
Systems Design Laboratory

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Matteo Zavatteri

1Department of Mathematics, University of Padova, ITALY

2Department of Computer Science, University of Verona, ITALY

Motivation for Model-Based Systems Engineering

In the development of systems and supervisory controllers:

� the use of (formal) models and methods for controller design allows for the

validation and veri�cation of controllers before they are actually

implemented and integrated into the system.

� the approach of early validation and veri�cation have been shown to lead

to fewer defects and reduced costs.

As a result, more and more companies have been increasingly adopting the

Model-Based Systems Engineering (MBSE) paradigm. 1

Eclipse Supervisory Control Engineering Toolkit

The Eclipse Supervisory Control Engineering Toolkit (Eclipse ESCET�) project is

an Eclipse Foundation open-source project that provides a toolkit for the

development of supervisory controllers in the Model-Based Systems Engineering

(MBSE) paradigm.

� The use of (formal) models for controller design allows for the validation

and veri�cation of controllers before they are actually implemented and

integrated into the system.

� Early validation and veri�cation have been shown to lead to fewer defects

and reduced costs.

https://www.eclipse.org/escet/ 2

https://www.eclipse.org/escet/

Model-Based Systems Engineering

� The toolkit has a strong focus on model-based design, supervisory

controller synthesis, and industrial applicability, for example to

cyber-physical systems.

� The toolkit supports the entire development process of (supervisory)

controllers, from modeling, supervisory controller synthesis,

simulation-based validation and visualization, and formal veri�cation, to

real-time testing and implementation.

3

Eclipse Supervisory Control Engineering Toolkit (ESCET)

The Eclipse Supervisory Control Engineering Toolkit (ESCET) was developed

approximately over a period of approximately two decades (starting from the

early 2000s) at the Eindhoven University of Technology (TU/e) in cooperation

with many European and national projects.

4

Eclipse Supervisory Control Engineering Toolkit (ESCET)

In 2021, Eclipse ESCET became an independent Eclipse Foundation open source

project, and is no longer formally associated with the TU/e.

5

Eclipse Supervisory Control Engineering Toolkit (ESCET)

Eclipse ESCET is based on CIF: the Compositional Interchange Format for hybrid

systems. CIF is an automata-based modeling language for the speci�cation of

discrete event, timed, and hybrid systems.

6

Eclipse Supervisory Control Engineering Toolkit (ESCET)

� Modeling of hybrid systems

� Graphical user interface

� Simulation

� Finite state automata operations

� Controller synthesis for (extended)

�nite state automata

� PLC code generation

� Employed in many real-world case

studies

7

Eindhoven University of Technology (TU/e) - 4TC00 course

Employed in the course 4TC00 Model-Based Systems Engineering (bachelor

degree, 3rd year) Eindhoven University of Technology (TU/e).

https://cstweb.wtb.tue.nl/4tc00/index.html 8

https://cstweb.wtb.tue.nl/4tc00/index.html

Eindhoven University of Technology (TU/e) - 4TC00 course

Check out the youtube channel for videos, examples, and more.

https://www.youtube.com/channel/UC1lkrIkRkgtbYDul9BwI_Bw

9

https://www.youtube.com/channel/UC1lkrIkRkgtbYDul9BwI_Bw

Compositional Interchange Format (CIF)

https://www.eclipse.org/escet/cif/

10

https://www.eclipse.org/escet/cif/

CIF - Language

CIF is a rich state machine language with the following main features:

� Modular speci�cation with synchronized events and communication

between automata

� Many data types are available (booleans, integers, reals, tuples, lists,

arrays, sets, and dictionaries), combined with a powerful expression

language for compact variable updates.

� Text-based speci�cation of the automata, with many features to simplify

modeling large non-trivial industrial systems.

� Primitives for supervisory controller synthesis are integrated in the

language.

11

CIF - Tools

The CIF tooling supports the entire development process of controllers, including

among others speci�cation, supervisory controller synthesis, simulation-based

validation and visualization, veri�cation, real-time testing, and code generation.

Highlights of the CIF tooling include:

� Text-based editor that allows to easily specify and edit models.

� Feature-rich powerful event-based and data-based supervisory controller

synthesis tool.

� A simulator that supports both interactive and automated validation of

speci�cations. Powerful visualization features allow for interactive

visualization-based validation.

� Conversion to other formal veri�cation tools such as mCRL2 and UPPAAL.

� Implementation language code generation (PLC languages, Java, C, and

Simulink) for real-time testing and implementation of controllers.
12

CIF - Supervisory controller synthesis

Supervisory controller synthesis is a key feature of CIF.

� It involves the automatic generation of supervisory controllers from a

speci�cation of the uncontrolled system and the (safety) requirements that

the controller needs to enforce.

� This moves controller design from �how should the implementation work�

to �what should the controller do�.

