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Combinational logic design case 
studies
 General design procedure
 Case studies

 BCD to 7-segment display controller
 logical function unit
 process line controller
 calendar subsystem

 Arithmetic circuits
 integer representations
 addition/subtraction
 arithmetic/logic units
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General design procedure
for combinational logic
 1.  Understand the problem

 what is the circuit supposed to do?
 write down inputs (data, control) and outputs
 draw block diagram or other picture

 2.  Formulate the problem using a suitable design representation
 truth table or waveform diagram are typical
 may require encoding of symbolic inputs and outputs

 3.  Choose implementation target
 ROM, PAL, PLA
 mux, decoder and OR-gate
 discrete gates

 4.  Follow implementation procedure
 K-maps for two-level, multi-level
 design tools and hardware description language (e.g., Verilog)
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BCD to 7–segment
control signal

decoder

c0  c1  c2  c3  c4  c5  c6

A   B   C   D

BCD to 7-segment
display controller
 Understanding the problem

 input is a 4 bit bcd digit (A, B, C, D)
 output is the control signals 

for the display (7 outputs C0 – C6)
 Block diagram

c1c5

c2c4 c6

c0

c3
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A B C D C0 C1 C2 C3 C4 C5 C6
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 – – – – – – – –
1 1 – – – – – – – – –

Formalize the problem

 Truth table
 show don't cares

 Choose implementation target
 if ROM, we are done
 don't cares imply PAL/PLA

may be attractive
 Follow implementation procedure

 minimization using K-maps
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C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

Implementation as minimized sum-
of-products
 15 unique product terms when minimized individually

1    0    X    1

0    1    X    1 

1    1    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    0    X    1 

1    1    X    X

1    0    X    X 

D

A

B

C

0    1    X    1

0    1    X    1 

1    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    0    X    1

0    1    X    0 

1    0    X    X

1    1    X    X 

D

A

B

C

1    0    X    1

0    0    X    0 

0    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

0    1    X    1 

0    0    X    X

0    1    X    X 

D

A

B

C



V - Combinational Logic Case Studies© Copyright 2004, Gaetano Borriello and Randy H. Katz 6

C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

Implementation as minimized S-o-P 
(cont'd)
 Can do better

 9 unique product terms (instead of 15)
 share terms among outputs
 each output not necessarily in minimized form
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BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0  C1  C2  C3  C4  C5  C6  C7

PLA implementation
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C0 = C3 + A' B X' + A D Y
C1 = Y + A' C5' + C' D' C6
C2 = C5 + A' B' D + A' C D
C3 = C4 + B D C5 + A' B' X'
C4 = D' Y + A' C D'
C5 = C' C4 + A Y + A' B X
C6 = A C4 + C C5 + C4' C5 + A' B' C

X = C' + D'
Y = B' C'

C2 = B + C' + D

C2 = B' D + B C' D + C' D' + C D + B C D'

C2 = B' D + B C' D + C' D' + W
W  = C D + B C D'

PAL implementation vs.
Discrete gate implementation
 Limit of 4 product terms per output

 decomposition of functions with larger number of terms
 do not share terms in PAL anyway

(although there are some with some shared terms)

 decompose into multi-level logic (hopefully with CAD support)
 find common sub-expressions among functions

need another input and another output
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C0 C1 C2 Function Comments
0 0 0 1 always 1
0 0 1 A + B logical OR
0 1 0 (A • B)' logical NAND
0 1 1 A xor B logical xor
1 0 0 A xnor B logical xnor
1 0 1 A • B logical AND
1 1 0 (A + B)' logical NOR
1 1 1 0 always 0

3 control inputs: C0, C1, C2
2 data inputs: A, B
1 output: F

Logical function unit

 Multi-purpose function block
 3 control inputs to specify operation to perform on operands
 2 data inputs for operands
 1 output of the same bit-width as operands
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choose implementation technology
5-variable K-map to discrete gates

multiplexor implementation

1
 
 
 
 
 
