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Wavelets and filterbanks

¥ The decomposition coefficients in a wavelet orthogonal basis are computed with a fast
algorithm that cascades discrete convolutions with h and g, and subsample the outpu

~t

¥ Fast orthogonal WT

f(t) =&alrl/(t%) "V,

Since {./ (t-n)}n,,# IS an orthonormal basis

+3$ +3$
a[n =(f(9,/(t%)) =" f(§ (toHdt £ A" (n Jdt # [n
%$ %$

T(t)= (%)




Linking the domains

Z= ej#

%) = A" (2 Switching between the
p(# +8) = f’j(ej(#+$)) — P(I ej#) " (1 2) Fourier and the z-domain
Py =Fe ) (2

P@=0n" ihH

+# :
fln]" f(2)= $ hik]z
k=I# - ]
W _ Switching between the time
flnt 1" z1f(2) unitdelay and the z-domain
f[tn" f (z! 1) reverse the order of the coefficients

(D" f[n]" f('2 negate oddterms




Fast orthogonal wavelet transform

¥ Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal
ay[n]. Let us define

fO=$aln (1" i v

Since {-’ (t $ n)} - is orthonormal, then

ay[n]=(f (), (t" m))= f# " (n)

a,[n] :< f,/ j'n> since /  is an orthonormal basis for V
— dn=(f",)

A fast wavelet transform decomposes successively each approximationtR&/ coarser
approximation PV, f plus the wavelet coefficients carried by P\

In the reconstruction, P¥s recovered from BV f and PV, f for decreasing values of |
starting from J (decomposition depth)




Fast wavelet transform

¥ Theorem 7.7
B At the decomposition

aj.a[p]= 1 hin#2play[n] =a; $h[2p] 1)
n=#"

djq[p]= 1 dln#2p]a;[n]=a; $g[2p] (2)

n=#"

B At the reconstruction

+8 +8 | |
a[pl=" hp%nla [n+ " glp%2n]d,[n]=a;,;$hn]+d; $aln] @
N=%& n=%&
I _#X[p] n:2p ° ° ° ® X[p]
X[n]_! 0 n=2p+l T T T T .
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Proof. decomposition (1)

Ll P#V a8 V% 8= L0 B /) [ In)

j+1

but
(7 alply ) =-
let
t'=2"1t" 2p% t=

then

n

1 &"2"p ' o1

' ) dt (a)

&t" 2j+1p ' &tl 1
/ =/ _
ANE )+ CL2)

L& " 2'n

I > + = " (t'+2p" n)

replacing into (a)

(7 alpld ()= -—

thus (b) becomes

V2

/ /
ol £ i+l )_|_ /2j g
o g s 172Dt
2+ 2hp% ¢ 2N 2% = o
t, .t t

t
+ ! =+t 2
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5 2]+1 2j+1 2
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Proof. decomposition (2)

¥ Coming back to the projection coefficients

aj+l[|o]:<f,./j+l,p>:<f,&r[n#2 d jn>:+-" & b2 7, dt=

#

=&hn#2g" f(y/" (hat=& 2 p( ¥ ,,)=& b2 b In$
a..[pl=a%2

¥ Similarly, one can prove the relations for both the details and the reconstruction formula




Proof. decomposition (3)

¥ Details
D inp SWL, %V &7, = 'n'/< R
t =2"t#2p &
- RO T (% _
(3bis) < {+1n7 j,n> <\/§ 2|-2,, (t#n+2p)> g[n#2(d &

!in, == g[n#2p |, &
(£, () == g[n#2p|(f7 )&

d.alpl=- oln2dal]




Proof: Reconstruction

Since W,, is the orthonormal complement of,Vin V;, the union of the two respective basis is a basis
for V;. Hence

Vi=Viu#W,$ /)= 9&15’h$>hf /ﬁnp’un>Hn

but <_/ ip / {+1n > = h[ p#2 n] (see (3) and (3bis), the analogous one for g)
<-/ j,p’" j+1,n> = g[ p#zn]
thus

'/j,p :$ h[p#2n] j+1n +$ C.[ p#zlﬂ‘ j+1n

Taking the scalar product with f at both sides:

+& +& : !
aj[pl=" hp%nlajy[n+ " glp%2n]d;,[n]=a;,;$h(n]+d; $gln] CVvD
N=%& N=%8&
| _#{pl n=2p
1 0O n=2p+1




Summary

The coefficients g and d,; are computed by taking every other sample of the convolut
ofajwith h and 9 respectively.

