
' $

UNIVERSITY OF MICHIGAN
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
LECTURE NOTES FOR EECS 661

CHAPTER 3: SUPERVISORY CONTROL OF DISCRETE
EVENT SYSTEMS

Stéphane Lafortune

October 2004

& %

' $

3.1: THE FEEDBACK LOOP OF SUPERVISORY CONTROL

& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

References for Chapter 3: Textbook, Chapter 3. For more details, see the references at

the end of the chapter, in particular the survey papers by Ramadge & Wonham and by

Thistle.

Motivation: Achieve, by control, the orderly flow of events.

Formulate and study concepts in the framework of languages (thus

representation-independent); develop synthesis algorithms in the framework of finite-state

automata (for the case of regular languages).

3.1: The Feedback Loop of Supervisory Control

Uncontrolled Discrete Event Systems

• Consider a DES modeled by pair of languages, L and Lm, where L = L is the set of all

traces that the DES can generate and Lm ⊆ L is the language of marked traces that is

used to represent the completion of some operations or tasks; the definition of Lm is a

modeling issue.

L and Lm are defined over the event set E.

S. Lafortune - Last Revision November 2004 2& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• Without loss of generality and for the sake of convenience, assume that L and Lm are the

languages generated and marked by automaton G = (X, E, f, Γ, x0, Xm), where X need

not be finite:

L(G) = L and Lm(G) = Lm .

• Thus we will talk of the “DES G”.

S. Lafortune - Last Revision November 2004 3& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

Legal Behavior

• Control is necessary because the uncontrolled DES G does not satisfy safety or

nonblocking specifications.

Let us refer to the specifications on safety and nonblocking as the “legal behavior.”

• We will in the following describe the legal behavior as a subset of L(G), usually denoted

by La where a stands for “admissible”.

• In problems where blocking is of concern, then the legal behavior is given as a subset of

Lm(G), usually denoted by Lam.

S. Lafortune - Last Revision November 2004 4& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

Centralized Control under Full Event Observation

• Let E be partitioned into two disjoint subsets

E = Ec ∪ Euc

where:

– Ec is the set of controllable events: these are the events that can be prevented from

happening, or disabled, by control;

– Euc is the set of uncontrollable events: these events cannot be prevented from

happening by control.

– There are many reasons why an event would be modeled as uncontrollable: it is

inherently unpreventable (e.g., failure); it models a change of sensor readings not due

to a command; it cannot be prevented due to hardware limitations; or it is modeled as

uncontrollable by choice, e.g., if the event has high priority and thus should not be

disabled or if the event represents the tick of a clock.

S. Lafortune - Last Revision November 2004 5& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• Let us now assume that the transition function of G can be controlled by an external

agent in the sense that the controllable events can be enabled or disabled by an external

controller. The control paradigm is as follows:

G, which represents the uncontrolled behavior of the DES, is connected in the following

feedback loop with a controller or supervisor S:

S

G

sS(s)

S. Lafortune - Last Revision November 2004 6& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• Formally, supervisor (or controller) S is a function

S : L(G)→ 2E .

• For each s ∈ L(G) generated so far by G (under the control of S),

S(s) ∩ Γ(f(x0, s))

is the set of enabled events that G can execute at its current state f(x0, s).

In other words, G cannot execute an event that is in its current active event set if that

event is not also contained in S(s).

• A supervisor is admissible if for all s ∈ L(G),

Euc ∩ Γ(f(x0, s)) ⊆ S(s)

that is, S is not allowed to ever disable a feasible uncontrollable event.

From now on, we will only consider admissible supervisors.

• We call S(s) the control action at s.

• S is the control policy.

• Observe that this is a case of dynamic feedback in the sense that the domain of S is L(G)

and not X ; thus the control action may change on subsequent visits to a state.

• We denote the resulting closed-loop system by S/G.

S. Lafortune - Last Revision November 2004 7& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• The language generated by S/G is defined recursively as follows:

1. ε ∈ L(S/G)

2. [(s ∈ L(S/G)) ∧ (sσ ∈ L(G)) ∧ (σ ∈ S(s))]⇔ [sσ ∈ L(S/G)] .

Clearly, L(S/G) ⊆ L(G) and it is prefix-closed by definition.

• The language marked by S/G is defined as follows:

Lm(S/G) := L(S/G) ∩ Lm(G)

i.e., it consists exactly of the marked traces of G that survive under the control of S.

• Overall,

∅ ⊆ Lm(S/G) ⊆ Lm(S/G) ⊆ L(S/G) ⊆ L(G) .

S. Lafortune - Last Revision November 2004 8& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• At this point, we can think of the (controlled) DES S/G as an automaton that generates

L(S/G) and marks Lm(S/G).

We will see later how to build this automaton (in the finite-state case).

• S is said to be nonblocking if S/G is nonblocking, i.e.,

L(S/G) = Lm(S/G) ;

otherwise, S is said to be blocking.

Interpretation: Since marked traces represent completed tasks or record the completion

of some particular operation (by choice at modeling), blocking means that the controlled

system cannot terminate the execution of the task at hand. The notions of marked traces

and blocking allow to model deadlock and livelock and thus they are very useful.

S. Lafortune - Last Revision November 2004 9& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

Centralized Control under Partial Event Observation

• Now, consider the situation where the supervisor S does not “see” or “observe” all the

events that G generates.

• In this regard, let E be partitioned into two disjoint subsets

E = Eo ∪ Euo

where:

– Eo is the set of observable events: these are the events that can be seen by the

supervisor;

– Euo is the set of unobservable events: these are the events that in some sense are

“internal” to the system and cannot be seen by the supervisor.

– There are many reasons why an event would be modeled as unobservable: its

occurrence is not recorded by the available sensors; it is a remote event; and so forth.

S. Lafortune - Last Revision November 2004 10& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• In this case, the feedback loop is now of the form:

S

G

P

s

P(s)
P

S P[P(s)]

• Here, P : E∗ → E∗o is the natural projection that is defined as in Chapter 2. It simply

“erases” all the unobservable events in a trace. P is extended to languages as described

earlier.

S. Lafortune - Last Revision November 2004 11& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• Due to the presence of P , the supervisor cannot distinguish between two traces s1 and s2

that have the same projection, i.e., P (s1) = P (s2); for such s1, s2 ∈ L(G), the supervisor

will necessarily issue the same control action.

• In order to capture this fact, and as indicated in the preceding figure, we define the action

of control under partial observation as the function

SP : P [L(G)]→ 2E .

and call SP a P-supervisor.

This means that the control action can change only after the occurrence of an observable

event, i.e., when P (s) changes.

• When an (enabled) observable event occurs, the control action is instantaneously updated

i.e., it is updated before any unobservable event occurs.

The control action SP (t), for t ∈ P [L(G)], is applied by SP immediately after the

execution by G of the last (observable) event of t and remains in effect until the next

observable event is executed by G.

• Note: It will sometimes be convenient to view a P -supervisor SP as a function

S : L(G)→ 2E. This will only make sense if S satisfies the property that:

P (s1) = P (s2)⇒ S(s1) = S(s2) .

S. Lafortune - Last Revision November 2004 12& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• A P-supervisor is admissible if it never disables a feasible uncontrollable event.

Let us take t = t′σ (where σ ∈ Eo). SP (t) is the control action that applies to all strings

in L(G) that belong to P−1(t′){σ} as well as to the unobservable continuations of these

strings. However, SP (t) may disable unobservable events and thus prevent some of these

unobservable continuations.

We define

Lt = P−1(t′){σ}(SP (t) ∩ Euo)
∗ ∩ L(G) .

Lt contains all the strings in L(G) that are effectively subject to the control action SP (t),

when SP controls G.

Since a supervisor is admissible if it does not disable a feasible uncontrollable event, we

conclude that SP is admissible if for all t = t′σ ∈ P [L(G)],

Euc ∩
[

⋃

s∈Lt

Γ(f(x0, s))
]

⊆ SP (t) .

The term in brackets represents all feasible continuations in L(G) of all strings that SP (t)

applies to.

S. Lafortune - Last Revision November 2004 13& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• The language generated by SP/G is defined recursively as before:

1. ε ∈ L(SP/G)

2. [(s ∈ L(SP/G)) ∧ (sσ ∈ L(G)) ∧ (σ ∈ SP [P (s)])]⇔ [sσ ∈ L(SP/G)] .

• The language marked by SP/G is defined as before:

Lm(SP/G) := L(SP/G) ∩ Lm(G) .

• Note that the languages L(SP/G) and Lm(SP/G) are defined over E, and not Eo, i.e.,

they correspond to the closed-loop behavior of G before the effect of projection P .

• Finally, observe that we are not making any specific assumptions about the controllability

and observability properties of an event: e.g., an unobservable event could be controllable,

an uncontrollable event could be observable, and so forth.

S. Lafortune - Last Revision November 2004 14& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

Remarks on the Legal Behavior

• One obtains La (or Lam) after accounting for all the specifications (or requirements) that

are imposed on the system.

– These specifications are themselves described by one or more (possibly marked)

languages Ks,i, i = 1, . . . , m.

– If a specification language Ks,i is not given as a subset of L(G) (or Lm(G)), then we

take

La,i = L(G) ∩ Ks,i or Lam,i = Lm(G) ∩ Ks,i

or we take

La,i = L(G) || Ks,i or Lam,i = Lm(G) || Ks,i .

The choice of intersection or parallel composition is based on the respective event sets

of L(G) and Ks,i:

∗ If the events that appear L(G) but not in Ks,i are irrelevant to Ks,i, then we take ||.

∗ On the other hand, if these events are absent from Ks,i because they should not

happen in the legal behavior, then ∩ is the right operation.

– Overall, the La,i’s (or the Lam,i’s) are combined to form La (Lam, resp.); again,

intersection or parallel composition is used (same reasoning as above).

S. Lafortune - Last Revision November 2004 15& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

• The question that we address in the next section is: under what conditions can given La

and Lam be exactly achieved by a supervisor S (or SP in the case of partial observation)?

S. Lafortune - Last Revision November 2004 16& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

Some Techniques for Modifying Automata to Account for “Illegal Behavior”

Illegal States: If a specification identifies certain states of G as illegal, then it suffices to

delete these states from G, i.e., remove the state and all the transitions attached to it, and

then do the Ac operation.

State Splitting: If a specification requires remembering how a particular state of G was

reached (in order to determine what future behavior is legal), then that state has to be

split into as many states as necessary. The active event set of each newly introduced state

is adjusted according to the respective legal continuations.

Event Alternance: If a specification requires the alternance of two events, then build a

two-state automaton that captures this alternance; then take the parallel composition with

G to get the generator of the legal language.

