m← 2;
2: while n > 1 do
3: m← m × n;
4: n← n − 1
5: end while
6: stop

[m← 2]1;
while [n > 1]2 do

[m← m × n]3;
[n← n − 1]4

end while
[stop]5

We annotate a program such that it becomes clear about what
program point p or label ` we are talking about. This annotation
can easily be defined formally.

Wiklicky Program Analysis

A Parity Analysis

Claim: This program fragment always returns an even m,
independently of the initial values of m and n.

We can statically determine that in any circumstances the value
of m at the last statement will be even for any input n.

A program analysis, so-called parity analysis, can determine
this property of the program by propagating the even/odd or
parity information forwards form the start of the program.

Wiklicky Program Analysis

Properties

We will assign to each variable one of three properties:

even — the value is known to be even
odd — the value is known to be odd
unknown — the parity of the value is unknown

For both variables m and n we record their parity at each stage
of the computation (i.e. we investigate at the computational
situation at the beginning of each statement).

Wiklicky Program Analysis

A First Example

Executing the program with abstract values – parity – for m and
n results in the following:

1: m← 2; . unknown(m) – unknown(n)
2: while n > 1 do . even(m) – unknown(n)
3: m← m × n; . even(m) – unknown(n)
4: n← n − 1 . even(m) – unknown(n)
5: end while . even(m) – unknown(n)
6: stop . even(m) – unknown(n)

Important: We can restart the loop with the same information
about the parity of m and n over and over again!

Wiklicky Program Analysis

A First Example

The first program computes 2 times the factorial for any positive
value of n. Replacing ‘2’ by ‘1’ in the first statement gives:

1: m← 1; . unknown(m) – unknown(n)
2: while n > 1 do . unknown(m) – unknown(n)
3: m← m × n; . unknown(m) – unknown(n)
4: n← n − 1 . unknown(m) – unknown(n)
5: end while . unknown(m) – unknown(n)
6: stop . unknown(m) – unknown(n)

i.e. the plain factorial – but in this case the program analysis is
unable to tell us anything about the parity of m at the end of the
execution.

Wiklicky Program Analysis

Loss of Precision

The analysis of the new program, i.e. the plain factorial, does
not give any satisfying result because:

m could be even — if the input n > 1, or
m could be odd — if the input n ≤ 1.

However, even if we fix/require the input to be positive and
even — e.g. by some suitable conditional assignment — the
program analysis still might not be able to accurately predict
that m will be even at statement 6.

Alternative: Perform a probabilistic program analysis.

Wiklicky Program Analysis

Safe Approximations

Such a loss of precession is a common feature of program
analysis: Many properties that we are interested in are
essentially undecidable and therefore we cannot hope to
detect (all of) them accurately.

We only aim to ensure that the answers/results we obtain by
program analysis are at least safe, i.e.

yes means definitely yes,
no means maybe no.

It is necessary to always have a result (i.e. the analysis
terminates) but we have to accept that this result is unknown.

Wiklicky Program Analysis

Facets of Program Analysis

We can identify the following facets of program analysis which
play a role when considering a particular program property:

Specification
Implementation
Correctness
Applications

Wiklicky Program Analysis

Data Flow Analysis

The starting point for data flow analysis is a representation of
the control flow graph of the program: the nodes of such a
graph may represent individual statements – as in a flowchart –
or sequences of statements; arcs specify how control may be
passed during program execution.

The data flow analysis is usually specified as a set of equations
which associate analysis information with program points which
correspond to the nodes in the control flow graph. This
information may be propagated forwards through the program
(e.g. parity analysis) or backwards.

When the control flow graph is not explicitly given, we need a
preliminary control flow analysis

Wiklicky Program Analysis

Control Flow Information

[x:=x-1]4

[z:=z*y]3

[x>0]2

[z:=1]1
?

?

?

-

?

?

yes

no

This allows us to determine the predecessors pred and
successors succ of each statement, e.g. pred(2) = {1,4}.

Wiklicky Program Analysis

Flow for WHILE

Statements S ∈ Stmt have the abstract (labelled) syntax:

S ::= [x :=a]` | [skip]` | S1;S2
| if [b]` then S1 else S2 | while [b]` do S

with a arithmetic, b boolean expressions and labels ` ∈ Lab.
Blocks B ∈ Block are of the form: [x := a]`, [skip]`, or [b]`.