The filter "h removeshe higher frequencies of the inner product sequanoghereas g
IS a high-pass filter thaollectsthe remaining highest frequencies.

The reconstruction is an interpolation that inserts zeroes to esparandd, ; and filters
these signals, as shown in Figure.
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Filterbank implementation
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Fast DWT

Theorem 7.10 proves that;gand d., are computed by taking every other sample of the
convolution on awith h and9 respectively

The filter h removes the higher frequencies of the inner product and the filter g is a band-
pass filter that collects such residual frequencies

An orthonormalvavelet representationis composed of wavelet coefficients at scales

11 2t 2
plus the remaining approximation at scale 2

gdj}uj J ’aJ#f

©




Summary

Analysis or decomposition Synthesis or reconstruction
a j

Teorem 7.2 (Mallat&Meyer) and Theorem 7.3 [Mallat&Meyer] :>

YARE ‘@(/)2+‘r¢(! +/)2:2

and

o) =2
G(/)=€"R( *)$ diF 1™ [ b

:> The fast orthogonal WT is implemented by a filterbank that is
completely specified by the filter  h, which is a CMF
The filters are the same for every |j




Filter bank perspective

—La |

Taking h[n]=#[-n] as reference (which amounts to choosiegsynthesis low-pass filterthe
following relations hold for an orthogonal filter bank:

n=Hh!n

n=(')""H! F (D' "H!n 1]

gl =d!'a=('n'“"p@a

neglecting the unitary shift, as usualigne in applicatior
ol =('1)'"H & ¢ 1 "h[n]
gln=d!'d=(1"hh

Q IO




Finite signals

¥ Issue: signal extension at borders

¥ Possible solutions:

B Periodic extension
'l Works with any kind of wavelet
I'l Generates large coefficients at the borders
B Symmetryc/antisymmetric extension, depending on the wavelet symmetry

'l More difficult implementation
I'l Haar filter is the only symmetric filter with compact support

B Use different wavelets at boundary (boundary wavelets)
B Implementation byifting steps




Wavelet graphs

The graphs of ¢ and ¢ are computed numerically with the inverse wavelet trans-
form. If f =, then ag[n] =6[n] and d;[n] =0 for all L<j=<0.The inverse wavelet
transform computes @y and (7.111) shows that

NY2 a;nl=d(N " 'n).

If ¢ is regular and N is large enough, we recover a precise approximation of the
graph of ¢ from a;.

Similarly, if /=, then ag[n] =0, do[n] =86[n], and d;[n] =0 for L<j<0.Then
cy|n] is calculated with the inverse wavelet transform and N1/2 ar[n]~ (N n).
The Daubechies wavelets and scaling functions in Figure 7.10 are calculated with
this procedure.




Orthogonal wavelet representation

¥ An orthogonal wavelet representatiofia =< f,/| > is composed of wavelet coefficient;
of f at scales'x2<=2J, plus the remaining approximation at the largest scale 2

[{ddi<sso a]

¥ Initialization
Bl Letb[n] be the discrete time input signal and letidé the sampling period, such that the
corresponding scale i$2N-1

B Then: N-L: discrete sample distance

+00 r— 2Ly 2-= Nt scale
=3 v () e

AR N

original continuous interpolation function
time signal

discrete time signal




Initialization

following the definition:

