
III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Working with combinational logic

 Simplification
 two-level simplification
 exploiting don’t cares
 algorithm for simplification

 Logic realization
 two-level logic and canonical forms realized with NANDs and NORs
 multi-level logic, converting between ANDs and ORs

 Time behavior
 Hardware description languages

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 2

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B

C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 3

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =

EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator
(cont’d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0

B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1

B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0

B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D' + A' B C' D + A B C D + A B' C D’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 4

two alternative
implementations of EQ
with and without XOR

XNOR is implemented with
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator
(cont’d)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 5

block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

P1
P2
P4
P8

A1
A2
B1
B2

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 6

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier
(cont’d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1

A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0

A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0

A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0

A1

B2 P8 = A2A1B2B1

 P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 7

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

block diagram
and

truth table
4-variable K-map for each of

the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 8

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4’ I2 I1

O2 = I8’ I2’ I1 + I2 I1'

O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1
(cont’d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X

I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X

I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Definition of terms for two-level
simplification
 Implicant

 single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube

 Prime implicant
 implicant that can't be combined with another to form a larger subcube

 Essential prime implicant
 prime implicant is essential if it alone covers an element of ON-set
 will participate in ALL possible covers of the ON-set
 DC-set used to form prime implicants but not to make implicant essential

 Objective:
 grow implicant into prime implicants

(minimize literals per term)
 cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1

B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0

B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' +
A'B'D

essential

minimum cover: 4 essential implicants

essential

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Algorithm for two-level simplification

 Algorithm: minimum sum-of-products expression from a Karnaugh
map

 Step 1: choose an element of the ON-set
 Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

 consider top/bottom row, left/right column, and corner adjacencies
 this forms prime implicants (number of elements always a power of 2)

 Repeat Steps 1 and 2 to find all prime implicants

 Step 3: revisit the 1s in the K-map
 if covered by single prime implicant, it is essential, and participates in final cover
 1s covered by essential prime implicant do not need to be revisited

 Step 4: if there remain 1s not covered by essential prime implicants
 select the smallest number of prime implicants that cover the remaining 1s

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 12

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

 3 primes around AB'C'D'

Algorithm for two-level simplification
(example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 13

Activity

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

BC BD AB AC’DCD’

BDCD’ AC’D

BDCD’ AC’D

 List all prime implicants for the following K-map:

 Which are essential prime implicants?

 What is the minimum cover?

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 14

Implementations of two-level logic

 Sum-of-products
 AND gates to form product terms (minterms)
 OR gate to form sum

 Product-of-sums
 OR gates to form sum terms (maxterms)
 AND gates to form product

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Two-level logic using NAND gates

 Replace minterm AND gates with NAND gates
 Place compensating inversion at inputs of OR gate

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Two-level logic using NAND gates
(cont’d)
 OR gate with inverted inputs is a NAND gate

 de Morgan’s: A’ + B’ = (A • B)’
 Two-level NAND-NAND network

 inverted inputs are not counted
 in a typical circuit, inversion is done once and signal distributed

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Two-level logic using NOR gates

 Replace maxterm OR gates with NOR gates
 Place compensating inversion at inputs of AND gate

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Two-level logic using NOR gates
(cont’d)
 AND gate with inverted inputs is a NOR gate

 de Morgan’s: A’ • B’ = (A + B)’
 Two-level NOR-NOR network

 inverted inputs are not counted
 in a typical circuit, inversion is done once and signal distributed

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Two-level logic using NAND and NOR
gates
 NAND-NAND and NOR-NOR networks

 de Morgan’s law: (A + B)’ = A’ • B’ (A • B)’ = A’ + B’
 written differently: A + B = (A’ • B’)’ (A • B) = (A’ + B’)’

 In other words ––
 OR is the same as NAND with complemented inputs
 AND is the same as NOR with complemented inputs
 NAND is the same as OR with complemented inputs
 NOR is the same as AND with complemented inputs

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 20

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion between forms

 Convert from networks of ANDs and ORs to networks of
NANDs and NORs
 introduce appropriate inversions ("bubbles")

 Each introduced "bubble" must be matched by a corresponding
"bubble"
 conservation of inversions
 do not alter logic function

 Example: AND/OR to NAND/NAND

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Z = [(A • B)’ • (C • D)’]’

 = [(A’ + B’) • (C’ + D’)]’

