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Combinational logic

 Basic logic
 Boolean algebra, proofs by re-writing, proofs by perfect induction
 logic functions, truth tables, and switches
 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

 Logic realization
 two-level logic and canonical forms
 incompletely specified functions

 Simplification
 uniting theorem
 grouping of terms in Boolean functions

 Alternate representations of Boolean functions
 cubes
 Karnaugh maps
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X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

X and Y
X Y

X or Y

not Y not X 1

X
Y F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two 
variables

 There are 16 possible functions of 2 input variables:
 in general, there are 2**(2**n) functions of n inputs
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Cost of different logic functions

 Different functions are easier or harder to implement
 each has a cost associated with the number of switches needed
 0 (F0) and 1 (F15): require 0 switches, directly connect output to 

low/high
 X (F3) and Y (F5): require 0 switches, output is one of inputs
 X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
 X nor Y (F4) and X nand Y (F14): require 4 switches
 X or Y (F7) and X and Y (F1): require 6 switches
 X = Y (F9) and X ⊕ Y (F6): require 16 switches

 thus, because NOT, NOR, and NAND are the cheapest they are the 
functions we implement the most in practice
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X Y X nand Y
0 0 1
1 1 0

X Y X nor Y
0 0 1
1 1 0

X nand Y ≡ not (  (not X) nor (not Y)  )
 X nor Y ≡ not ( (not X) nand (not Y) )

Minimal set of functions

 Can we implement all logic functions from NOT, NOR, and NAND?
 For example, implementing          X and Y

is the same as implementing   not (X nand Y)
 In fact, we can do it with only NOR or only NAND

 NOT is just a NAND or a NOR with both inputs tied together

 and NAND and NOR are "duals",
that is, its easy to implement one using the other

 But lets not move too fast . . . 
 lets look at the mathematical foundation of logic
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An algebraic structure

 An algebraic structure consists of
 a set of elements B
 binary operations { + , • }
 and a unary operation { ’ }
 such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b   is in B a • b   is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0
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Boolean algebra

 Boolean algebra
 B = {0, 1}
 variables
 + is logical OR, • is logical AND
 ’ is logical NOT

 All algebraic axioms hold
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X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X’ Y’ X • Y X’ • Y’ ( X • Y ) + ( X’ • Y’ )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X’ • Y’ )     ≡    X = Y

X Y X’ X’ • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

 Any logic function that can be expressed as a truth table can 
be written as an expression in Boolean algebra using the 
operators: ’, +, and •
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Axioms and theorems of Boolean 
algebra
 identity

1.   X + 0 = X 1D.   X • 1 = X
 null

2.   X + 1 = 1 2D.   X • 0 = 0
 idempotency:

3.   X + X = X 3D.   X • X = X
 involution:

4.   (X’)’ = X
 complementarity:

5.   X + X’ = 1 5D.   X • X’ = 0
 commutativity:

6.   X + Y = Y + X 6D.   X • Y = Y • X
 associativity:

7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)
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Axioms and theorems of Boolean 
algebra (cont’d)

 distributivity:
8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

 uniting:
9.   X • Y + X • Y’ = X 9D.   (X + Y) • (X + Y’) = X

 absorption:
10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

 factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z = 

              X • Z + X’ • Y                (X + Z) • (X’ + Y)
 concensus:

13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =
             X • Y + X’ • Z                (X + Y) • (X’ + Z)
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Axioms and theorems of Boolean 
algebra (cont’d)

 de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

 generalized de Morgan’s:
15. f’(X1,X2,...,Xn,0,1,+,•) =  f(X1’,X2’,...,Xn’,1,0,•,+)

 establishes relationship between • and +
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Axioms and theorems of Boolean 
algebra (cont’d)

 Duality
 a dual of a Boolean expression is derived by replacing 

• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 any theorem that can be proven is thus also proven for its dual!
 a meta-theorem (a theorem about theorems) 

 duality:
16. X + Y + ... ⇔ X • Y • ...

 generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

 Different than deMorgan’s Law
 this is a statement about theorems
 this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)

 Using the axioms of Boolean algebra:
 e.g., prove the theorem: X • Y + X • Y’ =   X

 e.g., prove the theorem: X + X • Y =   X

distributivity (8) X • Y + X • Y’ =   X • (Y + Y’)
complementarity (5) X • (Y + Y’) =   X • (1)
identity (1D) X • (1) =   X ➼

identity (1D) X  +  X • Y =   X • 1  +  X • Y
distributivity (8) X • 1  +  X • Y =   X • (1 + Y)
identity (2) X • (1 + Y) =   X • (1)
identity (1D) X • (1) =   X ➼
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Activity

 Prove the following using the laws of Boolean algebra:
 (X • Y) + (Y • Z) + (X’ • Z) =  X • Y + X’ • Z

(X • Y) + (Y • Z) + (X’ • Z) 

identity (X • Y) + (1) • (Y • Z) + (X’ • Z) 

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z) 

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1) 

identity (X • Y) + (X’ • Z) ➼
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(X + Y)’ = X’ • Y’
NOR is equivalent to AND 
with inputs complemented

(X • Y)’ = X’ + Y’
NAND is equivalent to OR 
with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1     
0 1 1 0       
1 0 0 1     
1 1 0 0    

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1     
0 1 1 0    
1 0 0 1     
1 1 0 0    

Proving theorems (perfect induction)

 Using perfect induction (complete truth table):
 e.g., de Morgan’s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0
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A simple example: 1-bit binary adder

 Inputs: A, B, Carry-in
 Outputs: Sum, Carry-out

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0     
0 0 1       
0 1 0     
0 1 1
1 0 0     
1 0 1       
1 1 0     
1 1 1    

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

CinCout
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Apply the theorems to simplify 
expressions

 The theorems of Boolean algebra can simplify Boolean 
expressions
 e.g., full adder’s carry-out function (same rules apply to any function)

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin  +  A B Cin
=  A’ B Cin  +  A B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
=  (A’ + A) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
=  (1) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A B’ Cin  + A B Cin’  +  A B Cin  +  A B Cin
=  B Cin  +  A B’ Cin  +  A B Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A (B’ + B) Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A (1) Cin  +  A B Cin’  +  A B Cin
=  B Cin  +  A Cin  +  A B (Cin’ +  Cin)
=  B Cin  +  A Cin  +  A B (1)
=  B Cin  +  A Cin  +  A B adding extra terms 

creates new 
factoring 

opportunities
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Activity

 Fill in the truth-table for a circuit that checks that a 4-bit number 
is divisible by 2, 3, or 5

 Write down Boolean expressions for By2, By3, and By5

X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
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X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 1 1 0
0 1 1 1 0 0 0 
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 1
1 0 1 1 0 0 0 
1 1 0 0 1 1 0
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 1

Activity By2 =  X8’X4’X2’X1’ + 
X8’X4’X2X1’

 + X8’X4X2’X1’ + 
X8’X4X2X1’

 + X8X4’X2’X1’ + 
X8X4’X2X1’

 + X8X4X2’X1’ + 
X8X4X2X1’

= X1’ 

By3=  X8’X4’X2’X1’ + 
X8’X4’X2X1

 + X8’X4X2X1’ + 
X8X4’X2’X1

 + X8X4X2’X1’ + 
X8X4X2X1

By5=  X8’X4’X2’X1’ + 
X8’X4X2’X1

 + X8X4’X2X1’ + 
X8X4X2X1
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X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic 
gates

 NOT X’ X ~X

 AND X • Y XY X ∧ Y

 OR X + Y X ∨ Y



II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X

Y
Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both 

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same 

("equality", "coincidence")

From Boolean expressions to logic 
gates (cont’d)

 NAND

 NOR

 XOR
  X ⊕ Y

 XNOR
  X = Y
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T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean expressions to logic 
gates (cont’d)

 More than one way to map expressions to gates

 e.g.,  Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))
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time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

 Just a sideways truth table
 but note how edges don’t line up exactly
 it takes time for a gate to switch its output!
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A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a 
function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)



II - Combinational Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

Which realization is best?