;o #"2'n$
“Ln " 0/ &
L \/?' 02L (
n "1
2L:1) Lo iz NI mfg I\,!l $&/
N ot | TN

but
$t"N'n% 1 *+#

f(t *b[]/f(N = N o

o= £ <f,ﬁ )= ald

o[ . (Y

a [n]= by definition, the

+f(t)m/ ?(t#NN#l )%d’[
a [n)* VNf(N"'n)

neighborhood of f(Nn)

N-L: discrete sample distance
2= N scale

a [n]=(1./,)

if f is regular, the sampled values can be considered as a local average

in tt



The filter bank perspective




Perfect reconstruction FB

¥ Dual perspective given a filterbank consisting of 4 filters, we derive pleefect
reconstruction conditions

o

h

@ a G

\ 4

a, - — &

A 4

(@)

¥ Goal: determine the conditions on the filters ensuring that

%! &




PR Filter banks

¥ The decomposition of a discrete signal in a multirate filter bank is interpreted as an
expansion inA2)
since
afll =a* h21]=" a[nh2 1t n=" a[r]Hn2]

+co

all]= Z aoln) hin — 20 = (aop[n], h[n—21]),

n=-—w

then

400

dill1= D aolnlgln— 201= (ao[n, gln — 2/1).

n=-—uw

and the signal is recovered by the reconstruction filter

40

oo
aoln) =Y arl[1hln—=201+ " d[/1gln - 21. dual family of vectors
[=—x [=—u0 l

+o0 _ +oo oints to
apln]= Z (fIR] h[k—ZIDh[n—;Z/] + Z (flkl{glk — 2[])\g[n — 21]. biorfhogonal

wavelets

thus




The two families are biorthogonal

Theorem 7.13. If i, g, h, and g are perfect reconstruction filters, and their Fourier
transforms are bounded, then {h[n — 2], g[n — 2I]};,cz and {h|[n — 21], g|n — 21]},c7, are
biorthogonal Riesz bases of £2(Z).

Thus, a PR FB projects a discrete time signals over a biorthogonal b&49.of |
If the dual basis is the same as the original basis than the projection is orthonorm:




¥ Question: why bother with the construction of wavelet basis if a PR FB can do the sar
easily?
¥ Answer: because conjugate mirror filters are most often used in filter banks that casc:
several levels of filterings and subsamplings. Thus, it is necessary to understand the
behavior of such a cascade
N-1: discrete sample distance
2-= N1 scale
a [n] = < f,7 n> discrete signal at scalé 2
t-N"'n) 1
(p N_1 - \/N qﬂL,n j—L—1
b)) = h(2P
for depth j-L>0 biw)= ] h2'w)
- - =0
a;ll] = arx;[277 ) = (ag[n], ;ln—2/7"1]) j—1=2

di[1] = ap*;[27 7 1) = (ag[n], y;ln —277"1)). i) =82 " w) ﬂo h(2P w).
. . ‘ I

Discrete Wavelet basis

ne

ade



Discrete wavelet basis

For conjugate mirror filters, one can verify that this family is an orthonormal basis of
€°(Z).These discrete vectors are close to a uniform sampling of the continuous time-
scaling functions ¢;(#) = 2712277ty and wavelets Yy(t) = 2712¢(277t). When the
number L —j of successive convolutions increases, one can verify that ¢;[n] and
ln] converge, respectively, to N~1/2 qu(N_l,r-f] and N ~1/2 (pj(N_l;-z],

The factor N ~1/2 normalizes the £%(Z) norm of these sampled functions. If £ — j =
4,then ¢y[n] and i [n] are already very close to these limit values. Thus, the impulse
responses (;bj[?i‘] and d{;[n] of the filter bank are much closer to continuous time-
scaling functions and wavelets than thev are to the original conjugate mirror filters
h and g. This explains why wavelets provide appropriate models for understanding
the applications of these filter banks. Chapter 8 relates more general filter banks to
wavelet packet bases.