Illegal Subtrace: If a specification identifies as illegal all traces of L(G) that contain subtrace

sf = σ1 · · ·σn ∈ Σ∗ (f for forbidden), then we account for this specification by building

automaton

Hspec = (X, E, f, x0, X)

1. X = {ε, σ1, σ1σ2, . . . , σ1 · · ·σn−1}
that is, we associate a state of Hspec to every proper prefix of sf .

S. Lafortune - Last Revision November 2004 17& %

' $
EECS 661 - Chapter 3 3.1: The Feedback Loop of Supervisory Control

2. The transition function f is constructed in two steps:

2.1. f(σ1 · · ·σi, σi+1) = σ1 · · ·σi+1, for i = 0, . . . , n− 2.

2.2. Complete f to E as follows for all the states in X , except for state σ1 · · ·σn−1

which is completed to E \ {σn} (since that last event is illegal in that state):

f(σ1 · · ·σi, γ)

= state in X corresponding to the longest suffix of σ1 · · · σiγ .

3. Take x0 = ε.

L(Hspec) = Lm(Hspec) = E∗ \ E∗{sf}E
∗ .

Consequently, the desired Ha is obtained by

Ha = Hspec ×G .

This procedure can be extended to a finite set of illegal subtraces sf1
, . . . , sfm in one step,

i.e., a single Hspec is constructed as opposed to doing the above procedure once for each

illegal sfi
.

S. Lafortune - Last Revision November 2004 18& %

' $

3.2: THE MAIN EXISTENCE RESULTS

& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

3.2: The Main Existence Results

The Controllability Theorem

Theorem (CT) : Consider a DES G where Euc ⊆ E is the set of uncontrollable events.

Let K ⊆ L(G), K 6= ∅.
There exists S such that

L(S/G) = K

iff the following condition holds:

[controllability] KEuc ∩ L(G) ⊆ K.

S. Lafortune - Last Revision November 2004 20& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

Proof of CT:

[IF] For s ∈ L(G), define S(s) according to

S(s) = [Euc ∩ Γ(f(x0, s))] ∪ {σ ∈ Ec : sσ ∈ K} .

This supervisor enables after trace s: (i) all uncontrollable events that are feasible in G after

trace s and (ii) all controllable events that extend s inside of K. Part (i) ensures that S is

admissible, i.e., that it never disables a feasible uncontrollable event.

We now prove that with this S, L(S/G) = K. The proof is by induction on the length of the

traces in the two languages.

• The base case is for traces of length 0. But ε ∈ L(S/G) by definition and ε ∈ K since

K 6= ∅ by assumption. Thus the base case holds.

• The induction hypothesis is that for all traces s such that |s| ≤ n, s ∈ L(S/G) iff s ∈ K.

We now prove the same for traces of the form sσ.

S. Lafortune - Last Revision November 2004 21& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

– Let sσ ∈ L(S/G). By definition of L(S/G), this implies that

[s ∈ L(S/G)] ∧ [σ ∈ S(s)] ∧ [sσ ∈ L(G)]

which in turn implies that

[s ∈ K] ∧ [σ ∈ S(s)] ∧ [sσ ∈ L(G)]

using the induction hypothesis.

∗ Now, if σ ∈ Euc, then the controllability condition immediately yields sσ ∈ K.

∗ On the other hand, if σ ∈ Ec, then by the definition of S, we also obtain that

sσ ∈ K.

– For the other direction of the induction step, let sσ ∈ K. Then sσ ∈ L(G) since by

assumption K ⊆ L(G).

∗ Now, if σ ∈ Euc, then σ ∈ S(s) by definition of S(s).

∗ On the other hand, if σ ∈ Ec, then by the above definition of S(s), we also obtain

that σ ∈ S(s).

Overall, we have that

[s ∈ K] ∧ [σ ∈ S(s)] ∧ [sσ ∈ L(G)]

which in turns implies that

[s ∈ L(S/G)] ∧ [σ ∈ S(s)] ∧ [sσ ∈ L(G)]

using the induction hypothesis. It then immediately follows that sσ ∈ L(S/G).

S. Lafortune - Last Revision November 2004 22& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

– This completes the proof of the induction step.

[ONLY IF] Let there exist an admissible S such that L(S/G) = K.

Let s ∈ K, σ ∈ Euc, and sσ ∈ L(G).

• Then σ ∈ S(s) since any admissible supervisor is not allowed to disable a feasible

uncontrollable event.

• But by definition of L(S/G), we have that

[s ∈ K = L(S/G)] ∧ [sσ ∈ L(G)] ∧ [σ ∈ S(s)]⇒ sσ ∈ L(S/G) = K .

• Thus we have shown that

[s ∈ K] ∧ [σ ∈ Euc] ∧ [sσ ∈ L(G)]⇒ sσ ∈ K

or, in terms of languages,

KEuc ∩ L(G) ⊆ K

which is the controllability condition. Q.E.D.

S. Lafortune - Last Revision November 2004 23& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

About the Proof of CT:

• It is important to note that the proof of CT is constructive in the sense that if the

controllability condition is satisfied, it gives us a supervisor that will achieve the

required behavior. That supervisor is:

S(s) = [Euc ∩ Γ(f(x0, s))] ∪ {σ ∈ Ec : sσ ∈ K} .

S. Lafortune - Last Revision November 2004 24& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

About Controllability:

• The controllability condition in CT is intuitive and a central concept in supervisory

control. It can be paraphrased by: “if you cannot prevent it, it should be legal.”

We state a general definition of this notion:

Definiton of controllability: Let K and M = M be languages over an event set

E. Let Euc be a designated subset of E. K is said to be controllable w.r.t. M and

Euc if

KEuc ∩M ⊆ K .

• Observe that by definition, controllability is a property of the prefix-closure of a

language. Thus K is controllable iff K is controllable.

• The definition of controllability also provides an implementable test for verifying if this

property holds or not, in the case of regular languages.

It should be apparent that the computational complexity of this test is O(|E|mn),

where m is the number of states of the machine that generates K and n is the number

of states of G.

• UMDES-LIB: controllability can be tested using the command ctrb.

S. Lafortune - Last Revision November 2004 25& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

The Nonblocking Controllability Theorem

Theorem (NCT): Consider a DES G where Euc ⊆ E is the set of uncontrollable events.

Consider also the language K ⊆ Lm(G), where K 6= ∅.
There exists a nonblocking supervisor S for G such that

Lm(S/G) = K (⇒ L(S/G) = K)

iff the two following conditions hold:

1. [controllability] KEuc ∩ L(G) ⊆ K

2. [Lm(G)-closure] K is Lm(G)-closed, i.e., K = K ∩ Lm(G).

S. Lafortune - Last Revision November 2004 26& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

Proof of NCT:

[IF] For s ∈ L(G), As in the proof of CT, define S(s) according to

S(s) = [Euc ∩ Γ(f(x0, s))] ∪ {σ ∈ Ec : sσ ∈ K} .

The proof of CT already established that with this S, L(S/G) = K.

Therefore, Lm(S/G) = K follows by applying the Lm(G)-closure condition. Thus S is

nonblocking.

[ONLY IF] Let there exist an admissible S such that L(S/G) = K and Lm(S/G) = K.

Then by definition of Lm(S/G), we have that K = K ∩ Lm(G), which is the Lm(G)-closure

condition.

The remainder of the proof is identical to that of CT.

Q.E.D.

S. Lafortune - Last Revision November 2004 27& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

About the Proof of NCT: The proof is constructive, with the same supervisor as in the

case of CT:

S(s) = [Euc ∩ Γ(f(x0, s))] ∪ {σ ∈ Ec : sσ ∈ K} .

About Lm(G)-closure:

This condition is of technical nature.

It can be argued that, unlike the controllability condition, Lm(G)-closure will often hold

by construction of K (interpreted here as legal behavior).

The reasons for that are as follows:

1. In practice, marking is a property of the uncontrolled system G, modeled by proper

construction of Xm.

2. Specifications are usually stated in terms of prefix-closed languages, say Ks.

3. The legal marked language is then obtained by doing K = Ks ∩ Lm(G).

4. Such a K is guaranteed to be Lm(G)-closed (Problem 2.4 (b)!).

S. Lafortune - Last Revision November 2004 28& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

We now discuss the generalization of the Nonblocking Controllability Theorem (NCT) to the

case of control under partial observation.

• It should be clear that this generalization will require another condition beyond the

controllability and Lm(G)-closure conditions.

This extra condition will be called observability.

• Intuitively, observability means: if you cannot differentiate between two traces, then

these traces should require the same control action.” Another way to phrase this, from

the point of view of event disablement, is: “if you must disable an event, then you

should not lose anything you need in the legal behavior.” This intuition is formalized in

the following definition.

• Observability: Let K and M = M be languages over an event set E. Let Ec be a

designated subset of E. Let Eo be another designated subset of E with P as the

corresponding natural projection from E∗ to E∗o .

K is said to be observable w.r.t. M , P , and Ec if for all s ∈ K and for all σ ∈ Ec,

[sσ /∈ K] ∧ [sσ ∈M]⇒ P−1[P (s)]σ ∩K = ∅ .

(Note the slight abuse of notation in the definition: P−1[P (s)]σ stands for P−1[P (s)]{σ}.)

S. Lafortune - Last Revision November 2004 29& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

• Comments:

1. The right-hand side of the implication in the definition identifies all traces in K that

have the same projection as s and can be continued with event σ. If this set is not

empty, this means that K contains two traces, s and s′, such that P (s) = P (s′), and

where sσ /∈ K while s′σ ∈ K. If this happens, then clearly no P-supervisor can

exactly achieve language K.

2. If the parameter Ec is omitted from the definition, then it will be understood to be

equal to E. The parameter Ec in included in the definition in order for the property of

observability not to “overlap” with the property of controllability. (See the proof of

COT below.) Examining the definition of observability, we can see that when s ∈ K,

sσ ∈ L(G), and σ ∈ Euc, then controllability implies that sσ ∈ K, that is, there is no

need to “worry” about observability issues for uncontrollable events.

3. As in the case of controllability, the observability of a language depends only on the

prefix-closure of this language. Thus K is observable iff K is observable.

S. Lafortune - Last Revision November 2004 30& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

The Controllability and Observability Theorem

Theorem (COT): Consider a DES G where Euc ⊆ E is the set of uncontrollable events

and Eo ⊆ E is the set of observable events. Let P be the natural projection from E∗ to E∗o .

Consider also the language K ⊆ Lm(G), where K 6= ∅.
There exists a nonblocking P -supervisor SP for G such that

Lm(SP/G) = K

iff the three following conditions hold:

1. K is controllable w.r.t. L(G) and Euc;

2. K is observable w.r.t. L(G), P , and Ec;

3. K is Lm(G)-closed.

S. Lafortune - Last Revision November 2004 31& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

Proof of COT:

[IF] For t ∈ P [L(G)], define SP (t) according to

SP (t) = Euc ∪ {σ ∈ Ec : ∃s′σ ∈ K(P (s′) = t)} .