 
0

A
B

A
B

A
B

Formalize the problem
C0 C1 C2 A B
F
0 0 0 0 0
1
0 0 0 0 1
1
0 0 0 1 0
1
0 0 0 1 1
1
0 0 1 0 0
0
0 0 1 0 1
1
0 0 1 1 0
1
0 0 1 1 1
1
0 1 0 0 0
1
0 1 0 0 1
1
0 1 0 1 0
1
0 1 0 1 1
0
0 1 1 0 0
0
0 1 1 0 1
1
0 1 1 1 0
1
0 1 1 1 1
0
1 0 0 0 0
1
1 0 0 0 1
0
1 0 0 1 0
0
1 0 0 1 1
1
1 0 1 0 0
0
1 0 1 0 1
0
1 0 1 1 0
0
1 0 1 1 1
1
1 1 0 0 0
1
1 1 0 0 1
0
1 1 0 1 0
0
1 1 0 1 1
0
1 1 1 0 0
0
1 1 1 0 1
0
1 1 1 1 0
0
1 1 1 1 1
0

C2C0 C1

0
1
2
3
4
5
6
7
S2

8:1 MUX

S1 S0

F
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Production line control

 Rods of varying length (+/-10%) travel on conveyor belt
 mechanical arm pushes rods within spec (+/-5%) to one side
 second arm pushes rods too long to other side
 rods that are too short stay on belt
 3 light barriers (light source + photocell) as sensors
 design combinational logic to activate the arms

 Understanding the problem
 inputs are three sensors
 outputs are two arm control signals
 assume sensor reads "1" when tripped, "0" otherwise
 call sensors A, B, C
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Sketch of problem

 Position of sensors
 A to B distance = specification – 5%
 A to C distance = specification + 5%

Within
Spec

Too
Short

Too
Long

A

B

C

spec
- 5% 

spec
+ 5%
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logic implementation now straightforward
just use three 3-input AND gates

"too short" = AB'C'
(only first sensor tripped)

"in spec" = A B C'
(first two sensors tripped)

"too long" = A B C
(all three sensors tripped)

A B C Function
0 0 0 do nothing
0 0 1 do nothing
0 1 0 do nothing
0 1 1 do nothing
1 0 0 too short
1 0 1 don't care
1 1 0 in spec
1 1 1 too long

Formalize the problem

 Truth table
 show don't cares
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integer number_of_days ( month, leap_year_flag) {
switch (month) {

case  1: return (31);
case  2: if (leap_year_flag == 1)
            then return (29)
            else return (28);
case  3: return (31);
case  4: return (30);
case  5: return (31);
case  6: return (30);
case  7: return (31);
case  8: return (31);
case  9: return (30);
case 10: return (31);
case 11: return (30);
case 12: return (31);
default: return (0);

}
}

Calendar subsystem

 Determine number of days in a month (to control watch display)
 used in controlling the display of a wrist-watch LCD screen

 inputs: month, leap year flag
 outputs: number of days

 Use software implementation
to help understand the problem
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leapmonth

28 29 30 31

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Formalize the problem

 Encoding:
 binary number for month: 4 bits
 4 wires for 28, 29, 30, and 31

one-hot – only one true at any time
 Block diagram:
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month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Choose implementation target
and perform mapping

 Discrete gates

 28 = 

 29 =

 30 = 

 31 = 

 Can translate to S-o-P or P-o-S

m8’ m4’ m2 m1’ leap’

m8’ m4’ m2 m1’ leap

m8’ m4 m1’ + m8 m1

m8’ m1 + m8 m1’
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Leap year flag

 Determine value of leap year flag given the year
 For years after 1582 (Gregorian calendar reformation), 
 leap years are all the years divisible by 4, 
 except that years divisible by 100 are not leap years, 
 but years divisible by 400 are leap years. 

 Encoding the year:
 binary – easy for divisible by 4, 

but difficult for 100 and 400 (not powers of 2)
 BCD – easy for 100,

but more difficult for 4, what about 400?
 Parts:

 construct a circuit that determines if the year is divisible by 4
 construct a circuit that determines if the year is divisible by 100
 construct a circuit that determines if the year is divisible by 400
 combine the results of the previous three steps to yield the leap year flag
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Activity: divisible-by-4 circuit

 BCD coded year 
 YM8 YM4 YM2 YM1 – YH8 YH4 YH2 YH1 – YT8 YT4 YT2 YT1 – YO8 YO4 YO2 YO1

 Only need to look at low-order two digits of the year
all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4
 if tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
 if tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.  