 = [(A’ + B’)’ + (C’ + D’)’]

 = (A • B) + (C • D) ➼

Conversion between forms (cont’d)

 Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 22

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion between forms (cont’d)

 Example: map AND/OR network to NOR/NOR network
A

B

C

D

Z

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

 = { (A’ + B’) • (C’ + D’) }’

 = (A’ + B’)’ + (C’ + D’)’

 = (A • B) + (C • D) ➼

Conversion between forms (cont’d)

 Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 24

A
B
C

D
E

F
G

X

Multi-level logic

 x = A D F + A E F + B D F + B E F + C D F + C E F + G
 reduced sum-of-products form – already simplified
 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even

exist!)
 25 wires (19 literals plus 6 internal wires)

 x = (A + B + C) (D + E) F + G
 factored form – not written as two-level S-o-P
 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 10 wires (7 literals plus 3 internal wires)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Level 1 Level 2 Level 3 Level 4

original
AND-OR
network A

C
D

B

B
\C

F

introduction and
conservation of

bubbles A

C
D

B

B
\C

F

redrawn in terms
of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of multi-level logic to
NAND gates F = A (B + C D) + B C’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 26

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal
AND-OR
network

introduction and
conservation of

bubbles A

C

D
B

B

\C

F

redrawn in terms
of conventional

NOR gates \A

\C
\D

B

\B
C

F

Conversion of multi-level logic to
NORs
 F = A (B + C D) + B C’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 27

Conversion between forms

 Example

A

X
B
C

D

F

original circuit

A

X
B
C

D

F

add double bubbles to
invert all inputs of OR gate

\D

A

B
C

F

\D

A

X

B
C

F
\X

insert inverters to eliminate
double bubbles on a wire

add double bubbles to
invert output of AND gate

X

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 28

&

&
+

2x2 AOI gate
symbol

&

&
+

3x2 AOI gate
symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-invert gates

 AOI function: three stages of logic — AND, OR, Invert
 multiple gates "packaged" as a single circuit block

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 29

&

&
+

A’

B’
A

B

F

Conversion to AOI forms

 General procedure to place in AOI form
 compute the complement of the function in sum-of-products form
 by grouping the 0s in the Karnaugh map

 Example: XOR implementation
 A xor B = A’ B + A B’
 AOI form:

 F = (A’ B’ + A B)’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 30

each implemented in a single 2x2 AOI gate

Examples of using AOI gates

 Example:
 F = A B + A C’ + B C’
 F = (A’ B’ + A’ C + B’ C)’
 Implemented by 2-input 3-stack AOI gate

 F = (A + B) (A + C’) (B + C’)
 F = [(A’ + B’) (A’ + C) (B’ + C)]’
 Implemented by 2-input 3-stack OAI gate

 Example: 4-bit equality function
 Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 31

high if A0 ≠ B0
low if A0 = B0

if all inputs are low
 then Ai = Bi, i=0,...,3
output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of using AOI gates (cont’d)

 Example: AOI implementation of 4-bit equality function

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 32

Summary for multi-level logic

 Advantages
 circuits may be smaller
 gates have smaller fan-in
 circuits may be faster

 Disadvantages
 more difficult to design
 tools for optimization are not as good as for two-level
 analysis is more complex

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Time behavior of combinational
networks
 Waveforms

 visualization of values carried on signal wires over time
 useful in explaining sequences of events (changes in value)

 Simulation tools are used to create these waveforms
 input to the simulator includes gates and their connections
 input stimulus, that is, input signal waveforms

 Some terms
 gate delay — time for change at input to cause change at output

 min delay – typical/nominal delay – max delay
 careful designers design for the worst case

 rise time — time for output to transition from low to high voltage
 fall time — time for output to transition from high to low voltage
 pulse width — time that an output stays high or stays low between changes

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 34

F is not always 0
pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary changes in outputs

 Can be useful — pulse shaping circuits
 Can be a problem — incorrect circuit operation

(glitches/hazards)
 Example: pulse shaping circuit

 A’ • A = 0
 delays matter

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 35

initially
undefined

close switch

open switch

+

open
switch

resistor
A B

C
D

Oscillatory behavior

 Another pulse shaping circuit

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Hardware description languages

 Describe hardware at varying levels of abstraction
 Structural description

 textual replacement for schematic
 hierarchical composition of modules from primitives

