
VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Finite State Machines

 Sequential circuits
 primitive sequential elements
 combinational logic

 Models for representing sequential circuits
 finite-state machines (Moore and Mealy)

 Basic sequential circuits revisited
 shift registers
 counters

 Design procedure
 state diagrams
 state transition table
 next state functions

 Hardware description languages

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Abstraction of state elements

 Divide circuit into combinational logic and state
 Localize the feedback loops and make it easy to break cycles
 Implementation of storage elements leads to various forms of sequential

logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Forms of sequential logic

 Asynchronous sequential logic – state changes occur whenever state
inputs change (elements may be simple wires or delay elements)

 Synchronous sequential logic – state changes occur in lock step
across all storage elements (using a periodic waveform - the clock)

Clock

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

In = 0

In = 1

In = 0In = 1

100

010

110

111001

Finite state machine representations

 States: determined by possible values in sequential storage elements
 Transitions: change of state
 Clock: controls when state can change by controlling storage

elements

 Sequential logic
 sequences through a series of states
 based on sequence of values on input signals
 clock period defines elements of sequence

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

Example finite state machine
diagram
 Combination lock from introduction to course

 5 states
 5 self-transitions
 6 other transitions between states
 1 reset transition (from all states) to state S1

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 6

Can any sequential system be
represented with a state diagram?
 Shift register

 input value shown
on transition arcs

 output values shown
within state node

100 110

111

011

101010000

001

1

1

1

1

0

0

0
0

1

1

1

0

0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

010

100

110

011001

000

101111

3-bit up-counter

Counters are simple finite state
machines
 Counters

 proceed through well-defined sequence of states in response to enable
 Many types of counters: binary, BCD, Gray-code

 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

How do we turn a state diagram into
logic?
 Counter

 3 flip-flops to hold state
 logic to compute next state
 clock signal controls when flip-flop memory can change

 wait long enough for combinational logic to compute new value
 don't wait too long as that is low performance

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

FSM design procedure

 Start with counters
 simple because output is just state
 simple because no choice of next state based on input

 State diagram to state transition table
 tabular form of state diagram
 like a truth-table

 State encoding
 decide on representation of states
 for counters it is simple: just its value

 Implementation
 flip-flop for each state bit
 combinational logic based on encoding

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

010

100

110

011001

000

101111

3-bit up-counter

present state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

FSM design procedure: state diagram
to encoded state transition table
 Tabular form of state diagram
 Like a truth-table (specify output for all input combinations)
 Encoding of states: easy for counters – just use value

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

N1 <= C1’
N2 <= C1C2’ + C1’C2

<= C1 xor C2
N3 <= C1C2C3’ + C1’C3 + C2’C3

<= (C1C2)C3’ + (C1’ + C2’)C3
<= (C1C2)C3’ + (C1C2)’C3
<= (C1C2) xor C3

Verilog notation to show
function represents an
input to D-FF

Implementation

 D flip-flop for each state bit
 Combinational logic based on encoding

0 0

0 1

1 1

0 1C1

C2

C3N3

0 1

1 0

1 0

0 1C1

C2

C3N2

1 1

0 0

1 1

0 0C1

C2

C3N1

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 <= In
N2 <= C1
N3 <= C2

Back to the shift register

 Input determines next state

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

More complex counter example

 Complex counter
 repeats 5 states in sequence
 not a binary number representation

 Step 1: derive the state transition diagram
 count sequence: 000, 010, 011, 101, 110

 Step 2: derive the state transition table from the state transition diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –note the don't care conditions that arise from the unused state codes

010

000 110

101

011

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

C+ <= A

B+ <= B’ + A’C’

A+ <= BC’

More complex counter example
(cont’d)
 Step 3: K-maps for next state functions

0 0

X 1

0 X

X 1A

B

CC+

1 1

X 0

0 X

X 1A

B

CB+

0 1

X 1

0 X

X 0A

B

CA+

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Self-starting counters (cont’d)

 Re-deriving state transition table from don't care assignment

0 0

1 1

0 0

1 1A

B

CC+

1 1

1 0

0 1

0 1A

B

CB+

0 1

0 1

0 0

0 0A

B

CA+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001111

100

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Self-starting counters

 Start-up states
 at power-up, counter may be in an unused or invalid state
 designer must guarantee that it (eventually) enters a valid state

