Week 4

1. More examples
2. Nondeterminism, equivalence, simulation (Ch 3)
3. Composition (Ch 4)

InputSignals $=$ OutputSignals $=\left[\operatorname{Nats}_{0} \rightarrow\{0,1\right.$, absent $\left.\}\right]$

$$
\begin{aligned}
& x=001110 \ldots \\
& s=000110 \ldots \\
& y=000110 \ldots
\end{aligned}
$$

```
\forallx\inInputSignals, }\forall\textrm{n}\in\mp@subsup{\textrm{Nats}}{0}{},\operatorname{Delay}(x)(n)=0,\quadn=0
=x(n-1),n>0
```

$$
\begin{aligned}
& \forall x \in \text { InputSignals, } \quad \forall n \in \text { Nats }_{0} \\
& \text { Delay }_{2}(x)(n)=0, \quad n=0,1 \\
&=x(n-2), \quad n=2,3, \ldots
\end{aligned}
$$

Implement Delay ${ }_{2}$ as state machine

We will see later that Delay $_{2} \sim$ Delay $_{1}$. Delay ${ }_{1}$

Nondeterministic state machines
In deterministic machines guards from state state are disjoint

In nondeterministic machines guards may not be disjoint. What does that mean?

Topics/determinism/example

The same input signal can lead to more than one state response and output signal

Set and function model

$N=$ (States, Inputs, Outputs, possibleUpdates, initialState)
possibleUpdates: States \times Inputs $\rightarrow P($ States \times Outputs $)$
where $P($ States x Outputs) is the set of all non-empty subsets of States \times Outputs

Topics/deterministic/possible updates

Always: possibleUpdate(s, absent $)=\{(s, a b s e n t)\}$

A deterministic machine determines a function
$\mathrm{H}:$ InputSignals \rightarrow OutputSignals

A nondeterministic machine determines a relation
Behaviors $=\{(x, y) \mid y$ is a possible output signal corresponding to $x\}$
\subset InputSignals \times OutputSignals

Why non-deterministic machines?

1. Topics/determinism/Abstraction
2. Topics/determinism/Equivalence
3. Topics/determinism/Simulation

The matching game

Two (nondeterministic) machines,
$A=\left(\right.$ States $_{A}$, Inputs, Outputs, possibleUpdates $\left.{ }_{A}, S_{A}(0)\right)$
$B=\left(\right.$ States $_{B}$, Inputs, Outputs, possibleUpdates $\left.{ }_{B}, s_{B}(0)\right)$

Suppose input symbol x and
A moves from $s_{A}(0)$ to $s_{A}(1)$ and produces output y
Then for same input symbol x
B can select move from $s_{B}(0)$ to $s_{B}(1)$, to produce y
and continue the game from states $s_{A}(1), s_{B}(1)$

A

$S=\left\{\left(0_{A}, O_{B}\right),\left(1_{A}, 1_{B}\right),\left(2_{A}\right.\right.$, more $), \ldots\left(60_{A}\right.$, more $\left.)\right\}$

B simulates A if there is a subset

$S \subset$ States $_{A} \times$ States $_{B}$
such that

1. (initialState ${ }_{A}$, initial State $_{B}$) $\in S$, and
2. $\forall\left(s_{A}, s_{B}\right) \in S, \forall x \in$ Inputs,
$\forall\left(s_{A}^{\prime}, y\right) \in$ possibleUpdates $_{A}\left(s_{A}, x\right)$
$\exists\left(s_{B}^{\prime}, y\right) \in$ possibleUpdates $s_{B}\left(s_{B}, x\right)$ such that

$$
\left(s_{A}^{\prime}, s_{B}^{\prime}\right) \in S
$$

Theorem Suppose B simulates A. Then, Behaviors $_{A} \subset$ Behaviors $_{B}$
i.e. if y is a possible output response to x by machine A, y is also a possible output response to x by machine B.

Question Suppose B simulates A and C simulates
B. Does C simulate A ?

Topics/Composition/Synchrony

1. Each component reacts once for every input symbol
2. The following happens simultaneously for each component
-The input symbol is consumed
-A state update occurs leading to next state and producing current output
-If there is a feedback loop, the output appears at the input port

Topics/Composition/Side-by-side

Fig 4.2, p. 127

Topics/Composition/Cascade

Fig 4.4, p 131

Topics/Composition/Productform

Fig 4.6, p. 134 Answering machine

Fig 4.9, p. 136

Topics/Composition/Playback

Fig 4.8, p. 136 Playback system

Feedback Composition

Basic assumptions:

- Outputs $A_{A} \subset$ Inputs $_{B}$
- Outputs $S_{B 2} \subset$ Inputs $_{A 2}$

States $=$ States $_{A} \times$ States $_{B}$: Inputs $=$ Inputs $_{A 1}$;
Outputs $=$ Outputs ${ }_{\text {B1 }}$
Update function found by "fixed point" iteration

What is fixed point?

System: $y=f(x)$
Fdbk Connection: $x=y$
Must solve: $x=f(x)$

Systems: f,g
Fdbk Connection:
$x=g(y), y=f(x)$
Must solve: $x=g_{\circ} f(x)$

No solution
More than one solution
Unique solution-well-formed

Fixed point example

Take $X=Y=$ Reals, and f given by for all $x, f(x)=2 x-1$

So fixed point equation is:

$$
2 x-1=x
$$

which has unique solution $x=1$

State-determined output gives well-formed fdbk connection

If output in current state is independent of input, output(s, y) $=$ y has unique solution

Delay machine has state-determined output

In general start with unknown output y anywhere - For each machine

- If output can be determined, produce it
- If state transition can be determined, take it
- Repeat until no progress can be made
- If all outputs are determined - well-formed
-If some signals are unknown- not well-formed

1. Start with state a and unknown $y=\left(y_{1}, y_{2}\right)$
2. Y is not determined, but $y_{2}=1$
3. Start with state a and $y=\left(y_{1}, 1\right)$, then must have update $(a, 1)=(b,(1,1))$.
4. Start with state b and unknown $y=\left(y_{1}, y_{2}\right)$
5. y is not determined, but $y_{2}=0$
6. Start with state b and $y=\left(y_{1}, 0\right)$, then must have update $(b, 0)=(b,(0,0))$

State-determined output

If M has state-determined output, the feedback connection is well-formed, no matter what N is