Perfect reconstruction FB

¥ Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal ii

ﬁ"(!)t?(! )__+@*(")@(!):2
W(I +'I)'?(! )+@(I +'I)(5)(! )=0 (alias free)

Matrix notations

§ ()% SR+
$(/) =R )G +")#RY +")g(/)

When all the filters are FIR, the determinant can be evaluated, which yields simpler
relations between the decomposition and the reconstruction filters.

; (1) 2 59 +7)

=




Changing the sampling rate

¥ Downsampling

) o 2y Al )R
ablys o o
W)= 50,5 %, &

¥ Upsampling




Subsampling: proof
Y(! ):E yhO#+ yhige™' t + yh o™ L E =
=E xhOfr xb2ffe’' + xbhafe" 4 &
thus
3'0'(2-’ )=E xbOBr xh 2" + bl
but

XhIge"  + xk e ) = 0& %(Xl,lge%j!t + xbigeric +,,)t) o

X!- 2@9%j 2t — 1‘ (X!. de%j 2/t + X!' de%j 2() +" )t)
2

thus

X'Z')(Z.’ )=E xl-0§+%(x1'1§e%j” +X'!'1§e%j(!+")t)+12'( LD/ t +X!|2ge%j2(!+")t)+é —

s = o )




Perfect Reconstruction conditions

4
|

2 - ©
70

(o]

a

d

e 4
14<:>*

a@)=2{al )R )+a(+ AR +)
since h and g are real
h n # h(/)

s =Ha# R)= & )= &)

thus, replacing in the first equation

a1(2/)=%(ao( JR()+a( + YR( +))
Similarly, for the high-pass branch

a@)=2al )8 )ral »)g( )

By=a HRH)+8@Hdu)




Perfect Reconstruction conditions

¥ Putting all together
8 ()= d2o)R )+ &2 ) ) =
“Lla (1B \+a(l +1)R (1 +2 Q)
+%(ao(-’ )G (o) +a (! +7) (! +’))@('
B( =2 )r?<')+@ 8B (1 )+ (1 )Ry (1 1) B +)

=0 (alias-free)

( )r?(l)+g>( )@(l) 2 Matrix notations
(/ +/)I?(I)+§P(I +/)@(I) Ol (alias free) ;h (/)%_ 2 x g/ +")"

§ ()% SR+
$(/) =R/ )G +")#RY +")g(/)




PR filters

¥ Theorem 7.8. Perfect reconstruction filters also satisfy

ﬁ’(/ )i?(/ )+r¢(/ +/)r?(/ +1)=2

Furthermore, if the filters have a finite impulse response there exist? andl in Z such
that

a#|(2l+1) ( +7) Q?(-’)=e”:"f?(-’ +")

) I - 1 j! h* / 4
) = 1 #i(21+1) " ﬁ)‘( +1) :> a=1, I=0 :> @( )=e ( )
a Correspondingly
g[n] = (' D*"A[L! n]
d[n]=( D" "h[1! n]

x
&

¥ Conjugate Mirror Filters: i —p ‘ﬁ)(/)




Proof

Given h anch  and settirg-l andl=0 in (2) the remaining filters are given by the following
relations .
i

G(") =" (" +/)
Gy =" W (" +1)

3)

Il The filtersh and N are related to the scaling functi$rend -$ via the corresponding two-scale relations,
as was the case for the orthogonal filters (see eq. 1).

Switching to the z-domain

9(2) = 74 1ﬁ(! z'1
3=z zY

Signal domain oln] = (' DY "h[L! n]

gl = (! D* "HL! n]




Biorthogonal filter banks

¥ A 2-channel multirate filter bank convolves a sigagalvith
a low pass filter h{n] =h! n]
and a high pass filter aln=g[! n]

and sub-samples the output by 2 a[n] =ag! h[2n]

t[n]=ap! g[2n]

A reconstructed signal, is obtained by filtering the zero-expanded signals wilbal Iow-passﬁ[n]
and high pass filterg[n]