� Implementation of the controller is achieved through code generation,

reducing the number of errors introduced at this stage.

13

CIF - Application

� CIF has been applied in industry, for various domains, including the

medical, semiconductor and public works (infrastructure) domains.

� The main application area of CIF is the development of supervisory

controllers.

� The language and tools are generic, and can be used to work with state

machines in general for various other purposes.

14

CIF - Application

� The CIF language and tools are being developed as part of the Eclipse

ESCET open-source project.

� The CIF tools are part of the Eclipse ESCET toolkit.

15

ToolDef: An Integrated Scripting Language

https://www.eclipse.org/escet/tooldef/

16

https://www.eclipse.org/escet/tooldef/

ToolDef - Language

ToolDef allows us to:

� write scripts using a simple and intuitive syntax, loosely based on the

better aspects of Python.

� catch simple mistakes early on due to static typing.

� work with data of all kinds, using a large number of built-in data types.

� manipulate data and paths, work with �les and directories, and much more,

with over 80 built-in tools.

� share your tools as ToolDef libraries.

� unleash the full power of Java by importing any Java static method and

using it like any other ToolDef tool.

17

Eclipse Supervisory Control Engineering Toolkit (ESCET)

https://www.eclipse.org/escet/download.html

18

https://www.eclipse.org/escet/download.html

ESCET - Integrated Development Environment

19

CIF Basics - Automata

� CIF models consist of

components

� Each component

represents a part of the

system

� Components are modeled

as automata.

� Automata are the basics

of CIF constructs

� The name �locations�

comes from hybrid

automata

� State = location + values

of continuous variables

� For �nite state automata,

states = locations

automaton Component1:

location L1:

...

location Ln:

...

end

...

automaton ComponentM:

location L1:

...

location Ln:

...

end

L1

Ln

L1

Ln

20

CIF Basics - Locations

Locations can be:

� initial

� marked

� initial and marked

� none of the

previous

automaton Component:

location L1:

initial;

...

location L2:

...

location L3:

...

end

L1start

L2

L3

Location L1 is initial, whereas locations L2 and L3 are neither

initial nor marked.

21

CIF Basics - Locations

Locations can be:

� initial

� marked

� initial and marked

� none of the

previous

automaton Component:

location L1:

initial;

...

location L2:

marked;

...

location L3:

...

end

L1start

L2

L3

Location L1 is initial, location L2 is marked, whereas location L3 is

neither initial nor marked.

22

CIF Basics - Locations

Locations can be:

� initial

� marked

� initial and marked

� none of the

previous

automaton Component:

location L1:

initial; marked;

...

location L2:

marked;

...

location L3:

...

end

L1start

L2

L3

Location L1 is both initial and marked, location L2 is marked,

whereas location L3 is neither initial nor marked.

23

CIF - Events

Events can be:

� local

� global

event a;

automaton Component:

event b;

event c;

location L1:

initial; marked;

...

location L2:

...

end

Event a is global, whereas events b and c are local.

24

CIF - Edges (i.e., Transitions)

Edges:

� model transitions

� have a unique

source

� have a unique

target

� are associated to

events

event a;

automaton Component:

event b;

location L1:

initial; marked;

edge a goto L2;

location L2:

edge b goto L1;

end

L1start

L2

ab

We have two transitions

1) A transition from L1 to L2 executing event a

2) A transition from L2 to L1 executing event b

So basically, the automaton will continue executing

a,b,a,b,a,b,a,b,a,b,a,b,...

25

CIF - Edges (cont.)

Edges:

� model transitions

� have a unique

source

� have a unique

target

� are associated to

events

event a;

automaton Component:

event b;

event c;

location L1:

initial; marked;

edge a goto L2;

edge b goto L2;

edge c goto L1;

location L2:

edge b goto L1;

edge a goto L2;

edge c goto L2;

end

L1start

L2

a b

c

b

a

c

We have 6 transitions

1) A transition from L1 to

L2 executing event a

2) A transition from L1 to

L2 executing event b

3) A self-loop transition

at L1 executing event c

4) A transition from L2 to

L1 executing event b

5) A self-loop transition

at L2 executing event a

6) A self-loop transition

at L2 executing event c
26

CIF - Edges - Short Notations

event a;

automaton Component:

event b;

event c;

location L1:

initial; marked;

edge a goto L2;

edge b goto L2;

edge c goto L1;

location L2:

edge b goto L1;

edge a goto L2;

edge c goto L2;

end

⇒

event a;

automaton Component:

event b,c;

location L1:

initial; marked;

edge a,b goto L2;

edge c;

location L2:

edge b goto L1;

edge a,c;

end

L1start

L2

a, b

c

b

a, c

General syntax:

edge a[,b,...] [goto Lj];
27

CIF Basics - Nameless Locations

When an automaton

has a single location:

� we can omit the

name of the

location

� only self-loop

transitions are

allowed (no need

to specify the

target)

automaton Component:

event a;

location:

initial; marked;

edge a;

end

start

a

28

CIF - Implicit Alphabet

Automaton Alphabet:

� Not de�ned in the

code

� The union of all

events appearing

in edge

statements (of

that automaton)

event a,d;

automaton Component:

event b,c;

location L1:

initial; marked;

edge a,b goto L2;

edge c;

location L2:

edge b goto L1;

edge a,c;

end

L1start

L2

a, b

c

b

a, c

Σ := {a, b, c}

Event d is always executable in a concurrent execution with some other

automaton that can execute d.