Formally define for all (composite) statements how to extract
the initial and final labels:

init : Stmt→ Lab final : Stmt→ P(Lab)

as well as the possible control steps between labels:

flow : Stmt→ P(Lab× Lab)

Wiklicky Program Analysis

An Example Flow

Consider the following program, power, computing the x-th
power of the number stored in y:

[z := 1]1;
while [x > 1]2 do (

[z := z ∗ y]3;
[x := x − 1]4);

We have init(power) = 1, and final(power) = {2}. The function
flow produces the set:

flow(power) = {(1,2), (2,3), (3,4), (4,2)}

Wiklicky Program Analysis

Reaching Definition

Reaching Definition (RD) analysis determines which set of
definitions (i.e. assignments) are current when control reaches
a certain program point `.

The analysis can be specified by equations of the form:

RDentry(`) =

{
{(x , ?) | x ∈ FV(S?)}, if ` = init(S?)⋃
{RDexit(`

′) | (`′, `) ∈ flow(S?)}, otherwise

RDexit(`) = (RDentry(`)\killRD([B]`)) ∪ genRD([B]`)
where [B]` ∈ blocks(S?)

Wiklicky Program Analysis

Analysis Information

At each program point some definitions get “killed” (those which
define the same variable as at the program point) while others
are “generated”.

A suitable representation for properties are sets of pairs, where
each pair contains a variable x and a program point `: the
meaning of the pair (x , `) is that the assignment to x at point ` is
the current one. The initial value in this case is:

RDinit = {(x , ?) | x is a variable in the program}

Reaching Definitions is a forward analysis and we require the
least (most precise) solutions to the set of equations.

Wiklicky Program Analysis

Local Analysis

New analysis information is created depending on the kind of
block are considering:

genRD([x := a]`) = {(x , `)}
genRD([skip]`) = ∅

genRD([b]
`) = ∅

Information about which (previous) “definitions” [x := . . .]` are
no longer current is constructed using:

killRD([x := a]`) = {(x , ?)} ∪ {(x , `′) |
[B]`

′
a “definition” of x in S?}

killRD([skip]`) = ∅
killRD([b]`) = ∅

Wiklicky Program Analysis

Equations & Solutions

For our initial program fragment

[m← 2]1;
while [n > 1]2 do

[m← m × n]3;
[n← n − 1]4

end while
[stop]5

some of the RD equations we get are:

RDentry(1) = {(m, ?), (n, ?)}
RDentry(2) = RDexit(1) ∪ RDexit(4)

Wiklicky Program Analysis

Equations & Solutions

RDentry(1) = {(m, ?), (n, ?)}
RDentry(2) = RDexit(1) ∪ RDexit(4)

RDentry RDexit
1 {(m, ?), (n, ?)} {(m,1), (n, ?)}
2 {(m,1), (m,3), (n, ?), (n,4)} {(m,1), (m,3), (n, ?), (n,4)}
3 {(m,1), (m,3), (n, ?), (n,4)} {(m,3), (n, ?), (n,4)}
4 {(m,3), (n, ?), (n,4)} {(m,3), (n,4)}
5 {(m,1), (m,3), (n, ?), (n,4)} {(m,1), (m,3), (n, ?), (n,4)}

Wiklicky Program Analysis

Solving Equations

How can we construct solution to the data flow equations?
Answer: Iteratively, by improving approximations/guesses.

INPUT: Control Flow Graph
i.e. initial(p), pred(p).

OUTPUT: Reaching Definitions RD.

METHOD: Step 1: Initialisation
Step 2: Iteration

Wiklicky Program Analysis

Data Flow Analysis

The general approach for determining program properties for
procedural languages via a dataflow analysis:

Extract Data Flow Information
Formulate Data Flow Equations

Update Local Information
Collect Global Information

Construct Solution(s) of Equations

Wiklicky Program Analysis

Some other Analyses

Examples of data flow analyses — and the possible
applications and optimisations they allow for — are:

Reaching Definitions — Constant Folding
Available Expressions — Avoid Re-computations
Very Busy Expressions — Hoisting
Live Variables — Dead Code Elimination
Shape Analysis — Pointer Analysis
Information Flow — Computer Security
etc. etc.