Goln] =y $hn] +dy $2[n]
#x[p] n=2p
10 n=2p+1

Imposing the PR condition (output signal=input signal) one gets the relations that the different filters
must satisfy (Theorem 7.7)

yn] = iln] =




Revisiting the orthogonal case (CMF)

—L 3 |

Taking ﬁ[r] =Hh! h asreference (which amounts to choosing the analysis low-pass filter) the
following relations nhoid for an orthogonal filter bank:

ﬁ[n] = |f|i! @" h:]:‘ mq ]n synthesis low-pass (interpolation) filter:
reverse the order of the coefficients

g =(! 1)1! "HU A negate every other sample




Orthogonal vs biorthogonal PRFB

4

A1 h  Biorthogonal PRFB r-l.:h Orthogonal PRFB
()R +R (1 + )Ry +7)=2

g )=e "R +") ‘
§)=e’'n(¢ +")

In the signhal domain
g[n]=( ALl n]
4[Nl =( D" "h[1! n]




Fast BWT

¥ Two different sets of basis functions are used for
ajq[n] =a;! ﬁ[Zn]
dj+[n]=a;! g[2n]

aj[n] :5j+1! ﬁ[n]+

¥ PR filterbank 1 ne
gin]=(" 2~ "h[1! n]

gin) = (! ¥ "ha! n]

.
e

analysis and synthesis

.
dj+1! gln]




Be careful with notations!

In the simplified notation where

B h[n] is the analysis low pass filter agfh] is the analysis high pass filter, as it is the case in most of the
literature;

B the delay factor is not made explicit;

The relations among the filters modify as follows

_ <+>!'7°

o

g[n] =(! 1)! nF][n] The high pass filters are obtained
: by the low pass filters by negating
gn] = (' 2)° "h[n] the odd terms




Biorthogonalbases

Orthonormal basis

{e} .:n: Dasis of Hilbert space

Ortogonality condition <£6>=0 $n%

$Sy# H,

There exists a sequence

N =(y.&):
y=1 "[nle,

n

le*=1 ortho-hormalbasis

nL’
ep

Bi-orthogonal basis

{e} .:n: linearly independent
$y# H, &A>0andB>0:

Anl=(y.&,):
y=1 Anlg,
2 " 2
oy e
B - #n] A
Biorthogonality condition:
(e &) =#n" p]
y=1 (f.&)=1 (f.&)&
n n

A=B=1"' orthogonal basis




Biorthogonal bases

If h and F\ are FIR
) Y CLTAN . o Q2P )
!P(_/ ): 3 (&_)!P(o), !0(/ ): pﬂb N ) (0)

Though, some other conditions must be imposed to guarantee that $” and $/tilde are FT of

finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides sufficient
conditions (Theorem 7.10)

The functions ©Pand .Psatisfy the biorthogonality relation

<! (1), (t! n)>:![n]

The two wavelet families {! | } and {!! } are Riesz bases of L*(R)
ind (jnr 22 nd (jny z2

</ . j.’n.>:![n! NGt T

Any f ! LZ(R) has two possible decompositions in these bases

= (= (A,

n,j n,j




Summary of Biorthogonality relations

¥ Aninfinite cascade of PR filter bank#, g),(ﬁ, g) Vvields two scaling functions and two wavelet
whose Fourier transform satisfy

!6(2/ ):%r@(/ )!6(/ ) " /%‘f‘: n_l)_ h{n)/ (t) n) (i)
.0(2, ):%ﬁ"’(/ )ID(/ ) /!i%f‘: J; A[n]4 (t) n) (ii)
92 ):%@(/ Jo(r) i%f‘: + gnl/ (tyn) (i)
,.ﬁ(z_/ ):%@(w) !!'5(/ | %‘f‘: J; gln)# (t) n) (iv)




Properties of biorthogonal filters

Imposing the zero average condition’ten equationgiii) and(iv)

00)=(0)=0 " | §0)=40)=0

replacing into the relations (3) (also shown below)
G/ )= "R +1) §uy=e" B¢ +1)1| Bu)=fr)=C