 Reduce number of inputs
 literal: input variable (complemented or not)

 can approximate cost of logic gate as 2 transitors per literal
 why not count inverters?

 fewer literals means less transistors
 smaller circuits

 fewer inputs implies faster gates
 gates are smaller and thus also faster

 fan-ins (# of gate inputs) are limited in some technologies
 Reduce number of gates

 fewer gates (and the packages they come in) means smaller circuits
 directly influences manufacturing costs
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Which is the best realization?  
(cont’d)

 Reduce number of levels of gates
 fewer level of gates implies reduced signal propagation delays
 minimum delay configuration typically requires more gates

 wider, less deep circuits

 How do we explore tradeoffs between increased circuit delay 
and size?
 automated tools to generate different solutions
 logic minimization: reduce number of gates and complexity
 logic optimization: reduction while trading off against delay
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Are all realizations equivalent?

 Under the same input stimuli, the three alternative 
implementations have 
almost the same waveform behavior
 delays are different
 glitches (hazards) may arise – these could be bad, it depends
 variations due to differences in number of gate levels and structure

 The three implementations are functionally equivalent
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Implementing Boolean functions

 Technology independent
 canonical forms
 two-level forms
 multi-level forms

 Technology choices
 packages of a few gates
 regular logic
 two-level programmable logic
 multi-level programmable logic
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Canonical forms

 Truth table is the unique signature of a Boolean function
 The same truth table can have many gate realizations
 Canonical forms

 standard forms for a Boolean expression
 provides a unique algebraic signature
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A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products canonical forms

 Also known as disjunctive normal form
 Also known as minterm expansion

F =  001      011      101       110       111

+ A’BC+ AB’C + ABC’ + ABCA’B’C
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short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3
1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’ 

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C

Sum-of-products canonical form 
(cont’d)

 Product term (or minterm)
 ANDed product of literals – input combination for which output is 

true
 each variable appears exactly once, true or inverted (but not both)
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A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =       000              010              100
F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

 Also known as conjunctive normal form
 Also known as maxterm expansion

(A + B + C)(A + B’ + C)(A’ + B + C)
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A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3
1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6
1 1 1 A’+B’+C’ M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
   (A + B + C) (A’ + B + C)
= (A + C) (B + C)

Product-of-sums canonical form 
(cont’d)

 Sum term (or maxterm)
 ORed sum of literals – input combination for which output is false
 each variable appears exactly once, true or inverted (but not both)
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S-o-P, P-o-S, and de Morgan’s 
theorem
 Sum-of-products

 F’ = A’B’C’ + A’BC’ + AB’C’
 Apply de Morgan’s

 (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
 F = (A + B + C) (A + B’ + C) (A’ + B + C)

 Product-of-sums
 F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

 Apply de Morgan’s
 (F’)’ = ( (A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’) )’
 F = A’B’C + A’BC + AB’C + ABC’ + ABC
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canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level 
implementations
of F = AB + C
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Waveforms for the four alternatives

 Waveforms are essentially identical
 except for timing hazards (glitches)
 delays almost identical (modeled as a delay per level, not type of 

gate or number of inputs to gate)
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Mapping between canonical forms

 Minterm to maxterm conversion
 use maxterms whose indices do not appear in minterm expansion
 e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

 Maxterm to minterm conversion
 use minterms whose indices do not appear in maxterm expansion
 e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) 

 Minterm expansion of F to minterm expansion of F’
 use minterms whose indices do not appear
 e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

 Maxterm expansion of F to maxterm expansion of F’
 use maxterms whose indices do not appear
 e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)
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A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should 
never be encountered in practice 
– "don’t care" about associated 
output values, can be exploited
in minimization