This supervisor enables after trace s: (i) all uncontrollable events and (ii) all controllable

events that extend any trace s′, that projects to t, inside of K. Part (i) ensures that SP is

admissible, i.e., that it never disables a feasible uncontrollable event.

We now prove that with this SP , L(SP/G) = K. Then, as before, the Lm(G)-closure

condition will imply that Lm(SP/G) = K and SP is nonblocking.

The proof is by induction on the length of the traces in the two languages.

• The base case is for traces of length 0. But ε ∈ L(SP/G) by definition and ε ∈ K since

K 6= ∅ by assumption. Thus the base case holds.

• The induction hypothesis is that for all traces s such that |s| ≤ n, s ∈ L(SP/G) iff

s ∈ K. We now prove the same for traces of the form sσ where |s| = n.

S. Lafortune - Last Revision November 2004 32& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

– Let sσ ∈ L(SP/G). By definition of L(SP/G), this implies that

[s ∈ L(SP/G)] ∧ [σ ∈ SP [P (s)]] ∧ [sσ ∈ L(G)]

which in turn implies that

[s ∈ K] ∧ [σ ∈ SP [P (s)]] ∧ [sσ ∈ L(G)]

using the induction hypothesis.

∗ Now, if σ ∈ Euc, then the controllability condition immediately yields sσ ∈ K.

∗ On the other hand, if σ ∈ Ec, then by the above definition of SP and with

t = P (s), we obtain that there exists s′σ ∈ K such that P (s′) = t = P (s), that is,

we have that

P−1[P (s)]σ ∩K 6= ∅ .

But since sσ ∈ L(G), we must have that sσ ∈ K, otherwise observability would be

contradicted.

This completes the proof that sσ ∈ K.

– For the other direction of the induction step, let sσ ∈ K. Then sσ ∈ L(G) since by

assumption K ⊆ Lm(G) ⊆ L(G).

∗ Now, if σ ∈ Euc, then σ ∈ SP [P (s)] by the admissibility of SP .

∗ On the other hand, if σ ∈ Ec, then by the above definition of SP [P (s)], we also

obtain that σ ∈ SP [P (s)].

S. Lafortune - Last Revision November 2004 33& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

Overall, we have that

[s ∈ K] ∧ [σ ∈ SP [P (s)]] ∧ [sσ ∈ L(G)]

which in turns implies that

[s ∈ L(SP/G)] ∧ [σ ∈ SP [P (s)]] ∧ [sσ ∈ L(G)]

using the induction hypothesis. It then immediately follows that sσ ∈ L(SP/G).

– This completes the proof of the induction step.

[ONLY IF]

• Let SP be an admissible P-supervisor such that L(SP/G) = K and Lm(SP/G) = K. The

proof that controllability and Lm(G)-closure hold is the same as in the Nonblocking

Controllability Theorem; the only modification is that S(s) there is now replaced by

SP [P (s)].

• To prove that observability must also hold, take s ∈ K and σ ∈ Ec, such that sσ /∈ K

and sσ ∈ L(G).

– From s ∈ K, σ ∈ Ec, sσ /∈ K, and L(SP/G) = K, we must have that σ /∈ SP [P (s)],

otherwise L(SP/G) 6= K.

– But this means that there cannot exist s′σ ∈ K such that P (s′) = P (s), otherwise

L(SP/G) 6= K since SP does not distinguish between s and s′.

S. Lafortune - Last Revision November 2004 34& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

– That is, we must have that

P−1[P (s)]σ ∩K = ∅ .

This proves the observability condition. Q.E.D.

S. Lafortune - Last Revision November 2004 35& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

About the Proof of COT:

• Again, we note that the proof of COT is constructive in the sense that if the

controllability, observability, and Lm(G)-closure conditions are satisfied, it gives us a

supervisor that will achieve the required behavior. That supervisor is:

SP (t) = Euc ∪ {σ ∈ Ec : ∃s′σ ∈ K(P (s′) = t)} .

S. Lafortune - Last Revision November 2004 36& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

We present a useful corollary that explicity states a special case of COT when only L(SP/G)

is of concern:

Corollary of COT: Consider a DES G where Euc ⊆ E is the set of uncontrollable events

and Eo ⊆ E is the set of observable events. Let P be the natural projection from E∗ to E∗o .

Let K ⊆ L(G), K 6= ∅. Then there exists SP such that L(SP/G) = K iff K is controllable

w.r.t. L(G) and Euc and observable w.r.t. L(G), P , and Ec.

S. Lafortune - Last Revision November 2004 37& %

' $
EECS 661 - Chapter 3 3.2: The Main Existence Results

About Observability:

• For regular K and M , it can be shown that the worst-case computational complexity

of testing observability is O(m2n), where m and n are the number of states of the

generators of K and M , respectively; here, we absorbed |E| in the constants of O(·).

• An intuitive test is to build the observer of H ×G with respect to Eo and see if there

are states of that observer where there is a control conflict, namely a state of

(H ×G)obs where two component states require two different control actions on the

same controllable event.

• UMDES-LIB: the command obs tests observability.

We will see later what can be done when the legal language La or Lam is not controllable or

not observable. It turns out that uncontrollability is in some sense “easier” to deal with than

unobservability. But before that, we discuss the issue of building finite realizations of

supervisors.

S. Lafortune - Last Revision November 2004 38& %

' $

3.3: REALIZATION AND DESIGN OF CONTROLLERS

& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

3.3: Realization and Design of Supervisors

Standard Realization by Automata

• Let there exist a supervisor S such that L(S/G) = K. Thus K is a controllable

sublanguage of L(G).

– It suffices for now to consider L(S/G); if we are concerned with marked languages,

then under the Lm(G)-closure assumption, we get that Lm(S/G) = K and that S is

nonblocking.

– We rule out the two trivial cases where

1. K = ∅ (controllable by definition but unachievable by control unless the system is

“never turned on”) and

2. K = L(G) (also controllable by definition but S plays no role so need not be

there).

– Observe that the domain of S can be restricted to L(S/G) without loss of generality.

S. Lafortune - Last Revision November 2004 40& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

• The issue here is that for implementation purposes, we need to build a convenient

representation of the function S other than simply listing S(s) for all s ∈ L(S/G), as was

done in the proof of the (Nonblocking) Controllability Theorem.

• Given that we are using an automaton to represent the system, let us also use an

automaton to represent the supervisor S. Then when we will be dealing with regular

languages (here, the languages L(G), Lm(G), and K), the required representations will be

finite and thus implementable.

→ We will call an automaton representation of supervisor S a realization of S.

• It is important to emphasize that we are now concerned with building off-line a complete

realization of S for all possible behaviors of the controlled system L(S/G). This

realization will then be stored and at run time it will suffice to “read” the desired control

action (i.e., the control action for the trace of events observed up to now).

(The issue of calculating S(s) on-line is also of interest but it will not be discussed here.)

S. Lafortune - Last Revision November 2004 41& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

• It turns out that an easy way to build a realization of S is to build an automaton that

recognizes the language K.

– Let R be such an automaton, i.e., let

R = (Y, E, g, ΓR, y0, Y)

where R is trim and

Lm(R) = L(R) = K .

– Now if we “connect” R to G by the product operation, the result R×G is exactly the

behavior that we desire for the closed-loop system S/G:

L(R×G) = L(R) ∩ L(G)

= K ∩ L(G)

= K = L(S/G)

Lm(R×G) = Lm(R) ∩ Lm(G)

= K ∩ Lm(G)

= L(S/G) ∩ Lm(G) = Lm(S/G) .

– Note that since R is defined to have the same event set as G (namely E), then

R || G = R×G.

S. Lafortune - Last Revision November 2004 42& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

• What the above means is that the control action S(s) is “encoded” in the transition

structure of R.

– Namely,

S(s) = ΓR×G(g × f((y0, x0), s)) = ΓR(g(y0, s))

where the last equality follows from the fact that K ⊆ L(G) (note that g × f denotes

the state transition function of R×G).

– Another way to see that S(s) = ΓR(g(y0, s)) is to consider the respective definitions of

S(s) and R, which are both based on K, and to invoke the controllability of L(R).

• Of course, R×G is a composition of two automata that is defined without reference to a

control mechanism à la S/G. The interpretation with our control paradigm is as follows:

“Let G be in state x and R in state y following the execution of s ∈ L(S/G). G

generates an event σ that is currently enabled. This means that this event is also

present in the active event set of R at y. Thus R also executes the event, as a passive

observer of G. Let x′ and y′ be the new states of G and R after the execution of σ.

The set of enabled events of G at sσ is now given by the active event set of R at y′.”

• Thus we have built a representation of S that in the case of a regular K will only require

finite memory.

• We will call the R derived by the above process the standard realization of S.

S. Lafortune - Last Revision November 2004 43& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

Induced Supervisors

• The standard realization of S by automaton R raises the reverse question:

Question: If we are given automaton C and form the product C ×G, can that be

interpreted as controlling G by some supervisor?

Answer: Not always! It depends on the controllability of L(C).

• The notion of induced supervisor:

– Let C = (Y, E, h, ΓC, y0, Y) be a trim automaton.

– Let us define the supervisor for G induced by C as follows:

for all s ∈ L(G),

SC
i (s) =

{

[Euc ∩ Γ(f(x0, s))] ∪ {σ ∈ Ec : sσ ∈ L(C)} if s ∈ L(G) ∩ L(C)

Euc otherwise.

– Note that we need to add Euc ∩ Γ(f(x0, s)) to make sure that SC
i is an admissible

supervisor, i.e., that is does not disable a feasible uncontrollable event of G. Precisely

for that reason, we get the following fact.

• Fact: L(SC
i /G) = L(C ×G) iff L(C) is controllable w.r.t. L(G) and Euc.

S. Lafortune - Last Revision November 2004 44& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

• The proof of the preceding fact is left as an exercise.

Intuitive explanation:

1. If L(C) is controllable w.r.t. L(G), then when doing C ×G, C can never prevent G

from executing an uncontrollable event, because all such transitions will always be

defined in C.

2. Thus the product C ×G can indeed be viewed as the control of G by SC
i (since only

controllable events are “disabled” by the product).

3. In this case, the resulting closed-loop behavior is

L(SC
i /G) = L(C ×G)

= L(C) ∩ L(G)

Lm(SC
i /G) = Lm(C ×G)

= Lm(C) ∩ Lm(G)

= L(C) ∩ Lm(G)

= L(C) ∩ L(G) ∩ Lm(G)

= L(SC
i /G) ∩ Lm(G) .