 Translates into the following Boolean expression
(where YT1 is the year's tens digit low-order bit, 
YO8 is the high-order bit of year's ones digit, etc.):

YT1’ (YO8’ YO4’ YO2’ YO1’ + YO8’ YO4 YO2’ YO1’ + YO8 YO4’ YO2’ YO1’ ) 

+ YT1 (YO8’ YO4’ YO2 YO1’ + YO8’ YO4 YO2 YO1’ )

 Digits with values of 10 to 15 will never occur, simplify further to yield: 

YT1’ YO2’ YO1’ + YT1 YO2 YO1’
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Divisible-by-100 and divisible-by-400 
circuits
 Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:

 YT8’ YT4’ YT2’ YT1’   •   YO8’ YO4’ YO2’ YO1’ 

 Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds 
digits) and divisible-by-100 circuits

(YM1’ YH2’ YH1’ + YM1 YH2 YH1’) 

• (YT8’ YT4’ YT2’ YT1’ •  YO8’ YO4’ YO2’ YO1’ )
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Combining to determine leap year 
flag
 Label results of previous three circuits: D4, D100, and D400

leap_year_flag = D4 (D100 • D400’ ) ’

= D4 • D100’ + D4 • D400

= D4 • D100’ + D400
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Implementation of leap year flag
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Arithmetic circuits

 Excellent examples of combinational logic design
 Time vs. space trade-offs

 doing things fast may require more logic and thus more space
 example: carry lookahead logic

 Arithmetic and logic units
 general-purpose building blocks
 critical components of processor datapaths
 used within most computer instructions
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Number systems

 Representation of positive numbers is the same in most systems 
 Major differences are in how negative numbers are represented 
 Representation of negative numbers come in three major schemes

 sign and magnitude
 1s complement
 2s complement

 Assumptions
 we'll assume a 4 bit machine word 
 16 different values can be represented 
 roughly half are positive, half are negative
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0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–0
–1

–2

–3

–4

–5

–6

–7

0 100 = + 4

1 100 = – 4

Sign and magnitude

 One bit dedicate to sign (positive or negative)
 sign: 0 = positive (or zero), 1 = negative

 Rest represent the absolute value or magnitude
 three low order bits: 0 (000) thru 7 (111)

 Range for n bits
 +/– 2n–1 –1  (two representations for 0)

 Cumbersome addition/subtraction 
 must compare magnitudes

to determine sign of result
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2 =  10000

1 =  00001

2   –1 =    1111

7 =    0111

      1000   =  –7 in 1s complement form

4

4

1s complement

 If N is a positive number, then the negative of N (its 1s complement 
or N' ) is N' = (2n– 1) – N
 example: 1s complement of 7

 shortcut: simply compute bit-wise complement ( 0111 -> 1000 )
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0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–7

–6

–5

–4

–3

–2

–1

–0

0 100 = + 4

1 011 = – 4

1s complement (cont'd)

 Subtraction implemented by 1s complement and then addition
 Two representations of 0

 causes some complexities in addition
 High-order bit can act as sign bit
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0 100 = + 4

1 100 = – 4

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

2s complement

 1s complement with negative numbers shifted one position 
clockwise
 only one representation for 0 
 one more negative number

than positive numbers
 high-order bit can act as sign bit
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2 = 10000

7 =   0111

  1001  = repr. of –7

4

2 = 10000

–7 =   1001

  0111  = repr. of 7

4

subtract

subtract

2s complement (cont’d)

 If N is a positive number, then the negative of N (its 2s complement 
or N* ) is N* = 2n – N
 example: 2s complement of 7

 example: 2s complement of –7

 shortcut: 2s complement = bit-wise complement + 1
 0111 -> 1000 + 1 -> 1001  (representation of -7)
 1001 -> 0110 + 1 -> 0111  (representation of 7)
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4

+ 3

7

0100

0011

0111

– 4

+ (– 3)

– 7

1100

1101

11001

4

– 3

1

0100

1101

10001

– 4

+ 3

– 1

1100

0011

1111

2s complement addition and 
subtraction
 Simple addition and subtraction

 simple scheme makes 2s complement the virtually unanimous choice for 
integer number systems in computers
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Why can the carry-out be ignored?