 Self-starting solution
 design counter so that invalid states eventually transition to a valid state
 may limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001111

100

010

000 110

101

011

001 111

100

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Activity

 2-bit up-down counter (2 inputs)
 direction: D = 0 for up, D = 1 for down
 count: C = 0 for hold, C = 1 for count

01

00 11

10

C=0
D=X

C=0
D=X

C=0
D=X

C=0
D=X

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=1

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Activity (cont’d)

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

N1 = C’S1
 + CDS0’S1’ + CDS0S1
 + CD’S0S1’ + CD’S0’S1
 = C’S1
 + C(D’(S1 ⊕ S0) + D(S1 ≡ S0))

N0 = CS0’ + C’S00 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

D

S1

S0

C

0 0 1 1

0 0 1 1

1 0 1 0

0 1 0 1

D

S1

S0

C

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Counter/shift-register model

 Values stored in registers represent the state of the circuit
 Combinational logic computes:

 next state
 function of current state and inputs

 outputs
 values of flip-flops

Inputs

Outputs

Next State

Current State

next state
logic

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

General state machine model

 Values stored in registers represent the state of the circuit
 Combinational logic computes:

 next state
 function of current state and inputs

 outputs
 function of current state and inputs (Mealy machine)
 function of current state only (Moore machine)

Inputs

Outputs

Next State

Current State

output
logic

next state
logic

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

State machine model (cont’d)

 States: S1, S2, ..., Sk

 Inputs: I1, I2, ..., Im

 Outputs: O1, O2, ..., On

 Transition function: Fs(Si, Ij)

 Output function: Fo(Si) or Fo(Si, Ij)

Inputs

Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

Comparison of Mealy and Moore
machines Mealy machines tend to have less states

 different outputs on arcs (n2) rather than states (n)
 Moore machines are safer to use

 outputs change at clock edge (always one cycle later)
 in Mealy machines, input change can cause output change as soon as

logic is done – a big problem when two machines are interconnected –
asynchronous feedback may occur if one isn’t careful

 Mealy machines react faster to inputs
 react in same cycle – don't need to wait for clock
 in Moore machines, more logic may be necessary to decode state into

outputs – more gate delays after clock edge

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Comparison of Mealy and Moore
machines (cont’d)

 Moore

 Mealy

 Synchronous Mealy

state feedback

inputs

outputsreg

combinational
logic for

next state logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Specifying outputs for a Moore
machine
 Output is only function of state

 specify in state bubble in state diagram
 example: sequence detector for 01 or 10

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Specifying outputs for a Mealy
machine
 Output is function of state and inputs

 specify output on transition arc between states
 example: sequence detector for 01 or 10

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

Registered Mealy machine (really
Moore)
 Synchronous (or registered) Mealy machine

 registered state AND outputs
 avoids ‘glitchy’ outputs
 easy to implement in PLDs

 Moore machine with no output decoding
 outputs computed on transition to next state rather than after entering
 view outputs as expanded state vector

Inputs

Outputs

Current State

output
logic

next state
logic

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: vending machine

 Release item after 15 cents are deposited
 Single coin slot for dimes, nickels
 No change

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

Example: vending machine (cont’d)

 Suitable abstract representation
 tabulate typical input sequences:

 3 nickels
 nickel, dime
 dime, nickel
 two dimes

 draw state diagram:
 inputs: N, D, reset
 output: open chute

 assumptions:
 assume N and D asserted

for one cycle
 each state has a self loop

for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

Example: vending machine (cont’d)

 Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
 0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

 5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

present stateinputs next state output
Q1 Q0 D N D1 D0 open

 0 0 0 0 0 0 0
0 1 0 1 0
1 0 1 0 0
1 1 – – –

 0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

 1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

 1 1 – – 1 1 1

Example: vending machine (cont’d)

 Uniquely encode states

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Moore implementation

 Mapping to logic
0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1D1

Q0

N

D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1D0

Q0

N

D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1Open

Q0

N

D

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

present state inputs next state output
Q3Q2 Q1Q0 D N D3 D2 D1 D0 open
0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Example: vending machine (cont’d)