S. Lafortune - Last Revision November 2004 45& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

Partial Observation Case

• The process of building a realization of a P -supervisor is slightly more involved, due to the

presence of unobservable events (which may or may not be controllable).

• Based on the construction of SP in the proof of the Controllability and Observability

Theorem, consider the following initial steps for constructing a realization of SP :

1. Build a trim automaton R that generates and marks K;

2. Build Robs, the observer for R using the procedure presented earlier for the given set

of observable events.

• At this point, we cannot write as before that the active event set of Robs encodes the set of

enabled events by the function SP , since the event set of Robs is Eo and thus contains no

information about the desired control action w.r.t. the unobservable events.

– That information is contained in R.

– But since each state of Robs is a set of states of R, we can recover the required

information.

S. Lafortune - Last Revision November 2004 46& %

' $
EECS 661 - Chapter 3 3.3: Realization and Design of Controllers

• Here is how to proceed to recover the control action:

3. Let t be the current trace of observable events and let xobs,current be the state of Robs

after the execution of t.

This means that after the last (observable) event in t, but before the next observable

event, automaton R could be in anyone of the states in the set xobs,current.

4. Then we have that

Sreal
P (t) =

⋃

x∈xobs,current

[ΓR(x)] .

• Here, the interpretation of the realization with R and Robs is one where Robs is a “passive

observer” that follows the observable (only) transitions of G; the desired control action

(namely SP (t)) is then obtained by looking at the current state of Robs (which is a set)

and by considering the corresponding active event sets in R of all the states in this set.

• This may seem somewhat messy, yet, when K is regular, all this information requires finite

memory, which was our goal.

Note that we can precompute all the enabled events for each state of Robs so that it is not

necessary to store R itself.

• As before, we call this the standard realization of SP .

S. Lafortune - Last Revision November 2004 47& %

' $

3.4: DEALING WITH UNCONTROLLABILITY

& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

3.4: Dealing with Uncontrollability

The Property of Controllability

Suppose that a given K ⊆M (where K is not necessarily prefix-closed) is not controllable

w.r.t given M = M ⊆ E∗ and Euc ⊆ E, i.e.,

KEuc ∩M 6⊆ K .

(In this section, unless otherwise specified, controllability will always be w.r.t. M and Euc.)

We will consider the following two languages derived from K:

• K↑C : the supremal controllable sublanguage of K;

• K↓C : the infimal prefix-closed and controllable superlanguage of K.

Overall, we have the following inequalities:

∅ ⊆ K↑C ⊆ K ⊆ K ⊆ K↓C ⊆M .

We now prove some properties that guarantee the existence of these two languages.

S. Lafortune - Last Revision November 2004 49& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Proposition: The property of controllability.

1. If K1 and K2 are controllable, then K1 ∪K2 is controllable.

2. If K1 and K2 are controllable, then K1 ∩K2 need not be controllable.

3. If K1 and K2 are nonconflicting and both are controllable, then K1 ∩K2 is controllable.

[Reminder: K1 and K2 are said to be nonconflicting whenever K1 ∩K2 = (K1 ∩K2).]

4. If K1 and K2 are prefix-closed and controllable, then K1 ∩K2 is prefix-closed and

controllable.

Proof:

1. The result is proved using the definition of controllability and properties of prefix-closure:

(K1 ∪K2)Euc ∩M = (K1 ∪K2)Euc ∩M

= (K1Euc ∩M) ∪ (K2Euc ∩M)

⊆ K1 ∪K2

= (K1 ∪K2) .

S. Lafortune - Last Revision November 2004 50& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

2. Consider the following counter-example:

Euc = {α}, E = {α, β, γ}
M = {ε, α, αβ, αγ}
K1 = {ε, αβ} and K2 = {ε, αγ}.

3. In general, we have that

(K1 ∩K2)Euc ∩M ⊆ (K1 ∩K2)Euc ∩M

= (K1Euc ∩M) ∩ (K2Euc ∩M)

⊆ K1 ∩K2 .

But the nonconflicting property says that K1 ∩K2 = (K1 ∩K2) , from which we obtain

the desired result.

4. Immediate from above given that prefix-closed languages are always nonconflicting.

Q.E.D.

S. Lafortune - Last Revision November 2004 51& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Clearly, parts 1 and 4 of the preceding proposition hold for arbitrary unions and

intersections.

Definition: We define the two classes of languages

Cin(K) := {L ⊆ K : LEuc ∩M ⊆ L}

CCout(K) := {L ⊆ E∗ : (K ⊆ L ⊆M) ∧ (L = L) ∧ (LEuc ∩M ⊆ L)} .

About the Controllable Sublanguages of K:

• The class Cin(K) is a partially ordered set (or poset) that is closed under arbitrary unions

(the partial order is set inclusion).

• Thus Cin(K) possesses a unique supremal element. Namely,

K↑C :=
⋃

L∈Cin(K)

L

is a well-defined element of Cin(K).

• We call K↑C the supremal controllable sublanguage of K.

– In the worst case, K↑C = ∅, since ∅ ∈ Cin(K).

– If K is controllable, then K↑C = K.

– Observe that K↑C need not be prefix-closed in general.

S. Lafortune - Last Revision November 2004 52& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

• We will refer to “↑ C” as the operation of obtaining the supremal controllable sublanguage.

– It is immediate from the definition of ↑ C that this operation is monotone, i.e.,

K1 ⊆ K2 ⇒ K↑C1 ⊆ K↑C2 .

– Algorithms that implement the ↑ C operation are presented later in this section.

– The following results deal with closure properties of the ↑ C operation.

S. Lafortune - Last Revision November 2004 53& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Fact: Closure properties of the ↑ C operation.

1. If K is prefix-closed, then so is K↑C .

2. If K ⊆ Lm(G) is Lm(G)-closed, then so is K↑C. (Here M = L(G)).

3. In general, K↑C ⊆ (K)↑C.

4. (K1 ∩K2)
↑C ⊆ K↑C1 ∩K↑C2

5. (K1 ∩K2)
↑C = (K↑C1 ∩K↑C2)↑C

6. If K↑C1 and K↑C2 are nonconflicting, then (K1 ∩K2)
↑C = K↑C1 ∩K↑C2 .

7. (K1 ∪K2)
↑C ⊇ K↑C1 ∪K↑C2 .

S. Lafortune - Last Revision November 2004 54& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Proof:

1. Since K↑C is controllable, then so is its prefix-closure. But K↑C ⊆ K = K, which implies

that K↑C ⊆ K↑C . This suffices to prove the result.

2. We need to show that K↑C = K↑C ∩ Lm(G).

2.1. (⊆) is immediate.

2.2. For (⊇), define K ′ = K↑C ∩ Lm(G).

•Then

K↑C ⊆ K↑C ∩ Lm(G)

⇒ K↑C ⊆ K↑C ∩ Lm(G) = K ′ .

•Also

K↑C ∩ Lm(G) ⊆ K↑C

⇒ K↑C ∩ Lm(G) ⊆ K↑C

⇒ K ′ ⊆ K↑C .

•Therefore, K ′ = K↑C.

Since K↑C in controllable, then so is K ′, by definition of controllability.

S. Lafortune - Last Revision November 2004 55& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

•But K ′ ⊆ K ∩ Lm(G) = K (by hypothesis).

It follows that K ′ ⊆ K↑C , i.e.,

K↑C ∩ Lm(G) ⊆ K↑C .

3. The inclusion is easily proved from the definition and monotonicity of ↑ C. The following

example demonstrates that this inclusion can be strict:

Euc = {β1, β2}, E = Euc ∪ {α1}
M = {α1β2α1, α1β1α1β1α1}
K = {α1β2α1, α1β1α1}.

4. The proofs of the remaining properties are left as an exercise.

Q.E.D.

S. Lafortune - Last Revision November 2004 56& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

About the Controllable Superlanguages of K:

• The class CCout(K) is a poset that is closed under arbitrary intersections (and unions).

• Thus CCout(K) possesses a unique infimal element. Namely,

K↓C :=
⋂

L∈CCout(K)

L

is a well-defined element of CCout(K).

• We call K↓C the infimal prefix-closed and controllable superlanguage of K.

– In the worst case, K↓C = M , since M ∈ CCout(K).

– If K is controllable, then K↓C = K.

S. Lafortune - Last Revision November 2004 57& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

• We will refer to ↓ C as the operation of obtaining the infimal prefix-closed and controllable

superlanguage.

– It is immediate from the definition of ↓ C that this operation is monotone, i.e.,

K1 ⊆ K2 ⇒ K↓C1 ⊆ K↓C2 .

– An algorithm that implements the ↓ C operation is presented later in this section.

• We list some other properties of the ↓ C operation that follow from its definition.

1. (K1 ∩K2)
↓C ⊆ K↓C1 ∩K↓C2

2. If K1 and K2 are nonconflicting, then (K1 ∩K2)
↓C = K↓C1 ∩K↓C2 .

3. (K1 ∪K2)
↓C = K↓C1 ∪K↓C2 .

S. Lafortune - Last Revision November 2004 58& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Study of the ↑ C Operation for Regular Languages

In this section, we further characterize and discuss the calculation of K↑C for a given

language K that is not controllable (as usual, controllability is w.r.t. (prefix-closed) M and

Euc).

We restrict attention to the case of regular languages, namely K and M are regular. We

state, without proof, a key result:

Theorem: If K and M are regular languages, then K↑C is regular and

||K↑C|| ≤ ||K|| · ||M || + 1.

Proof: The proof is somewhat technical and is omitted here. See the paper by Wonham &

Ramadge in the SIAM Journal on Control and Optimization, 1987, pp. 637–659. (This

paper is the original reference on the supremal controllable sublanguage.)

S. Lafortune - Last Revision November 2004 59& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

• Several algorithms have been proposed in the literature to implement the ↑ C operation

for regular languages.

• These algorithms all have the same worst-case complexity, namely O(n2m2|E|), where m

is the number of states of G and n that of H, the generator of K.

• The complexity of calculating ↑ C can be reduced to O(nm|E|) (in the worst case) in two

special cases: (i) K is prefix-closed and (ii) K is livelock-free (defined and discussed later

in this section).

• We present one algorithm for obtaining a trim automaton that marks K↑C , given the two

automata G and H.

(See the literature for other, possibly more “efficient”, algorithms.)

We refer to this algorithm as the “Standard Algorithm for ↑ C”.

S. Lafortune - Last Revision November 2004 60& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Standard Algorithm for ↑ C

Step 0: Let G = (X, E, f, Γ, x0) be an automaton that generates M , i.e., L(G) = M .

Let H = (Y, E, g, ΓH, y0, Ym) be such that Lm(H) = K and L(H) = K, where it is

assumed that K ⊆ L(G).

Step 1: Let

H0 := (Y0, E, g0, ΓH0
, (y0, x0), Y0,m) = H ×G

where Y0 ⊆ Y ×X . Treat all states of G as marked for the purpose of determining Y0,m.