 Can't ignore it completely
 needed to check for overflow (see next two slides)

 When there is no overflow, carry-out may be true but can be ignored

   – M + N when N > M:
   
   M*  +  N  =  (2n –  M)  +  N  =  2n +  (N – M)

ignoring carry-out is just like subtracting 2n

   – M + – N where N + M ≤ 2n–1

   (– M) + (– N) = M* +  N* = (2n– M) + (2n– N)   = 2n – (M + N)  +  2n

ignoring the carry, it is just the 2s complement representation for – (M + N)
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5 + 3 = –8 –7 – 2 = +7

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

Overflow in 2s complement 
addition/subtraction
 Overflow conditions

 add two positive numbers to get a negative number
 add two negative numbers to get a positive number
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5

  3

– 8

 0  1  1  1           

   0 1 0 1

   0 0 1 1

   1 0 0 0

– 7

– 2

7

 1  0  0  0    

   1 0 0 1

   1 1 1 0

1 0 1 1 1

5

2

7

 0  0  0  0    

   0 1 0 1

   0 0 1 0

   0 1 1 1

– 3

– 5

– 8

 1  1  1  1    

   1 1 0 1

   1 0 1 1

1 1 0 0 0

overflow overflow

no overflow no overflow

Overflow conditions

 Overflow when carry into sign bit position is not equal to carry-out
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Ai Bi Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Ai Bi Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Circuits for binary addition

 Half adder (add 2 1-bit numbers)
 Sum = Ai' Bi + Ai Bi' = Ai xor Bi
 Cout = Ai Bi

 Full adder (carry-in to cascade for multi-bit adders)
 Sum = Ci xor A xor B
 Cout = B Ci  +  A Ci  +  A B = Ci (A + B) + A B
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Cout = A B + Cin (A xor B) = A B + B Cin + A Cin

A
B

Cin
S

A

A

B

B

Cin
Cout

A

B

A xor B

Cin

A xor B xor Cin
Half

Adder

Sum

Cout
Cin (A xor B)A B

Sum

Cout

Half
Adder

Sum

Cout

Full adder implementations

 Standard approach
 6 gates
 2 XORs, 2 ANDs, 2 ORs

 Alternative implementation
 5 gates
 half adder is an XOR gate and AND gate
 2 XORs, 2 ANDs, 1 OR
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A B

Cout

Sum

Cin

0 1

Add'
Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Adder/subtractor

 Use an adder to do subtraction thanks to 2s complement representation
 A – B  =   A + (– B)   =   A + B' + 1
 control signal selects B or 2s complement of B
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A

A

B

B
Cin Cout

@0
@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute Cout

4 stage
adder

A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

Ripple-carry adders

 Critical delay
 the propagation of carry from 

low to high order stages
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T0 T2 T4 T6 T8

S0, C1 Valid S1, C2 Valid S2, C3 Valid S3, C4 Valid

Ripple-carry adders (cont’d)

 Critical delay
 the propagation of carry from low to high order stages
 1111 + 0001 is the worst case addition
 carry must propagate through all bits
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Carry-lookahead logic

 Carry generate:  Gi = Ai Bi
 must generate carry when A = B = 1

 Carry propagate:  Pi = Ai xor Bi
 carry-in will equal carry-out here

 Sum and Cout can be re-expressed in terms of generate/propagate:
 Si = Ai xor Bi xor Ci

= Pi xor Ci
 Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)
= Ai Bi + Ci (Ai xor Bi)
= Gi + Ci Pi
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Carry-lookahead logic (cont’d)

 Re-express the carry logic as follows:
 C1 = G0 + P0 C0
 C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
 C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
 C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

                                                                              + P3 P2 P1 P0 C0

 Each of the carry equations can be implemented with two-level logic
 all inputs are now directly derived from data inputs and not from 

intermediate carries
 this allows computation of all sum outputs to proceed in parallel
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G3

C0

C0

C0

C0

P0

P0

P0

P0
G0

G0

G0

G0
C1 @ 3

P1

P1

P1

P1

P1

P1

G1

G1

G1

C2  @ 3

P2

P2

P2

P2

P2

P2

G2

G2

C3 @ 3

P3

P3

P3

P3

C4 @ 3

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

increasingly complex
logic for carries

Carry-lookahead implementation

 Adder with propagate and generate outputs
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A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

A0
B0

0

S0 @2

A1
B1

C1 @3

S1 @4

A2
B2

C2 @3

S2 @4

A3
B3

C3 @3

S3 @4

C4 @3 C4 @3

Carry-lookahead implementation 
(cont’d)
 Carry-lookahead logic generates individual carries

 sums computed much more quickly in parallel
 however, cost of carry logic increases with more stages
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Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3@2
@4