Wiklicky Program Analysis

Code Optimisation

To illustrate the ideas we shall show how Reaching Definitions
can be used to perform Constant Folding.

There are two ingredients to this:

Replace the use of a variable in some expression by a
constant if it is known that the value of that variable will
always be a constant.
Simplify an expression by partially evaluating it:
subexpressions that contain no variables can be evaluated.

Wiklicky Program Analysis

Constant Folding I

RD ` [x := a]` B [x := a[y 7→ n]]`

if

y ∈ FV(a) ∧ (y , ?) /∈ RDentry(`) ∧
∀(y ′, `′) ∈ RDentry(`) :

y ′ = y ⇒ [. . .]`
′
= [y := n]`

′

RD ` [x := a]` B [x := n]`

if
{

FV(a) = ∅ ∧ a is not constant ∧
a evaluates to n

Wiklicky Program Analysis

Constant Folding II

RD ` S1 B S′
1

RD ` S1;S2 B S′
1;S2

RD ` S2 B S′
2

RD ` S1;S2 B S1;S′
2

RD ` S1 B S′
1

RD ` if [b]` then S1 else S2 B if [b]` then S′
1 else S2

RD ` S2 B S′
2

RD ` if [b]` then S1 else S2 B if [b]` then S1 else S′
2

RD ` S B S′

RD ` while [b]` do S B while [b]` do S′

Wiklicky Program Analysis

An Example

To illustrate the use of the transformation consider:

[x := 10]1; [y := x + 10]2; [z := y + 10]3

The (least) solution to the Reaching Definition analysis is:

RDentry(1) = {(x , ?), (y , ?)(z, ?)}
RDexit(1) = {(x ,1), (y , ?)(z, ?)}

RDentry(2) = {(x ,1), (y , ?)(z, ?)}
RDexit(2) = {(x ,1), (y ,2)(z, ?)}

RDentry(3) = {(x ,1), (y ,2)(z, ?)}
RDexit(3) = {(x ,1), (y ,2)(z,3)}

Wiklicky Program Analysis

Constant Folding

We have for example the following:

RD ` [y := x + 10]2 B [y := 10 + 10]2

and therfore the rules for sequential composition allow us to do
the following transformation:

RD ` [x := 10]1; [y := x + 10]2; [z := y + 10]3 B
[x := 10]1; [y := 10 + 10]2; [z := y + 10]3

Wiklicky Program Analysis

Transformation

We can continue this kind of transformation and obtain:

RD ` [x := 10]1; [y := x + 10]2; [z := y + 10]3

B [x := 10]1; [y := 10 + 10]2; [z := y + 10]3

B [x := 10]1; [y := 20]2; [z := y + 10]3

B [x := 10]1; [y := 20]2; [z := 20 + 10]3

B [x := 10]1; [y := 20]2; [z := 30]3

after which no more steps are possible.

Wiklicky Program Analysis

Additional Issues

The above example shows that optimisation is in general the
result of a number of successive transformations.

RD ` S1 B S2 B . . . B Sn.

This could be costly because one S1 has been transformed into
S2 we might have to re-compute the Reaching Definition
analysis before the next transformation step can be done.

It could also be the case that different sequences of
transformations either lead to different end results or are of very
different length.

Wiklicky Program Analysis

Designing an Analysis

Identify property space:
Very often P(X) or more general a lattice which specifies
which information is more precise and which is less; as well
as how to combine information. Eg Parity = P(even,odd).
Specify analysis (transformations/equations/constraints):
State rules, e.g. using so-called monotone framework, on
how properties change when a certain computational step
happens, eg. even × unknown = even.
Address correctness and efficency/termination:
Proof, using a formal semantics, that the rules are correct
or constructed in a guaranteed safe way, e.g. using
Abstract Interpretation. Improve and accelerate
approximation process for finding solutions, e.g. using
widening, etc.