By assumption, Lm(H0) = K and L(H0) = K.

States of H0 will be denoted by pairs (y, x).

Set i = 0.

Step 2: Calculate

Step 2.1:

Y ′i = {(y, x) ∈ Yi : Γ(x) ∩ Euc ⊆ ΓHi
((y, x))}

g′i = gi|Y
′
i

Y ′i,m = Yi,m ∩ Y ′i

where the notation “|” stands for “restricted to.”

S. Lafortune - Last Revision November 2004 61& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Step 2.2:

Hi+1 = Trim(Y ′i , E, g′i, (y0, x0), Y
′
i,m) .

If Hi+1 is the empty automaton, i.e, (y0, x0) is deleted in the above calculation, then

K↑C = ∅ and STOP.

Otherwise, set

Hi+1 =: (Yi+1, E, gi+1, (y0, x0), Yi+1,m) .

Step 3: If Hi+1 = Hi, then

Lm(Hi+1) = K↑C and L(Hi+1) = K↑C

and STOP.

Otherwise, set i← i + 1 and go to Step 2.

S. Lafortune - Last Revision November 2004 62& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Comments about the Standard Algorithm:

• The condition

Γ(x) ∩ Euc ⊆ ΓHi
((y, x))

that is tested in Step 2 is called the active event set constraint.

• The reason for Step 1 is that we need to be able to map the states of H to those of G

when the controllability condition

KEuc ∩M ⊆ K ,

a trace condition, is to be tested in the form of the active event set constraint in the

automata representations of the languages.

• The above-referenced paper by Ramadge & Wonham contains the proof of the correctness

of this algorithm. The intuition is clear however.

– Whenever a trace contains a prefix that violates the controllability condition, all traces

in K that contain that prefix need to be removed. This is why we can delete states

that violate the active event set constraint (Step 2.1).

– However, upon deleting states, we need to take the trim of the resulting automaton so

that it gives the same result as deleting traces from K (Step 2.2).

S. Lafortune - Last Revision November 2004 63& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Remarks on Prefix-Closed and Livelock-Free Languages

• Let us define a regular language to be livelock-free if every cycle in an automaton

representation of this language contains a marked state.

• When the language K is either prefix-closed or livelock-free, it is possible to modify the

“Standard Algorithm for ↑ C” so that it has total worst-case complexity O(|X0||E|).

→ This can be achieved (roughly speaking) by an implementation of Step 2 that performs

the verification of the active event set constraint and the trim operation in a “forward

search manner” and in doing so avoids iterating between Steps 2 and 3.

(See the literature for precise details.)

• However, in the general case, linear complexity (in nm) cannot be achieved.

UMDES-LIB

In UMDES-LIB, the command supcon std can be used to perform the ↑ C operation.

S. Lafortune - Last Revision November 2004 64& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

The ↓ C Operation

In this section, we consider the calculation and properties of K↓C for a given language K

that is not controllable (again, controllability is w.r.t. M and Euc).

It turns out that K↓C is characterized by a simple formula on languages. This formula

immediately suggests an algorithm for computing a generator of K↓C given automata that

generate K and M .

Theorem: K↓C = KE∗uc ∩M .

S. Lafortune - Last Revision November 2004 65& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Proof: Let K ′ := KE∗uc ∩M . The inclusion K↓C ⊆ K ′ follows by observing that K ′ ⊇ K

and that it is prefix-closed and by verifying that K ′ is controllable:

K ′Euc ∩M = KE∗ucEuc ∩MEuc ∩M

⊆ KE∗uc ∩M

= K ′ .

For the reverse inclusion, take any L ∈ CCout(K). Then using the definition of CCout, we

have that:

K ∩M ⊆ L

KEuc ∩M ⊆ LEuc ∩M ⊆ L

KE2
uc ∩M ⊆ LEuc ∩M ⊆ L

. . .

KEr
uc ∩M ⊆ LEuc ∩M ⊆ L for all r ≥ 0 .

Thus K ′ ⊆ L. Since L was arbitrary, we get that

K ′ ⊆
⋂

L∈CCout(K)

L =: K↓C .

Q.E.D.

S. Lafortune - Last Revision November 2004 66& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Corollary: If K and M are regular, then K↓C is regular.

• Observe that there is no need to iterate in the computation of K↓C, in contrast to the

computation of K↑C .

• The calculation of (a generator of) K↓C is performed by implementing the above formula.

If the automata that generate K and M have n and m states, respectively, then this

calculation is of O(nm|E|).

If automata H and G generate K and M , respectively, (here marking is not an issue) then

an automaton that generates K↓C can be built as follows:

1. Build a deterministic automaton that generates KE∗uc from H; call this automaton

Haug. To do this, add a dead state to H and “partially complete to Euc” the transition

function of H by adding all the missing uncontrollable transitions to the dead state.

2. The intersection in the above formula is then implemented by doing

Haug ×G =: H↓C

3. L(H↓C) = K↓C

• UMDES-LIB: The command infcon performs the ↓ C operation.

S. Lafortune - Last Revision November 2004 67& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Some Supervisory Control Problems and Their Solutions

BSCP: Basic Supervisory Control Problem

Given DES G, Euc ⊆ E, and legal language La = La ⊆ L(G), build supervisor S such that:

1. L(S/G) ⊆ La

2. L(S/G) is as large as possible, i.e., for any other S′ such that L(S′/G) ⊆ La,

L(S′/G) ⊆ L(S/G) .

Solution of BSCP:

• Requirement 2 means that we wish the solution S to be optimal w.r.t. set inclusion. Such

a solution is said to be minimally restrictive (MRS).

• Using the results of the preceding sections, the solution is to choose S such that

L(S/G) = L↑Ca

as long as L↑Ca 6= ∅.

• Regular languages: S is realized by the automaton that results from the Standard

Algorithm for ↑ C.

S. Lafortune - Last Revision November 2004 68& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

BSCP-NB: Nonblocking Version of BSCP

Given DES G, Euc ⊆ E, and legal (marked) language Lam ⊆ Lm(G), with Lam assumed to

be Lm(G)-closed, build nonblocking supervisor S such that:

1. Lm(S/G) ⊆ Lam

2. Lm(S/G) is as large as possible, i.e., for any other nonblocking S′ such that

Lm(S′/G) ⊆ Lam,

L(S′/G) ⊆ L(S/G)

(⇒ Lm(S′/G) ⊆ Lm(S/G)).

Solution of BSCP-NB:

• Due to requirement 2, we call the desired solution S the minimally restrictive

nonblocking solution (MRNBS).

• Using the results of the preceding sections, the solution is to choose nonblocking S such

that

L(S/G) = L↑Cam and Lm(S/G) = L↑Cam

as long as L↑Cam 6= ∅.

S. Lafortune - Last Revision November 2004 69& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

– It is important to note that since Lam is assumed to be Lm(G)-closed, then L↑Cam is also

Lm(G)-closed, which guarantees that Lm(S/G) = L↑Cam whenever L(S/G) = L↑Cam.

• Regular languages: S is realized by the automaton that results from the Standard

Algorithm for ↑ C.

• Important Observation about Blocking: Choosing Salt such that

L(Salt/G) = (Lam)↑C

will satisfy requirement 1, but Salt may be blocking. [Cf. previous fact on closure

properties of the ↑ C operation.]

If (Lam)↑C and Lm(G) are nonconflicting, then (verify!):

1. Salt is nonblocking;

2. (Lam)↑C = L↑Cam.

S. Lafortune - Last Revision November 2004 70& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

DuSCP: “Dual” Version of BSCP

Given DES G, Euc ⊆ E, and minimum required language Lmin ⊆ L(G), build supervisor S

such that:

1. L(S/G) ⊇ Lmin

2. L(S/G) is as small as possible, i.e., for any other S′ such that L(S′/G) ⊇ Lmin,

L(S′/G) ⊇ L(S/G) .

(Note that Lmin need not be prefix-closed and could be given as a subset of Lm(G).)

Solution of DuSCP:

• Again, from prior results, the desired solution is to take S such that

L(S/G) = L↓Cmin

which clearly meets requirements 1 and 2.

• Regular languages: S is realized by the automaton that results from the algorithm

(formula) for ↓ C.

• Observe that if Lmin was given as a subset of Lm(G), we would get

Lm(S/G) = L↓Cmin ∩ Lm(G) ⊇ Lmin ∩ Lm(G) ⊇ Lmin .

S. Lafortune - Last Revision November 2004 71& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

– There would no guarantee though that S be nonblocking.

– Indeed, the nonblocking version of DuSCP poses technical difficulties as the property

of controllability is not preserved under intersection, unless other assumptions are

made. We will not discuss this problem.

S. Lafortune - Last Revision November 2004 72& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Finally, consider the following supervisory control problem where instead of a legal language

or minimum language, we are given a desired language (Ldes) and a tolerated language (Ltol).

SCPT: Supervisory Control Problem with Tolerance

Given DES G, Euc ⊆ E, desired marked language Ldes ⊆ Lm(G) and tolerated legal

language Ltol = Ltol ⊆ L(G), where Ldes ⊆ Ltol, build supervisor S such that:

1. L(S/G) ⊆ Ltol

(this means that we can never exceed the tolerated language);

2. For all prefix-closed and controllable K ⊆ Ltol,

K ∩ Ldes ⊆ L(S/G) ∩ Ldes

(this means that we want S to achieve as much of the desired language as possible);

3. For all prefix-closed and controllable K ⊆ Ltol,

K ∩ Ldes = L(S/G) ∩ Ldes⇒ L(S/G) ⊆ K

(this means that 2 is achieved with the smallest possible solution).

S. Lafortune - Last Revision November 2004 73& %

' $
EECS 661 - Chapter 3 3.4: Dealing with Uncontrollability

Solution of SCPT:

A little thought (!) shows that the solution is obtained by taking S such that

L(S/G) = (L↑Ctol ∩ Ldes)
↓C .

This S is not guaranteed to be nonblocking. The nonblocking version of this problem may

not have an optimal solution and poses technical difficulties.

S. Lafortune - Last Revision November 2004 74& %

' $

3.5: MODULAR CONTROL

& %

' $
EECS 661 - Chapter 3 3.5: Modular Control

3.5: Modular Control

By modular control, we refer to the situation where the control action of supervisor S is

given by some combination of the control actions of two or more supervisors, each working

under full event observation. For simplicity, we consider the case of two supervisors and

discuss their conjunction.

Conjunction of Supervisors

Given S1 and S2 each defined for DES G, define the modular supervisor denoted by

S1∧2 : L(G)→ 2E and corresponding to the conjunction of the two individual supervisors:

S1∧2(s) := S1(s) ∩ S2(s) .