Incompleteley specified functions

 Example: binary coded decimal increment by 1
 BCD digits encode the decimal digits 0 – 9 

in the bit patterns 0000 – 1001

don’t care (DC) set of 
W

on-set of W
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Notation for incompletely specified 
functions

 Don’t cares and canonical forms
 so far, only represented on-set
 also represent don’t-care-set
 need two of the three sets (on-set, off-set, dc-set)

 Canonical representations of the BCD increment by 1 function:

 Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]

 Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
 Z = Π [ M(1,3,5,7,9) • D(10,11,12,13,14,15) ]
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Simplification of two-level 
combinational logic

 Finding a minimal sum of products or product of sums realization
 exploit don’t care information in the process

 Algebraic simplification
 not an algorithmic/systematic procedure
 how do you know when the minimum realization has been found?

 Computer-aided design tools
 precise solutions require very long computation times, especially for 

functions with many inputs (> 10)
 heuristic methods employed – "educated guesses" to reduce amount of 

computation and yield good if not best solutions
 Hand methods still relevant

 to understand automatic tools and their strengths and weaknesses
 ability to check results (on small examples)
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem

 Key tool to simplification: A (B’ + B) = A
 Essence of simplification of two-level logic

 find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be eliminated 
and a single product term used to represent both elements
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1-cube
X

0 1

Boolean cubes

 Visual technique for indentifying when the uniting theorem
can be applied

 n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W

X

Y
Z

0000

1111

1000

0111
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean 
cubes

 Uniting theorem combines two "faces" of a cube
into a larger "face"

 Example:

A

B

11

00

01

10

F
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A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by 
the combination (OR) of the subcubes 
of lower dimensionality - note that “111”
is covered three times

Three variable example

 Binary full-adder carry-out logic

A

B C

000

111

101
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F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable       
i.e., 3 dimensions  –  2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

 Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011

110
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m-dimensional cubes in a n-
dimensional Boolean space

 In a 3-cube (three variables):
 a 0-cube, i.e., a single node, yields a term in 3 literals
 a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

 In general,
 an m-subcube within an n-cube (m < n) yields a term

with n – m literals
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

 Flat map of Boolean cube
 wrap–around at edges
 hard to draw and visualize for more than 4 dimensions
 virtually impossible for more than 6 dimensions

 Alternative to truth-tables to help visualize adjacencies
 guide to applying the uniting theorem
 on-set elements with only one variable changing value are 

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B

0

1

1

0 0

1
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Karnaugh maps (cont’d)

 Numbering scheme based on Gray–code
 e.g., 00, 01, 11, 10
 only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C

0

1

6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D
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Adjacencies in Karnaugh maps

 Wrap from first to last column
 Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011

110
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obtain the
complement
of the function 
by covering 0s
with subcubes

Karnaugh map examples

 F =

 Cout =

 f(A,B,C) = Σm(0,4,5,7) 

0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C

B

A

B’

AB

AC

+ ACin+ BCin

+ B’C’+ AB’
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F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) = 

More Karnaugh map examples

0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C
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C + B’D’

find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example

 F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A

B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD
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+ B’C’D

Karnaugh maps: don’t cares

 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 without don't cares

 f = 

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A’D
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Karnaugh maps: don’t cares (cont’d)

 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 f = A'D + B'C'D without don't cares
 f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more 
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed 
rather than a 1-cube to cover
this node

+ C'D
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Activity

 Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’
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Combinational logic summary

 Logic functions, truth tables, and switches
 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

 Axioms and theorems of Boolean algebra
 proofs by re-writing and perfect induction

 Gate logic
 networks of Boolean functions and their time behavior

 Canonical forms
 two-level and incompletely specified functions

 Simplification
 a start at understanding two-level simplification

 Later
 automation of simplification
 multi-level logic
 time behavior
 hardware description languages
 design case studies