Wiklicky Program Analysis

Extra Slides

Wiklicky Program Analysis

Initial Label

When presenting examples of Data Flow Analyses we will use
a number of operations on programs and labels. The first of
these is

init : Stmt→ Lab

which returns the initial label of a statement:

init([x := a]`) = `

init([skip]`) = `

init(S1;S2) = init(S1)

init(if [b]` then S1 else S2) = `

init(while [b]` do S) = `

Wiklicky Program Analysis

Final Labels

We will also need a function which returns the set of final labels
in a statement; whereas a sequence of statements has a single
entry, it may have multiple exits (e.g. in the conditional):

final : Stmt→ P(Lab)

final([x := a]`) = {`}
final([skip]`) = {`}

final(S1;S2) = final(S2)

final(if [b]` then S1 else S2) = final(S1) ∪ final(S2)

final(while [b]` do S) = {`}

Note that the while-loop terminates just after the test fails.

Wiklicky Program Analysis

Flow

flow : Stmt→ P(Lab× Lab)

maps statements to sets of flows:

flow([x := a]`) = ∅
flow([skip]`) = ∅

flow(S1;S2) = flow(S1) ∪ flow(S2) ∪
{(`, init(S2)) | ` ∈ final(S1)}

flow(if [b]` then S1 else S2) = flow(S1) ∪ flow(S2) ∪
{(`, init(S1)), (`, init(S2))}

flow(while [b]` do S) = flow(S) ∪ {(`, init(S))} ∪
{(`′, `) | `′ ∈ final(S)}

Wiklicky Program Analysis

RD Example

A simple example to illustrate the RD analysis:

[x := 5]1;
[y := 1]2;
while [x > 1]3 do (

[y := x ∗ y]4;
[x := x − 1]5)

All of the assignments reach the entry of 4 (the assignments
labelled 1 and 2 reach there on the first iteration); only the
assignments labelled 1, 4 and 5 reach the entry of 5.

Wiklicky Program Analysis

RD Example: Local Information

[x := 5]1;
[y := 1]2;
while [x > 1]3 do (

[y := x ∗ y]4;
[x := x − 1]5)

` killRD(`) genRD(`)

1 {(x , ?), (x ,1), (x ,5)} {(x ,1)}
2 {(y , ?), (y ,2), (y ,4)} {(y ,2)}
3 ∅ ∅
4 {(y , ?), (y ,2), (y ,4)} {(y ,4)}
5 {(x , ?), (x ,1), (x ,5)} {(x ,5)}

Wiklicky Program Analysis

RD Example: Equations (Entry)

[x := 5]1;
[y := 1]2;
while [x > 1]3 do (

[y := x ∗ y]4;
[x := x − 1]5)

RDentry(1) = {(x , ?), (y , ?)}
RDentry(2) = RDexit(1)
RDentry(3) = RDexit(2) ∪ RDexit(5)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)

Wiklicky Program Analysis

RD Example: Equations (Exit)

[x := 5]1;
[y := 1]2;
while [x > 1]3 do (

[y := x ∗ y]4;
[x := x − 1]5)

RDexit(1) = (RDentry(1)\{(x , ?), (x ,1), (x ,5)}) ∪ {(x ,1)}
RDexit(2) = (RDentry(2)\{(y , ?), (y ,2), (y ,4)}) ∪ {(y ,2)}
RDexit(3) = RDentry(3)
RDexit(4) = (RDentry(4)\{(y , ?), (y ,2), (y ,4)}) ∪ {(y ,4)}
RDexit(5) = (RDentry(5)\{(x , ?), (x ,1), (x ,5)}) ∪ {(x ,5)}

Wiklicky Program Analysis

RD Example: Solutions

[x := 5]1;
[y := 1]2;
while [x > 1]3 do (

[y := x ∗ y]4;
[x := x − 1]5)

` RDentry(`) RDexit(`)

1 {(x , ?), (y , ?)} {(y , ?), (x ,1)}
2 {(y , ?), (x ,1)} {(x ,1), (y ,2)}
3 {(x ,1), (y ,2), (y ,4), (x ,5)} {(x ,1), (y ,2), (y ,4), (x ,5)}
4 {(x ,1), (y ,2), (y ,4), (x ,5)} {(x ,1), (y ,4), (x ,5)}
5 {(x ,1), (y ,4), (x ,5)} {(y ,4), (x ,5)}

Wiklicky Program Analysis

	Introduction and Overview