Furthermore, replacing such values in the PR condition (1)

R )+d ¢ )Er)=21 | BO)R0)=2

It is common choice to set

¥ (0) =K0) =2




Biorthogonal bases

If the decomposition and reconstruction filters are different, the resulting bases is non
orthogonal
The cascade of J levels is equivalent to a signal decomposition over a non-orthogonal ba

ﬁ/dﬂ(( 2’ nkl}r#$ { D 2 n}:%j%,n#ﬂi*’

The dual bases is needed for reconstruction




Example: bior3.5

Dec. low-pass filter bior3.5

0.5
0 Q@ (O 0) &
Il
-0.5 : :
5 10 15
Rec. low-pass filter bior3.5
0.8
0.6
Q@
0.4
0.2 T T
0 n
0 5 10 15

Dec. high-pass filter bior3.5

15

05
0 | f
-0.5
-1 . .
0 5 10
Rec. high-pass filter bior3.5
1
0.5
o) Q T P [OXA)
) ) <L 0]
-0.5
-1 L
0 5 10

15




Example: bior3.5

Transfer modulus for dec. filters Transfer modulus for rec. filters

25 25

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4

One biorthogonality condition

0 0.2 0.4 0.6 0.8 1
[fit(Log)fft(Loy) + fit(Hi)fft(Hip)| = 2

0.6 0.8 1
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bior1.3

bior2.2

1

bior2.6

10
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-1
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! |
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2 4 6 a
5 10 15
2 4
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Biorthogonal bases

bior1.5

bior2.4

bior2.8

bior3.3




10

Biorthogonal bases

1 |
a nNoo N &

1

1 1
L I S - R

0

bior3.5

05

0

-05

bior3.9

10 15

1

0

1

bior5.5 0

10

15

1

Q

1

. o 4 6
bior3.3
05
a
-05
. o 10
bior3.7
1
1]
0 6 e
biord.4
1
1]
o 10 15

bior6.8




CMF : orhtogonal filters

PR filter banks decompose the signals in a bad®&£) This basis i®rthogonalfor Conjugate
Mirror Filters (CMF).

[Smith&Barnwell,1984]: Necessary and sufficient condition ford?Rogonal FIRfilter banks, called
CMFs

B Imposing thathe decomposition filter h is equal to the reconstruction filteety. (1) becomes
W)+ +H)R +1)=2 (1) !

Iﬁj(! )ﬁ'?(! )+l¢(! +/ )ﬁ"(! +/1)=2—

IR P+ Bw+!) =2

B Correspondingly

=

n] =h[n]
[n]=g[n]=( D" "h{1! n]

(o)




Summary

PR filter banks decompose the signals in a bad&£) This basis i®rthogonalfor Conjugate
Mirror Filters (CMF).

[Smith&Barnwell,1984]: Necessary and sufficient condition ford?fRogonal FIRfilter banks, called
CMFs

B Imposing that the decomposition filteiis equal to the reconstruction filter, eq. (1) becomes
)R + 8 (#+ ) R#+ ") =21
& (#)R%) + B (#+ Q%+ ") =21
() 2 ) 144 2_
|RA) | +|R#+ ") 7= 2

B Correspondingly

=

n] =h[n]
1=gn]=(' H" "h1! n]

-]

[

(o)




Properties

Support
B h, h are FIR scaling functions and wavelets have compact support
Vanishing moments

B The number of vanishing moments%is equal to the ordep of zerogpf &irSimilarly, the
number of vanishing moments of  is equal to the grdérzeros ohin &

Regularity

Bl One can show that the regularity @ and$ increases with the number of vanishing moments
of /", thus with the order of zeros oh in & Viceversa, the regularity df and r increas
with the number of vanishing moments%fthus with the orde@ of zeros ¢f &n

Symmetry

B It is possible to construct both symmetric and anti-symmetric bases using linear phase filter
I'l In the orthogonal case only the Haar filter is possible as FIR solution.

€S




