
Wavelets and filterbanks 

Mallat 2009, Chapter 7 



Outline 

¥! Wavelets and Filterbanks 

¥! Biorthogonal bases 

¥! The dual perspective: from FB to wavelet bases 

Ð! Biorthogonal FB 

Ð! Perfect reconstruction conditions 

¥! Separable bases (2D) 

¥! Overcomplete bases 

Ð! Wavelet frames (algorithme ˆ trous, DDWF) 

Ð! Curvelets 



Wavelets and Filterbanks 

Wavelet side 

¥! Scaling function 

Ð! Design (from multiresolution priors) 

Ð! Signal approximation 

Ð! Corresponding filtering operation 
! ! Condition on the filter h[n] !  Conjugate 

Mirror Filter (CMF) 

¥! Corresponding wavelet families 

Filterbank side 

¥! Perfect reconstruction conditions (PR) 

Ð! Reversibility of the transform 

¥! Equivalence with the conditions on the 
wavelet filters 

Ð! Special case: CMFs !  Orhogonal 
wavelets 

Ð! General case  !    Biorthogonal wavelets 

 



Wavelets and filterbanks 

¥! The decomposition coefficients in a wavelet orthogonal basis are computed with a fast 
algorithm that cascades discrete convolutions with h and g, and subsample the output 

¥! Fast orthogonal WT 
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Linking the domains 
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Switching between the 
Fourier and the z-domain 

Switching between the time 
and the z-domain 



Fast orthogonal wavelet transform 

¥! Fast FB algorithm that computes the orthogonal wavelet coefficients of a discrete signal 
a0[n]. Let us define 

 

Since                                is orthonormal, then 

 

 

¥! A fast wavelet transform decomposes successively each approximation PVjf in the coarser 
approximation PVj+1f plus the wavelet coefficients carried by PWj+1f. 

¥! In the reconstruction, PVjf is recovered from PVj+1f and PWj+1f for decreasing values of j 
starting from J (decomposition depth) 
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Fast wavelet transform 

¥! Theorem 7.7 

Ð! At the decomposition 

Ð! At the reconstruction 

!

!
"+

#"=
+

+"

#"=
+

$=#=

$=#=

n
jjj

n
jjj

pganapngpd

phanapnhpa

]2[][]2[][

]2[][]2[][

1

1

!
"
#

+=

=
=

$+$=%+%= ++

+&

%&=

+&

%&=
++' '

120

2][
][

][][][]2[][]2[][ 1111

pn

pnpx
nx

ngdnhandnpgnanphpa jj
n n

jjj

!

!!

(1) 

(2) 

(4) 

x[p] 

[ ]x n!



Proof: decomposition (1) 
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Proof: decomposition (2) 

¥! Coming back to the projection coefficients 

¥! Similarly, one can prove the relations for both the details and the reconstruction formula 
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Proof: decomposition (3) 

¥! Details 
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Proof: Reconstruction 
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Since Wj+1 is the orthonormal complement of Vj+1 in Vj, the union of the two respective basis is a basis 
for Vj. Hence 



Summary 

¥! The coefficients aj+1 and dj+1 are computed by taking every other sample of the convolution 
of aj with        and           respectively. 

¥! The filter "h removes the higher frequencies of the inner product sequence aj , whereas "g 
is a high-pass filter that collects the remaining highest frequencies.  

¥! The reconstruction is an interpolation that inserts zeroes to expand aj+ 1 and dj+ 1 and filters 
these signals, as shown in Figure. 
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Filterbank implementation 
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Fast DWT 

¥! Theorem 7.10 proves that aj+1 and dj+1 are computed by taking every other sample of the 
convolution on aj with       and       respectively 

¥! The filter h removes the higher frequencies of the inner product and the filter g is a band-
pass filter that collects such residual frequencies 