Then it is straightforward to verify that

L(S1∧2/G) = L(S1/G) ∩ L(S2/G)

Lm(S1∧2/G) = Lm(S1/G) ∩ Lm(S2/G) .

S. Lafortune - Last Revision November 2004 76& %

' $
EECS 661 - Chapter 3 3.5: Modular Control

• Given standard realizations R1 and R2 of S1 and S2, respectively, then a standard

realization of S1∧2 could be obtained by building R = R1 × R2. But the point here is

precisely not to build this realization, but rather to use the existing R1 and R2 and realize

the control action S1∧2(s) by taking the intersection of the active event sets of R1 and

R2 at their respective states after the execution of s. We call this the modular realization

of modular supervisor S1∧2. This modular approach saves on the size of the realization of

S1∧2. If R1 has n1 states and R2 has n2 states, then we need only to store a total of

n1 + n2 states for this modular realization instead of possibly as many as n1n2 states if the

above R were built.

Note that we can interpret the supervision of G by S1∧2 as the product R1 ×R2 ×G.

S. Lafortune - Last Revision November 2004 77& %

' $
EECS 661 - Chapter 3 3.5: Modular Control

• It is a similar complexity argument that motivates the synthesis of a supervisor in

modular form. If the admissible language La for BSCP is given as (or can be decomposed

as) the intersection of two prefix-closed languages

La = La1 ∩ La2

then we would like to synthesize Si for L↑Cai , i = 1, 2 and use these two supervisors in

conjunction instead of doing the full calculation L↑Ca . Using this modular approach, the

total computational complexity for supervisor synthesis is reduced from O(n1n2m) to

O(max(n1, n2)m). This modular approach does work because in the case of prefix-closed

languages,

(K1 ∩K2)
↑C = K↑C1 ∩K↑C2 .

This discussion is formalized in the following modular version of BCSP, denoted MSCP.

S. Lafortune - Last Revision November 2004 78& %

' $
EECS 661 - Chapter 3 3.5: Modular Control

MSCP: Basic Supervisory Control Problem: Modular Version

Given DES G, Euc ⊆ E, and legal language La = La1 ∩ La2 where Lai = Lai ⊆ L(G) for

i = 1, 2, build a modular supervisor Smod such that:

1. L(Smod/G) ⊆ La

2. L(Smod/G) is optimal w.r.t. set inclusion.

Solution of MSCP:

From the above discussion, we build standard realizations Ri of Si such that

L(Si/G) = L↑Cai

for i = 1, 2 and then take Smod to be the modular supervisor S1∧2. Then we get that

L(S1∧2/G) = L↑Ca1 ∩ L↑Ca2 = (La1 ∩ La2)
↑C = L↑Ca

which is the desired optimal solution.

S. Lafortune - Last Revision November 2004 79& %

' $
EECS 661 - Chapter 3 3.5: Modular Control

It is unfortunate that this modular approach cannot be extended to the nonblocking version

BSCP, BSCP-NB. The problem is that the conjunction of two nonblocking supervisors need

not be a nonblocking supervisor. Consider the following fact:

Fact: Let Si, i = 1, 2, be nonblocking supervisors for G. Then S1∧2 is nonblocking iff

Lm(S1/G) and Lm(S2/G) are nonconflicting languages.

Proof:

Lm(S1∧2/G) = Lm(S1/G) ∩ Lm(S2/G)

= Lm(S1/G) ∩ Lm(S2/G) [by nonconflicting assumption]

= L(S1/G) ∩ L(S2/G) [by nonblocking assumptions]

= L(S1∧2/G) .

Q.E.D.

This fact has the following implication. If we consider the modular version of BSCP-NB

where

Lam = Lam1 ∩ Lam2

and where each Lami ⊆ Lm(G) and both are Lm(G)-closed (which implies that Lam itself is

Lm(G)-closed), then by synthesizing Si such that

L(Si/G) = L↑Cami

S. Lafortune - Last Revision November 2004 80& %

' $
EECS 661 - Chapter 3 3.5: Modular Control

for i = 1, 2 and then by forming the modular supervisor S1∧2, we get

L(S1∧2/G) = L↑Cam1 ∩ L↑Cam2

Lm(S1∧2/G) = L↑Cam1 ∩ L↑Cam2 ∩ Lm(G)

= L↑Cam1 ∩ L↑Cam2

⊇ (Lam1 ∩ Lam2)
↑C = L↑Cam

which means that the modular supervisor could be blocking, even though it is legal in the

sense that Lm(S1∧2/G) ⊆ Lam.

By the above fact, BSCP-NB has a nonblocking modular solution iff L↑Cam1 and L↑Cam2 are

nonconflicting. The problem is that this condition cannot be verified before doing the ↑ C

calculations. Moreover, to verify this condition, we have to examine together both L↑Cam1 and

L↑Cam2. In contrast, a monolithic (as opposed to modular) approach would require us to form

the intersection Lam1 ∩ Lam2 and then do the ↑ C operation on the result; this has roughly

the same computational complexity than verifying if the modular supervisor is blocking, and

in fact it guarantees a nonblocking (monolithic) supervisor (namely, L(S/G) = L↑Cam, the

MRNBS of BSCP-NB). Yet, if the modular solution is indeed nonblocking, then as was

mentioned earlier it is still advantageous from an implementation viewpoint.

The conclusion of this discussion is that the issue of blocking is intrinsically a global one; it

cannot in general be dealt with in a modular manner.

S. Lafortune - Last Revision November 2004 81& %

' $

3.7: DEALING WITH UNOBSERVABILITY

& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

3.7: Dealing with Unobservability

The Property of Observability

Observability and Union

The property of observability is more difficult to deal with than the property of

controllability in the context of supervisory control because it is not preserved under union,

as shown by the following example.

S. Lafortune - Last Revision November 2004 83& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Example: Let E = Ec = {α, β} and Eo = {β} and consider the languages

M = {ε, α, β, αβ}

K1 = {α}

K2 = {β} .

Then

1. K1 and K2 are observable w.r.t. M , Eo, and Ec.

To see this, consider P-supervisors that enable only α (for K1) or β (for K2) at the outset.

2. K = K1 ∪K2 is not observable.

To prove this, take s = α, s′ = ε and σ = β. Then, sσ /∈ K, sσ ∈M , s′σ ∈ K, and

s′σ ∈ P−1[P (s)]σ since P (s) = P (s′). But this is a violation of the definition of

observability.

Intuitively, a P-supervisor should disable β only after α has occurred, but α is not

observable so the language K1 ∪K2 is not achievable by control.

Note that taking the prefix-closure of K1 and K2 would not help here.

S. Lafortune - Last Revision November 2004 84& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Let us denote the partial observation versions of BSCP and BSCP-NB as BSCOP and

BSCOP-NB, respectively, meaning Basic Supervisory Control and Observation Problem.

The statements of BSCOP and BSCOP-NB are as follows.

BSCOP: Basic Supervisory Control and Observation Problem

Given DES G, Euc ⊆ E, Eo ⊆ E with corresponding projection P : E∗ → E∗o , and legal

language La = La ⊆ L(G), build P-supervisor SP such that:

1. L(SP/G) ⊆ La

2. L(SP/G) is as large as possible, i.e., for any other S′P such that L(S′P/G) ⊆ La,

L(S′P/G) ⊆ L(SP/G) .

S. Lafortune - Last Revision November 2004 85& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

BSCOP-NB: Nonblocking Version of BSCOP

Given DES G, Euc ⊆ E, Eo ⊆ E with corresponding projection P : E∗ → E∗o , and legal

marked language Lam ⊆ Lm(G), with Lam assumed to be Lm(G)-closed, build nonblocking

P-supervisor SP such that:

1. Lm(SP/G) ⊆ Lam

2. Lm(SP/G) is as large as possible, i.e., for any other nonblocking S′P such that

Lm(S′P/G) ⊆ Lam,

L(S′P/G) ⊆ L(SP/G)

(⇒ Lm(S′P/G) ⊆ Lm(SP/G)).

• In view of the preceding example, the supremal observable sublanguage of a given

language need not exist.

• Consequently, the supremal observable and controllable sublanguage of a given language

need not exist.

• This implies that BSCOP and BSCOP-NB do not possess, in general, solutions that

satisfy requirement 2 in the formulation of these problems.

• Various approaches have been considered to deal with this difficulty.

S. Lafortune - Last Revision November 2004 86& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

1. Calculate sublanguages of La or Lam (as appropriate) that are maximal, observable, and

controllable (and also Lm(G)-closed, if necessary).

By maximal we mean that there is no other observable and controllable sublanguage that

is stricly larger than the maximal one; on the other hand, there may be many other

incomparable maximals.

This means that requirement 2 in the statement of BSCOP is replaced by the weaker

condition:

2’. L(SP/G) is maximal, i.e., for any other S′P ,

L(S′P/G) ⊆ La ⇒ L(S′P/G) 6⊃ L(SP/G)

and similarly for BSCOP-NB.

An effective approach to compute an observable and controllable sublanguage that is

maximal is to assign priorities to the events during the computation. By varying the

priority assignment, different maximals are obtained. This works well for closed languages

(i.e., for BSCOP) and in the context of on-line algorithms, where SP (s) is calculated after

s is observed as opposed to pre-computing the whole function SP . The computation of

maximals for non-prefix-closed languages (i.e., for BSCOP-NB) is more difficult and not as

well understood.

S. Lafortune - Last Revision November 2004 87& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

2. Identify a property of languages that is stronger than observability and that is closed

under union.

The property of normality discussed later satisfies these requirements.

In this case however, there is no guarantee (in general) that the solution is maximal so 2’

above need not hold; only requirement 1 of BSCOP and BSCOP-NB will hold in general.

3. Identify special situations where the supremal observable and controllable sublanguage of a

given language does exist.

One such situation is when Ec ⊆ Eo, i.e., when all the controllable events are observable

or, stated differently, when all the unobservable events are uncontrollable.

S. Lafortune - Last Revision November 2004 88& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Observability and Intersection

Observability does possess a useful property: similary to controllability, it is closed under

intersection in the case of closed languages.

Fact: If K1 and K2 are both prefix-closed and observable w.r.t. M , Eo, and Ec, then so is

K1 ∩K2.

S. Lafortune - Last Revision November 2004 89& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Proof: Clearly, K := K1 ∩K2 is prefix-closed.

By contradiction, suppose that K is not observable. Then there exists s and s′, with

P (s) = P (s′), and σ ∈ Ec such that

(s′σ ∈ K) and (s ∈ K) and (sσ ∈M \ K) .

But

sσ ∈M \ K ⇔ (sσ ∈M) and (sσ 6∈ K1 or sσ 6∈ K2) .