 One-hot encoding

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Equivalent Mealy and Moore state
diagrams
 Moore machine

 outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

 Mealy machine
 outputs associated with transitions

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present stateinputs next state output

Q1 Q0 D N D1 D0 open
 0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

 0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

 1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

 1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open

Q0

N

D

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Example: Mealy implementation

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

make sure OPEN is 0 when reset
– by adding AND gate

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Vending machine: Moore to synch.
Mealy
 OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in

Moore implementation
 This can be corrected by retiming, i.e., move flip-flops and logic through each

other to improve delay
 OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

 = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
 Implementation now looks like a synchronous Mealy machine

 it is common for programmable devices to have FF at end of logic

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

Vending machine: Mealy to synch.
Mealy
 OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
 OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

 = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1Open.d

Q0

N

D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open.d

Q0

N

D

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Mealy and Moore examples

 Recognize A,B = 0,1
 Mealy or Moore?

B

A out

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Mealy and Moore examples (cont’d)

 Recognize A,B = 1,0 then 0,1
 Mealy or Moore?

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Hardware Description Languages
and Sequential Logic
 Flip-flops

 representation of clocks - timing of state changes
 asynchronous vs. synchronous

 FSMs
 structural view (FFs separate from combinational logic)
 behavioral view (synthesis of sequencers – not in this course)

 Data-paths = data computation (e.g., ALUs, comparators) +
registers
 use of arithmetic/logical operators
 control of storage elements

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

Example: reduce-1-string-by-1

 Remove one 1 from every string of 1s on the input

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/00/0

0/0

1/1

zero
[0]

one1
[0]

Moore Mealy

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;

 parameter zero = 2� b00;
 parameter one1 = 2� b01;
 parameter two1s = 2� b10;

 reg out;
 reg [2:1] state; // state variables
 reg [2:1] next_state;

 always @(posedge clk)
 if (reset) state = zero;
 else state = next_state;

state assignment
(easy to change,
if in one place)

Verilog FSM - Reduce 1s example

 Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 43

 always @(in or state)

 case (state)
 zero:

// last input was a zero
 begin
 if (in) next_state = one1;
 else next_state = zero;
 end

 one1:
// we've seen one 1
 begin
 if (in) next_state = two1s;
 else next_state = zero;
 end

 two1s:
// we've seen at least 2 ones
 begin
 if (in) next_state = two1s;
 else next_state = zero;
 end

 endcase

crucial to include
all signals that are
input to state determination

Moore Verilog FSM (cont’d)

note that output
depends only on state

 always @(state)
 case (state)
 zero: out = 0;

 one1: out = 0;
 two1s: out = 1;

 endcase

endmodule

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;
 reg out;
 reg state; // state variables
 reg next_state;

 always @(posedge clk)
 if (reset) state = zero;
 else state = next_state;

 always @(in or state)
 case (state)
 zero: // last input was a zero

 begin
 out = 0;
 if (in) next_state = one;
 else next_state = zero;
 end

 one: // we've seen one 1
 if (in) begin

next_state = one; out = 1;
 end else begin

next_state = zero; out = 0;
 end

 endcase
endmodule

Mealy Verilog FSM

1/00/0

0/0

1/1

zero
[0]

one1
[0]

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 45

module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;
 reg out;
 reg state; // state variables

 always @(posedge clk)
 if (reset) state = zero;
 else
 case (state)
 zero: // last input was a zero

 begin
 out = 0;
 if (in) state = one;
 else state = zero;
 end

 one: // we've seen one 1
 if (in) begin

state = one; out = 1;
 end else begin

state = zero; out = 0;
 end

 endcase
endmodule

Synchronous Mealy Machine

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Finite state machines summary

 Models for representing sequential circuits
 abstraction of sequential elements
 finite state machines and their state diagrams
 inputs/outputs
 Mealy, Moore, and synchronous Mealy machines

 Finite state machine design procedure
 deriving state diagram
 deriving state transition table
 determining next state and output functions
 implementing combinational logic

 Hardware description languages