¥! An orthonormal wavelet representation is composed of wavelet coefficients at scales                          

 plus the remaining approximation at scale 2J 
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Summary 
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The fast orthogonal WT is implemented by a filterbank that is 
completely specified by the filter h, which is a CMF 
The filters are the same for every j 
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Teorem 7.2  (Mallat&Meyer) and Theorem 7.3  [Mallat&Meyer] 
 



Filter bank perspective 

h 

g g 

h ! 2 

! 2 

" 2 

" 2 

+ 
a0 

_ 

! 0 

_ 

Taking h[n]=#[-n] as reference (which amounts to choosing the synthesis low-pass filter) the 
following relations hold for an orthogonal filter bank: 
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Finite signals 

¥! Issue: signal extension at borders 

¥! Possible solutions: 

Ð! Periodic extension 
! ! Works with any kind of wavelet 

! ! Generates large coefficients at the borders 

Ð! Symmetryc/antisymmetric extension, depending on the wavelet symmetry 
! ! More difficult implementation 

! ! Haar filter is the only symmetric filter with compact support 

Ð! Use different wavelets at boundary (boundary wavelets) 

Ð! Implementation by lifting steps 



Wavelet graphs 



Orthogonal wavelet representation 

¥! An orthogonal wavelet representation of aL=<  f ,! L,n> is composed of wavelet coefficients 
of f at scales 2L<2j<= 2J , plus the remaining approximation at the largest scale 2J : 

¥! Initialization 

Ð! Let b[n]  be the discrete time input signal and let N-1 be the sampling period, such that the 
corresponding scale is 2L=N-1 

Ð! Then:  

original continuous 
time signal discrete time signal interpolation function 

N-1: discrete sample distance 
2L= N-1 scale 



Initialization 
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if f is regular, the sampled values can be considered as a local average in the 
neighborhood of f(N-1n) 

N-1: discrete sample distance 
2L= N-1 scale 



The filter bank perspective 



Perfect reconstruction FB 

¥! Dual perspective: given a filterbank consisting of 4 filters, we derive the perfect 
reconstruction conditions 

¥! Goal: determine the conditions on the filters ensuring that 
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! 2 h

! 2 g
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PR Filter banks 

¥! The decomposition of a discrete signal in a multirate filter bank is interpreted as an 
expansion in l2(Z) 
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since 

then 

and the signal is recovered by the reconstruction filter 

thus 

dual family of vectors 

points to 
biorthogonal 

wavelets 



The two families are biorthogonal 

Thus, a PR FB projects a discrete time signals over a biorthogonal basis of l2(Z). 
If the dual basis is the same as the original basis than the projection is orthonormal. 



Discrete Wavelet basis 

¥! Question: why bother with the construction of wavelet basis if a PR FB can do the same 
easily? 

¥! Answer: because conjugate mirror filters are most often used in filter banks that cascade 
several levels of filterings and subsamplings. Thus, it is necessary to understand the 
behavior of such a cascade 
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N-1: discrete sample distance 
2L= N-1 scale 
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for depth j-L>0 



Discrete wavelet basis 



Perfect reconstruction FB 

¥! Theorem 7.7 (Vetterli) The FB performs an exact reconstruction for any input signal iif 
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Matrix notations 

(alias free) 

When all the filters are FIR, the determinant can be evaluated, which yields simpler 
relations between the decomposition and the reconstruction filters. 



Changing the sampling rate 

¥! Downsampling 

¥! Upsampling 
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Subsampling: proof 
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Perfect Reconstruction conditions 

! 2 h

! 2 g
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Perfect Reconstruction conditions 

¥! Putting all together 

!öa0(ω) = öa1(2ω) !öh(! )+ öd1(2! ) !ög(! ) =

=
1
2

a0 !( ) öh* !( )+a0 ! +!( ) öh* ! +π( )( ) !öh(! )

+
1
2

a0 !( ) ög* ω( )+a0 ! +π( ) ög* ! +!( )( ) !ög(! )

!öa0(! ) =
1
2

öh* !( ) !öh(! )+ ög* !( ) !ög(! )
!
"
#

$
%
&a0 !( )+ 1

2
öh* ! +!( ) !öh(! )+ ög* ! +!( ) !ög(! )

!
"
#

$
%
&a0 ! +!( )

=1 =0 (alias-free) 

öh* !( ) !öh(! )+ ög* !( ) !ög(! ) = 2

öh* ! +!( ) !öh(! )+ ög* ! + !( ) ög(! ) = 0

)(ö)(ö)(ö)(ö)(

)(ö
)(ö

)(
2

)(ö~
)(ö~

*

*

!"!"!!!