 Behavioral/functional description
 describe what module does, not how
 synthesis generates circuit for module

 Simulation semantics

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 37

HDLs

 Abel (circa 1983) - developed by Data-I/O
 targeted to programmable logic devices
 not good for much more than state machines

 ISP (circa 1977) - research project at CMU
 simulation, but no synthesis

 Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
 similar to Pascal and C
 delays is only interaction with simulator
 fairly efficient and easy to write
 IEEE standard

 VHDL (circa 1987) - DoD sponsored standard
 similar to Ada (emphasis on re-use and maintainability)
 simulation semantics visible
 very general but verbose
 IEEE standard

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Verilog

 Supports structural and behavioral descriptions
 Structural

 explicit structure of the circuit
 e.g., each logic gate instantiated and connected to others

 Behavioral
 program describes input/output behavior of circuit
 many structural implementations could have same behavior
 e.g., different implementation of one Boolean function

 We’ll mostly be using behavioral Verilog in Aldec ActiveHDL
 rely on schematic when we want structural descriptions

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 39

module xor_gate (out, a, b);
 input a, b;
 output out;
 wire abar, bbar, t1, t2;

 inverter invA (abar, a);
 inverter invB (bbar, b);
 and_gate and1 (t1, a, bbar);
 and_gate and2 (t2, b, abar);
 or_gate or1 (out, t1, t2);

endmodule

Structural model

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 40

module xor_gate (out, a, b);
 input a, b;
 output out;
 reg out;

 assign #6 out = a ^ b;

endmodule

Simple behavioral model

 Continuous assignment

delay from input change
to output change

simulation register
- keeps track of
value of signal

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 41

module xor_gate (out, a, b);
 input a, b;
 output out;
 reg out;

 always @(a or b) begin
 #6 out = a ^ b;
 end

endmodule

Simple behavioral model

 always block

specifies when block is executed
ie. triggered by which signals

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 42

module testbench (x, y);
 output x, y;
 reg [1:0] cnt;

 initial begin
 cnt = 0;
 repeat (4) begin
 #10 cnt = cnt + 1;
 $display ("@ time=%d, x=%b, y=%b, cnt=%b",
 $time, x, y, cnt); end
 #10 $finish;
 end

 assign x = cnt[1];
assign y = cnt[0];

endmodule

Driving a simulation through a
“testbench”

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 43

Complete simulation

 Instantiate stimulus component and device to test in a
schematic

a

b

z
test-bench

x
y

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 44

module Compare1 (Equal, Alarger, Blarger, A, B);
 input A, B;
 output Equal, Alarger, Blarger;

 assign #5 Equal = (A & B) | (~A & ~B);
 assign #3 Alarger = (A & ~B);
 assign #3 Blarger = (~A & B);
endmodule

Comparator example

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 45

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
 input n0, n1, n2, n3, n4, n5, n6, n7, self;
 output out;
 reg out;
 reg [7:0] neighbors;
 reg [3:0] count;
 reg [3:0] i;

 assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};

 always @(neighbors or self) begin
 count = 0;
 for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
 out = (count == 3);
 out = out | ((self == 1) & (count == 2));
 end

endmodule

More complex behavioral model

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Hardware description languages vs.
programming languages
 Program structure

 instantiation of multiple components of the same type
 specify interconnections between modules via schematic
 hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

 Assignment
 continuous assignment (logic always computes)
 propagation delay (computation takes time)
 timing of signals is important (when does computation have its effect)

 Data structures
 size explicitly spelled out - no dynamic structures
 no pointers

 Parallelism
 hardware is naturally parallel (must support multiple threads)
 assignments can occur in parallel (not just sequentially)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Hardware description languages and
combinational logic
 Modules - specification of inputs, outputs, bidirectional, and

internal signals
 Continuous assignment - a gate’s output is a function of its

inputs at all times (doesn’t need to wait to be "called")
 Propagation delay- concept of time and delay in input affecting

gate output
 Composition - connecting modules together with wires
 Hierarchy - modules encapsulate functional blocks

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 48

Working with combinational logic
summary
 Design problems

 filling in truth tables
 incompletely specified functions
 simplifying two-level logic

 Realizing two-level logic
 NAND and NOR networks
 networks of Boolean functions and their time behavior

 Time behavior
 Hardware description languages
 Later

 combinational logic technologies
 more design case studies