If sσ 6∈ K1, then we have that

(s′σ ∈ K1) and (s ∈ K1) and (sσ ∈M \ K1)

which contradicts the assumption that K1 is observable.

If sσ 6∈ K2, then a similar argument contradicts the observability of K2.

Thus no such s, s′, and σ exist and we conclude that K is observable.

Q.E.D.

S. Lafortune - Last Revision November 2004 90& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

• Observe where the prefix-closure assumption for K1 and K2 is used in this proof.

• This fact holds for arbitrary intersections as well.

This suggests to proceed as we did for the class CCout(K) in our study of controllability.

Definition: We define the class of languages

COout(K) := {L ⊆ E∗ : (K ⊆ L ⊆M) ∧ (L = L) ∧ (L is observable)} .

Here, observability is w.r.t. fixed M , Eo (equivalently, the corresponding projection P), and

Ec.

S. Lafortune - Last Revision November 2004 91& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

About the Observable Superlanguages of K:

• The class COout(K) is a poset that is closed under arbitrary intersections.

• Thus COout(K) possesses a unique infimal element. Namely,

K↓O :=
⋂

L∈COout(K)

L

is a well-defined element of COout(K).

• We call K↓O the infimal closed and observable superlanguage of K.

– In the worst case, K↓O = M .

– If K is observable, then K↓O = K.

• We will refer to ↓ O as the operation of obtaining the infimal closed and observable

superlanguage.

– It is immediate from the definition of ↓ O that this operation is monotone, i.e.,

K1 ⊆ K2 ⇒ K↓O1 ⊆ K↓O2 .

– A key result is that the ↓ O operation preserves regularity.

S. Lafortune - Last Revision November 2004 92& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Observability, Controllability, and Intersection

We can combine the results about ↓ O with those about ↓ C for controllability and conclude

that the infimal prefix-closed observable and controllable superlanguage of a given

language does exist.

To see this, consider the class of languages

CCOout(K) := CCout(K) ∩ COout(K) .

• CCOout(K) contains the superlanguages of K that are prefix-closed, controllable, and

observable.

• CCOout(K) is closed under arbitrary intersections, and thus its infimal element exists and

is the infimal prefix-closed observable and controllable superlanguage of K.

– Let us denote this infimal language by K↓(CO).

– In the worst case, K↓(CO) = M .

• The existence of K↓(CO) means that the partial observation version of DuSCP does have a

solution.

S. Lafortune - Last Revision November 2004 93& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

DuSCOP: “Dual” Version of BSCOP

Given DES G, Euc ⊆ E, Eo ⊆ E with corresponding projection P : E∗ → E∗o , and

minimum required language Lmin ⊆ L(G), build P-supervisor SP such that:

1. L(SP/G) ⊇ Lmin

2. L(SP/G) is as small as possible, i.e., for any other S′P such that L(S′P/G) ⊇ Lmin,

L(S′P/G) ⊇ L(SP/G) .

(Note that Lmin need not be prefix-closed and could be given as a subset of Lm(G).)

Solution of DuSCOP:

• The solution is to take SP such that

L(SP/G) = L
↓(CO)
min .

(Here, the ↓ (CO) operation is w.r.t. M = L(G).)

• Observe that if Lmin was given as a subset of Lm(G), we would get

Lm(SP/G) = L
↓(CO)
min ∩ Lm(G) ⊇ Lmin ∩ Lm(G) ⊇ Lmin .

As for DuSCP, there would be no guarantee that SP be nonblocking.

S. Lafortune - Last Revision November 2004 94& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Some Comments on ↓ O and ↓ (CO)

About ↓ O: • K↓O can be expressed in terms of a formula on languages involving set

operations, concatenation, projection, and inverse projection.

The formula is:

K↓O = M \ [E+ \
⋃

σ∈Ec

[P−1(P (Kσ ∩K)) ∩ E∗σ]]E∗ .

• This formula proves that if K and M are regular, then K↓O is regular.

• This formula also suggests an algorithm for computing this language.

• For further details on the infimal closed and observable superlanguage, see the paper

by Rudie & Wonham in Systems & Control Letters, 1990, pp. 361-371.

About ↓ (CO): • K↓(CO) can also be expressed in terms of a (slightly different) formula on

languages.

The formula is:

K↓(CO) = M \ [E∗Ec \
⋃

σ∈Ec

[P−1(P (Kσ ∩K)) ∩ E∗σ]]E∗ .

• Again, this formula proves that if K and M are regular, then K↓(CO) is regular.

Moreover, the formula suggests an algorithm for computing this language.

S. Lafortune - Last Revision November 2004 95& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

The Property of Normality

Defnition: Consider M = M ⊆ E∗ and projection P : E∗ → E∗o . A language K ⊆M is

said to be normal w.r.t. P and M if

K = P−1[P (K)] ∩M .

In other words, K can be exactly recovered from its projection P (K) and M .

• Observe that ∅ and M are both normal, so the property is not vacuous.

• As was done for controllability and observability, the property of normality is defined on

the prefix-closure of a language.

Thus K is normal iff K is normal.

• Observe that the inequality

K ⊆ P−1[P (K)] ∩M

is always true.

If furthermore

P−1[P (K)] ∩M ⊆ K

holds, then K is normal (w.r.t. P and M).

S. Lafortune - Last Revision November 2004 96& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

The two reasons to study normality are:

Fact 1: If K ⊆M is normal w.r.t. P and M , then K is observable w.r.t. M , P , and Ec for

all Ec ⊆ E. However, the converse statement is not true in general.

Fact 2: If K1 and K2 ⊆M are normal w.r.t. P and M , then so is K1 ∪K2.

Fact 2 holds for arbitrary unions.

S. Lafortune - Last Revision November 2004 97& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Proof of Fact 1: It suffices to prove the result for Ec = E.

By contradiction, suppose that K is normal but not observable.

Then, there exists s, σ, and s′, such that s ∈ K, σ ∈ Ec = E, sσ /∈ K, sσ ∈M , and

s′σ ∈ K, with P (s) = P (s′).

Clearly, P (sσ) = P (s′σ) ∈ P (K). But then P (sσ) ∈ P (K) and sσ ∈M imply that

sσ ∈ P−1[P (K)] ∩M .

Thus, by normality, sσ ∈ K, a contradiction.

To show that normality is stronger than observability, consider the following example. Take

M = βα, K = {β}, and Eo = {β}.
Then K is observable for any Ec ⊆ E (verify!) but not normal since

P−1[P (K)] ∩M = M ⊃ K .

Q.E.D.

S. Lafortune - Last Revision November 2004 98& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Proof of Fact 2:

P−1[P (K1 ∪K2)] ∩M = P−1[P (K1 ∪K2)] ∩M

= P−1[P (K1) ∪ P (K2)] ∩M

= (P−1[P (K1)] ∪ P−1[P (K2)]) ∩M

= (P−1[P (K1)] ∩M) ∪ (P−1[P (K2)] ∩M)

= K1 ∪K2

= K1 ∪K2 .

Q.E.D.

S. Lafortune - Last Revision November 2004 99& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

In view of Fact 2, the class of languages (for K ⊆M)

Nin(K) := {L ⊆ K : L = P−1[P (L)] ∩M}

possesses a unique supremal element, the supremal normal sublanguage of K:

K↑N :=
⋃

L∈Nin(K)

L .

• In the worst case, K↑N = ∅.

• We make two remarks regarding the computation of K↑N .

1. In the case where K is prefix-closed, it can be shown that K↑N is given by the formula

K↑N = K \ (P−1[P (M \ K)])E∗ .

[For a proof of this result, see the paper by Brandt et al. in the Systems & Control

Letters, 1990, pp. 111-117.]

This formula shows that if K and M are regular, then so is K↑N .

The computational complexity however is exponential in the worst case as P results in

a nondeterministic automaton (it is assumed here that we wish to have a

deterministic automaton that generates K↑N).

S. Lafortune - Last Revision November 2004 100& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

2. In the general case, there exists an iterative procedure for the computation of K↑N .

Namely,

2.1. Set K0 = K

2.2. Ki+1 = (Ki)
↑N ∩K

This procedure is finitely convergent when K and M are regular, thus showing that

K↑N is also regular. The worst-case computational complexity is again exponential.

S. Lafortune - Last Revision November 2004 101& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

The following results are analogous to results that we proved earlier about controllability.

Their proofs are essentially identical to the proofs for controllability.

Fact:

1. If K is prefix-closed, then so is K↑N .

2. If K ⊆ Lm(G) is Lm(G)-closed, then so is K↑N (here, M = L(G)).

3. If K is controllable, then K↑N need not be controllable.

S. Lafortune - Last Revision November 2004 102& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Proof:

1. Since K↑N is normal, then so is its prefix-closure. But K↑N ⊆ K = K, which implies that

K↑N ⊆ K↑N . This suffices to prove the result.

2. We need to show that K↑N = K↑N ∩ Lm(G).

2.1. (⊆) is immediate.

S. Lafortune - Last Revision November 2004 103& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

2.2. For (⊇), define K ′ = K↑N ∩ Lm(G). Then

K↑N ⊆ K↑N ∩ Lm(G)

⇒ K↑N ⊆ K↑N ∩ Lm(G) = K ′ .

Also

K↑N ∩ Lm(G) ⊆ K↑N

⇒ K↑N ∩ Lm(G) ⊆ K↑N

⇒ K ′ ⊆ K↑N .

Therefore, K ′ = K↑N .

Since K↑N in normal, then so is K ′, by definition of normality.

But K ′ ⊆ K ∩ Lm(G) = K (by hypothesis).

It follows that K ′ ⊆ K↑N , i.e.,

K↑N ∩ Lm(G) ⊆ K↑N .

3. Left as an exercise.

Q.E.D.

S. Lafortune - Last Revision November 2004 104& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

We can combine the preceding results about normality and the corresponding ones about

controllability and conclude that the supremal controllable and normal sublanguage of a

given language exists and is well-defined.

• We will denote this language by K↑(CN) .

• Clearly, in the worst case, K↑(CN) = ∅.

• It can be shown that when K and M are regular, then so is K↑(CN).

• Moreover, it is easily verified that if K is Lm(G)-closed, then so is K↑(CN) (proceed in the

same way as in the preceding fact).

• In the prefix-closed case, there exists a formula for the computation of ↑ (CN).

• In the general case, the computation of ↑ (CN) can be done iteratively as for ↑ N :

1. Set K0 = K

2. Ki+1 = (Ki)
↑CN ∩K

Thus K↑(CN) provides a sub-optimal solution to BSCOP and BSCOP-NB in the sense that

it meets requirement 1 of these problems but not requirement 2.

It should be emphasized though that this solution may not “particularly interesting” in the

sense that it need not be maximal, i.e., there may be controllable and observable

sublanguages that are stricly larger than the supremal controllable and normal sublanguage.