"!
"!

!!
!

ghgh

h

g

g

h

+#+=$

%%
&

'
((
)

*
+#

+

$
=

%
%

&

'

(
(

)

*

Matrix notations 

(alias free) 



PR filters 

¥! Theorem 7.8. Perfect reconstruction filters also satisfy 

 Furthermore, if the filters have a finite impulse response there exists a in R and l in Z such 
that 

 

 

 

 

 

 

¥! Conjugate Mirror Filters:  
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Proof 

 Given h and      and setting a=1 and l=0 in (2) the remaining filters are given by the following 
relations 

! ! The filters h and     are related to the scaling functions $ and ~$ via the corresponding two-scale relations, 
as was the case for the orthogonal filters (see eq. 1). 

 Switching to the z-domain 
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Biorthogonal filter banks 

¥! A 2-channel multirate filter bank convolves a signal a0 with  

 a low pass filter                     

 and a high pass filter 

 and sub-samples the output by 2 

 

 

 A reconstructed signal ‹ 0 is obtained by filtering the zero-expanded signals with a dual low-pass           
and high pass filter   

 

 

 

 Imposing the PR condition (output signal=input signal) one gets the relations that the different filters 
must satisfy (Theorem 7.7) 
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Revisiting the orthogonal case (CMF) 
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Taking                              as reference (which amounts to choosing the analysis low-pass filter) the 
following relations hold for an orthogonal filter bank: 
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Orthogonal vs biorthogonal PRFB 
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Fast BWT 

¥! Two different sets of basis functions are used for analysis and synthesis 

¥! PR filterbank 
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Be careful with notations! 

¥! In the simplified notation where  

Ð! h[n]  is the analysis low pass filter and g[n]  is the analysis high pass filter, as it is the case in most of the 
literature; 

Ð! the delay factor is not made explicit; 

¥!  The relations among the filters modify as follows 
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Biorthogonal bases 

Orthonormal basis 

{en} n# N: basis of Hilbert space 

Ortogonality condition < en, ep>=0     $ n%p 

$ y #  H,      

There exists a sequence 
 

 

 

 

|en|2=1  ortho-normal basis 

 

Bi-orthogonal basis 

{en} n# N: linearly independent 

$ y #  H,     &A>0 and B>0 : 
                    

 

 

 

 

Biorthogonality condition:  
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Biorthogonal bases 

If h and !h are FIR

!ö! !( ) =
!öh 2! p!( )

2p=1

+!

" !ö! (0), ö! !( ) =
öh 2! p!( )

2p=1

+!

" ö# (0)

The functions ö!  and !ö!  satisfy the biorthogonality relation

! (t), !! (t ! n) = ! [n]

The two wavelet families !
j,n

{ }
( j ,n)! Z2

 and  !!
j,n

{ }
( j ,n)! Z2

 are Riesz bases of L2(R)

!
j ,n

, !!
j ' ,n' = ! [n! n']! [ j ! j ']

Though, some other conditions must be imposed to guarantee that $^ and $^tilde are FT of 
finite energy functions. The theorem from Cohen, Daubechies and Feaveau provides sufficient 
conditions (Theorem 7.10) 

Any f ! L2 R( )  has two possible decompositions in these bases

f = f ,! j ,n
n, j

" !! j ,n = f , !! j ,n
n, j

" ! j ,n



Summary of Biorthogonality relations 

¥! An infinite cascade of PR filter banks                       yields two scaling functions and two wavelets 
whose Fourier transform satisfy 