@3@2
@5

@3@2
@5

@3@2

@4

@5@3

@0
C16

A[15-12]B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

Carry-lookahead adder
with cascaded carry-lookahead logic
 Carry-lookahead adder

 4 four-bit adders with internal carry lookahead
 second level carry lookahead unit extends lookahead to 16 bits

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

P = P3 P2 P1 P0

C1 = G0 + P0 C0C2 = G1 + P1 G0 + P1 P0 C0
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4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

   0   1  0   1 0   101

adder 
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-select adder

 Redundant hardware to make carry calculation go faster
 compute two high-order sums in parallel while waiting for carry-in
 one assuming carry-in is 0 and another assuming carry-in is 1
 select correct result once carry-in is finally computed
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logical and arithmetic operations
not all operations appear useful, but "fall out" of internal logic

S1
0
0
1
1

S0
0
1
0
1

Function
Fi = Ai

Fi = not Ai
Fi = Ai xor Bi

Fi = Ai xnor Bi

Comment
input Ai transferred to output
complement of Ai transferred to output
compute XOR of Ai, Bi
compute XNOR of Ai, Bi

M = 0, logical bitwise operations

M = 1, C0 = 0, arithmetic operations

0
0
1
1

0
1
0
1

F = A
F = not A

F = A plus B
F = (not A) plus B

input A passed to output
complement of A passed to output
sum of A and B
sum of B and complement of A

M = 1, C0 = 1, arithmetic operations

0
0
1
1

0
1
0
1

F = A plus 1
F = (not A) plus 1
F = A plus B plus 1

F = (not A) plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A

Arithmetic logic unit design 
specification
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M
0

1

1

S1
0

0

1

1

0

0

1

1

0

0

1

1

S0
0

1

0

1

0

1

0

1

0

1

0

1

Ci
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

Ai
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0 
1
0
1
0
0
1
1
0
0
1
1

Bi
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1

Fi
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0

Ci+1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
1
1
1
0
1

Arithmetic logic unit design (cont’d)

 Sample ALU – truth table
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12 gates

\S1
\Bi

[35]

[35] M

M

M
S1
Bi

[33][33]

[33]

[33]

S0
Ai

[30]

[30]

[30]

[30]

[30]

Ci

Ci

Ci

Ci

Co

\Co

\Co

\Co

\[30]
\[35]

Fi

Arithmetic logic unit design (cont’d)

 Sample ALU – multi-level discrete gate logic implementation
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BiS1 AiS0 CiM

FiCi+1

X1

X2

X3

A1 A2

A3 A4

O1

     

     

first-level gates
use S0 to complement Ai

S0 = 0 causes gate X1 to pass Ai
S0 = 1 causes gate X1 to pass Ai'

use S1 to block Bi
S1 = 0 causes gate A1 to make Bi go forward as 0

(don't want Bi for operations with just A)
S1 = 1 causes gate A1 to pass Bi

use M to block Ci
M = 0 causes gate A2 to make Ci go forward as 0

(don't want Ci for logical operations)
M = 1 causes gate A2 to pass Ci

other gates
for M=0 (logical operations, Ci is ignored)

Fi = S1 Bi xor (S0 xor Ai)
= S1'S0' ( Ai ) + S1'S0 ( Ai' ) +
    S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )

for M=1 (arithmetic operations)
Fi = S1 Bi xor ( ( S0 xor Ai ) xor Ci ) = 
Ci+1 = Ci (S0 xor Ai) + S1 Bi ( (S0 xor Ai) xor Ci ) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

Arithmetic logic unit design (cont’d)

 Sample ALU – clever multi-level implementation
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Summary for examples of 
combinational logic
 Combinational logic design process

 formalize problem: encodings, truth-table, equations
 choose implementation technology (ROM, PAL, PLA, discrete gates)
 implement by following the design procedure for that technology

 Binary number representation
 positive numbers the same
 difference is in how negative numbers are represented
 2s complement easiest to handle: one representation for zero, slightly 

complicated complementation, simple addition
 Circuits for binary addition

 basic half-adder and full-adder
 carry lookahead logic
 carry-select

 ALU Design
 specification, implementation