S. Lafortune - Last Revision November 2004 105& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

There is one very interesting feature about the supremal controllable and normal

sublanguage and about the relation between normality, observability, and controllability.

Consider the following result.

Fact: Let Ec ⊆ Eo. If K is controllable (w.r.t. M and Euc) and observable (w.r.t. M , P ,

and Ec), then K is normal (w.r.t. P and M).

S. Lafortune - Last Revision November 2004 106& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

Proof: The result is trivial if K = ∅, so assume that K is not empty. By contradiction,

assume that K is not normal. Then there exists t ∈M such that

(t 6∈ K) ∧ (P (t) ∈ P (K)) .

But t 6= ε (since K 6= ∅). Let sσ be the shortest such t. Then s does not violate normality,

but sσ does, therefore

(s ∈ K) ∧ (sσ ∈M) ∧ (sσ 6∈ K) ∧ (P (sσ) ∈ P (K)) .

Since K is controllable, this implies that σ ∈ Ec ⊆ Eo. Now,

(σ ∈ Eo) ∧ (P (sσ) ∈ P (K))⇒ (∃s′σ ∈ K)P (s′) = P (s) .

For this s′σ, we have that

s′σ ∈ P−1[P (s)]σ ∩K)

which implies that K is not observable, a contradiction. Thus K is normal. Q.E.D.

S. Lafortune - Last Revision November 2004 107& %

' $
EECS 661 - Chapter 3 3.7: Dealing with Unobservability

• The preceding fact implies that under the assumption that Ec ⊆ Eo, the supremal

observable and controllable sublanguage does exist and consequently BSCOP and

BSCOP-NB do have (optimal) solutions.

• These solutions can be obtained by calculating L
↑(CN)
a (or L

↑(CN)
am , as appropriate), or by

calculating any maximal controllable and observable sublanguage of these languages (since

there can only be one maximal, namely the supremal!).

S. Lafortune - Last Revision November 2004 108& %

' $

3.8: DECENTRALIZED CONTROL

& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

3.8: Decentralized Control

The Conjunctive-Permissive Decentralized Architecture

Architecture for decentralized control with a set of partial-observation supervisors and allowing

for common controllable events:

Actuators with default actions

Pn

Local Decisions
System

P21P

G
SP1

SPnSP2

σc,1 σc,2 σc,k

Σc = {σc,1, . . . , σc,k}

S. Lafortune - Last Revision November 2004 110& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

• It is convenient to extend the domain of partial-observation supervisor i from Pi[L(G)] to

L(G).

Let us denote the extended-domain supervisor by Si:

Si(s) = SPi
[Pi(s)] .

• Associated with G are the four usual sets Ec, Euc, Eo, and Euo.

• Corresponding to supervisor Si at site i, i = 1, . . . , n, we have:

– the set of controllable events Ei,c ⊆ Ec, where ∪n
i=1Ei,c = Ec;

– the set of observable events Ei,o ⊆ Eo, where ∪n
i=1Ei,o = Eo;

– the sets Ei,c [resp., Ei,o], i = 1, . . . , n, are not necessarily disjoint;

– the (natural) projection Pi : E∗ → E∗i,o corresponding to Ei,o.

• Role of Si:

– make enable/disable decisions on the events in Ei,c, based on the system model G and

on the locally observable events Ei,o;

– necessarily enable events in E \ Ei,c – equivalently, we can assume that Si does

nothing for these events.

S. Lafortune - Last Revision November 2004 111& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

• We define the combined control policy Scon
dec : L(G)→ 2E acting on G as follows:

Scon
dec (s) =

n
⋂

i=1

Si(s) .

This means the fusion rule at each actuator is “AND”, i.e., a common controllable event is

enabled iff all supervisors that have control over it enable the event.

In other words, if one supervisor disables an event, then that event is necessarily disabled.

• The resulting controlled behavior is described by the languages L(Scon
dec /G) and

Lm(Scon
dec /G).

• One issue hidden in the definition of Scon
dec is the following:

If supervisor Si is not sure about enabling or disabling an event after observing trace

Pi(s), then what should it do?

This will happen if there is a control conflict in the state estimate built from P−1[P (s)].

Let us assume that in such cases, all Si’s use the following default: ENABLE. In other

words, Si is permissive when in doubt.

This can be paraphrased as “Si passes the buck” regarding the disablement of the event.

• In view of the above observations, we refer to this decentralized control architecture as the

Conjunctive-Permissive architecture or CP-architecture.

S. Lafortune - Last Revision November 2004 112& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

CP-Coobservability

• We ask the following question for the CP-architecture:

What is the necessary and sufficient condition on K, beyond controllability, that will

ensure the existence of Si, i = 1, . . . , n, such that L(Scon
dec /G) = K?

• Intuitively, we know that the required condition will have to be stronger than

K is observable with respect to L(G), Eo, and Ec

since a decentralized architecture cannot in general be as powerful as a centralized one.

• However, the required condition should be weaker than

K is observable with respect to L(G), Pi, and Ei,c, for each i = 1, . . . , n

since there may be events that can be controlled by more than one supervisors, and

therefore we may not need full “local” observability at all sites as the supervisors may

somehow be able to “share the work” on the common controllable events.

S. Lafortune - Last Revision November 2004 113& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

• Example 1: “Passing the buck” works in the CP-architecture:

L(G) = {bg, bbg, ag, abg} E1,o = {a} E1,c = {a, g}

K = {bg, bb, ab} E2,o = {b} E2,c = {b, g} .

K is not observable with respect to L(G), Ei,o, and Ei,c, i = 1, 2.

But:

1. S1 can start by enabling events a, b (uncontrollable to S1), and g, and then enable only

b after it sees string a; in other words, S1 disables event g only after it sees string a;

2. S2 can start by enabling events a (uncontrollable to S2) and b, then enable a, b, and g

after it sees string b, and finally enable event a only after it sees string bb (i.e., g is

disabled at the beginning and after bb).

• Example 2: “Passing the buck” does not work in the CP-architecture:

L(G) = {aag, abg, bag, bbg} E1,o = {a} E1,c = {a, g}

K = {aa, bb, ba, abg} E2,o = {b} E2,c = {b, g} .

S. Lafortune - Last Revision November 2004 114& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

• CP-Coobservability:

Let K and M = M be languages over event set E. Let Ei,c and Ei,o be sets of

controllable and observable events, respectively, for i = 1, . . . , n. Let Pi be the natural

projection corresponding to Ei,o, with Pi : E∗ → E∗i,o.

K is said to be CP-coobservable with respect to M , Pi, and Ei,c, i = 1, . . . , n, if for all

s ∈ K and for all σ ∈ Ec = ∪n
i=1Ei,c,

(sσ /∈ K) and (sσ ∈M) ⇒

∃i ∈ {1, . . . , n} such that P−1
i [Pi(s)]σ ∩K = ∅ and σ ∈ Ei,c .

S. Lafortune - Last Revision November 2004 115& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

• We can paraphrase CP-coobservability as follows:

If event σ needs to be disabled, then at least one of the supervisors that can

control σ must unambiguously know that it must disable σ, that is, from this

supervisor’s viewpoint, disabling σ does not prevent any string in K.

Consequently, when in doubt, a supervisor can be permissive and “pass the

buck”.

• It should by now be clear that the notion of CP-coobservability is tied with the choices

made in the decentralized architecture regarding the fusion rule (conjunctive) and the

default action of supervisors (permissive).

• If we set Ei,o = Eo, Ei,c = Ec, and Ej,o = Ej,c = ∅ for j = 1, . . . , n, j 6= i, then

CP-coobservability reduces to observability, as expected.

• If Ei,c ∩ Ej,c = ∅ for all i, j = 1, . . . , n, then since each controllable event can only be

controlled by one supervisor, the notion of “passing the buck” does not apply.

Consequently, each supervisor must unambiguously know when to disable all its

controllable events. This means that in this case CP-coobservability of language K is

equivalent to

“K is observable with respect to L(G), Pi, and Ei,c, for each i = 1, . . . , n.”

S. Lafortune - Last Revision November 2004 116& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

The Controllability and Coobservability Theorem

Controllability and Coobservability Theorem (CCoT):

Consider DES G = (X, E, f, Γ, x0, Xm), where Euc ⊆ E is the set of uncontrollable events,

Ec = E \ Euc is the set of controllable events, and Eo ⊆ E is the set of observable events.

For each site i, i = 1, . . . , n, consider the set of controllable events Ei,c and the set of

observable events Ei,o; overall, ∪n
i=1Ei,c = Ec and ∪n

i=1Ei,o = Eo. Let Pi be the natural

projection from E∗ to E∗i,o, i = 1, . . . , n. Consider also the language K ⊆ Lm(G), where

K 6= ∅. There exists a nonblocking decentralized supervisor Scon
dec for G for the CP

decentralized architecture such that

Lm(Scon
dec /G) = K and L(Scon

dec /G) = K

if and only if the three following conditions hold:

1. K is controllable with respect to L(G) and Euc;

2. K is CP-coobservable with respect to L(G), Pi, and Ei,c, i = 1, . . . , n;

3. K is Lm(G)-closed.

S. Lafortune - Last Revision November 2004 117& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

About the Proof of CCoT:

• The control actions to use are:

Si(s) = SPi
(si) = (Ei,uc ∪ {σ ∈ Ei,c : ∃s′σ ∈ K (Pi(s

′) = si)}

where Ei,uc = E \ Ei,c

About Coobservability:

• It can be tested in polynomial time

S. Lafortune - Last Revision November 2004 118& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

Dealing with Violations of CP-Coobservability

All the difficulties inherent to partial observation in the centralized case (and more) carry to

decentralized control architectures. In particular,

• CP- coobservability is not preserved under union.

• However, CP-coobservability is preserved under intersection for prefix-closed languages.

So the operations ↓ (CP − Co) and ↓ (CCP − Co) are well-defined.

• There is no “useful” generalization of normality in the decentralized case.

S. Lafortune - Last Revision November 2004 119& %

' $
EECS 661 - Chapter 3 3.8: Decentralized Control

Recent research in this area has focused on generalizations of the CP-architecture that allow

to achieve larger classes of languages than those that are CP-coobservable.

1. Change the two defaults in CP to get the DA-architecture: Disjunctive fusion rule,

namely OR of enabled events, together with Antipermissive default when a supervisor is

in doubt, namely, the default action is disable.

This leads to the notion of DA-coobservability.

DA-coobservability and CP-coobservabililty are incomparable.

2. Combine the CP- and DA-architectures into a single one assuming the set of controllable

events is partitioned into those the are:

• enabled by default and fused according to AND;

• disabled by default and fused according to OR.

This new architecture performs “better” than either the CP- or DA-architecture.

S. Lafortune - Last Revision November 2004 120& %