ö! 2!( ) =
1

2
öh !( ) ö! !( ) " ! t

2

#

$
%

&

'
( = h[n]! t ) n( )

n=) *

+*

+ (i )

!ö! 2!( ) =
1

2
öh !( ) !ö! !( ) " !! t

2

#

$
%

&

'
( = !h[n] !! t ) n( )

n=) *

+*

+ (ii )

ö, 2!( ) =
1

2
ög !( ) ö! !( ) " ! t

2

#

$
%

&

'
( = g[n]! t ) n( )

n=) *

+*

+ (iii )

!ö, 2!( ) =
1

2
!ög ω( ) !ö! !( ) " !! t

2

#

$
%

&

'
( = !g[n] !! t ) n( )

n=) *
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+ (iv)
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Properties of biorthogonal filters 

 Imposing the zero average condition to "  in equations (iii)  and (iv) 

 

 

 

 

 

 

 

  

ö! (0) = !ö! (0) = 0 " ög(0) = !ög(0) = 0

replacing into the relations (3) (also shown below)

ög(! ) = e! i! !öh* (! +! ) !ög(! ) = e! i! öh* (! +! ) ! öh* (! ) = !öh(! ) = 0
Furthermore, replacing such values in the  PR condition (1)

öh* (! ) !öh(! )+ ög* (! ) !ög(! ) = 2! öh* (0) !öh(0) = 2
It is common choice to set

öh* (0) = !öh(0) = 2



Biorthogonal bases 

¥! If the decomposition and reconstruction filters are different, the resulting bases is non-
orthogonal 

¥! The cascade of J levels is equivalent to a signal decomposition over a non-orthogonal bases 

¥! The dual bases is needed for reconstruction  

{ } { }
1 ,

2 , 2J j
J j

n j J n
k n k n! "

#$ % % #$

& '& ' & '( () * ) *+ ,) *



Example: bior3.5 
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Biorthogonal bases 



Biorthogonal bases 



CMF : orhtogonal filters 

¥! PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF). 

¥! [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called 
CMFs 

Ð! Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes 

Ð! Correspondingly 

öh* (! ) !öh(! )+ öh* (! +! ) !öh(! +! ) = 2   (1) !
öh* (! ) öh(! )+ öh* (! +! ) öh(! +! ) = 2→

| öh(! ) |2 + | öh(ω +! ) |2= 2

]1[)1(][][~
][][~

1 nhngng
nhnh

n !!==
=

!



Summary 

¥! PR filter banks decompose the signals in a basis of l2(Z). This basis is orthogonal for Conjugate 
Mirror Filters (CMF). 

¥! [Smith&Barnwell,1984]: Necessary and sufficient condition for PR orthogonal FIR filter banks, called 
CMFs 

Ð! Imposing that the decomposition filter h is equal to the reconstruction filter h~, eq. (1) becomes 

Ð! Correspondingly 
2|)(ö||)(ö|

2)(ö)(ö)(ö)(ö

2)(ö~)(ö)(ö~)(ö
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Properties 

¥! Support 

Ð! h,     are FIR !  scaling functions and wavelets have compact support 

¥! Vanishing moments 

Ð! The number of vanishing moments of % is equal to the order     of zeros of    in &. Similarly, the 
number of vanishing moments of      is equal to the order p of zeros of h in &.  

¥! Regularity 

Ð! One can show that the regularity of  % and $ increases with the number of vanishing moments 
of   , thus with the order p of zeros of h in &. Viceversa, the regularity of     and                increases 
with the number of vanishing moments of %, thus with the order     of zeros of       in &. 

¥! Symmetry 

Ð! It is possible to construct both symmetric and anti-symmetric bases using linear phase filters 
! ! In the orthogonal case only the Haar filter is possible as FIR solution. 

h
~

p~ h
~

!~

!~ !~!~

p~ h
~