29

CIF - Explicit Alphabet

Automaton Alphabet:

� Explicitly de�ned

� No obligation of

using alphabet

events on

transitions

event a,d;

automaton Component:

event b,c;

alphabet a,b,c,d;

location L1:

initial; marked;

edge a,b goto L2;

edge c;

location L2:

edge b goto L1;

edge a,c;

end

L1start

L2

a, b

c

b

a, c

Σ := {a, b, c , d}

Watch out: being in the alphabet of the automaton but not taking part in any of

its transitions, event d is never executable in a concurrent execution with some

other automaton that can execute d.

30

CIF - Non Determinism

� More edges for

the same event.

� Multiple initial

states not

supported

� ε transitions not

supported

event a;

automaton Component:

event b;

location L1:

initial; marked;

edge a,b goto L2;

edge b;

location L2:

edge b goto L1;

edge b;

end

L1start

L2

a, b

c

b

b

By executing event b from location L2 we can either remain there or move to L1.

31

Supervisory Control - Event Controllability

Beside globality or locality,

events are also partitioned in:

� controllable (default)

� uncontrollable

controllable event a;

automaton Component:

uncontrollable event b;

event c;

location L1:

initial; marked;

...

location L2:

...

end

Event a is global and controllable, b is local and uncontrollable,

whereas c is local and controllable.

32

Supervisory Control - Events - Short Notation

controllable event a;

automaton Component:

event b;

event c;

uncontrollable event d;

location L1:

initial; marked;

...

location L2:

...

end

⇒

controllable a;

automaton Component:

event b, c;

uncontrollable d;

location L1:

initial; marked;

...

location L2:

...

end

General syntax

Controllable events

event a[,b ,...];

controllable event a[,b ,...];

controllable a[,b ,...];

Uncontrollable events

uncontrollable event a[,b ,...];

uncontrollable a[,b ,...];

33

CIF - Edges - Uncontrollable Transitions

Edges related to

uncontrollable events

model uncontrollable

transitions.

event a;

automaton Component:

event b;

uncontrollable c;

location L1:

initial; marked;

edge a,b goto L2;

edge c;

location L2:

edge b goto L1;

edge a,c;

end

L1start

L2

a, b

c

b

a

c

General syntax:

edge a[,b,...] [goto Lj];

34

Supervisory Control - Automata Types

Automata can be of the

following types

� Plant

� Requirement

� Supervisor

plant automaton C:

...

end

requirement automaton R:

...

end

supervisor automaton S:

...

end

35

Supervisory Control - Automata Types - Short Notation

plant automaton C:

...

end

requirement automaton R:

...

end

supervisor automaton S:

...

end

⇒

plant C:

...

end

requirement R:

...

end

supervisor S:

...

end

36

The Database Concurrency Example

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

� Two transactions

� T1 := a1b1

� T2 := a2b2

(xi some operation by transaction i

on record x)

� G0 is the initial state

� G8 is the marked state (=completion

of T1 and T2)

�From the theory of database concurrency control, it can be shown that the only

admissible strings are those where a1 precedes a2 if and only if b1 precedes b2.�

Cassandras, Lafortune - Introduction to Discrete Event Systems

37

Example 1

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

� Events a1, a2 are uncontrollable

� Events b1, b2 are controllable

� G0 is the initial state

� G8 is the marked state

Requirement: a1 precedes a2 if and only if b1 precedes b2

38

Example 1 - Plant and Requirement

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement: a1 precedes a2 if and only if b1 precedes b2

Note: Full Requirement := Plant || Essential Requirement

39

Example 1 - Controller Synthesis

Plant
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Requirement

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Tentative Supervisor G‖H
{G0,H0}start {G1,H1} {G2,H2}

{G3,H3}

{G4,H9}

{G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement: a1 precedes a2 if

and only if b1 precedes b2

40

Example 1 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Supervisor S

{G0,H0}start {G1,H1} {G2,H2}

{G3,H3}

{G4,H9}

{G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement: a1 precedes a2 if

and only if b1 precedes b2

� No states to remove

⇓
� Final supervisor

41

Example 1 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Supervisor S

{G0,H0}start {G1,H1} {G2,H2}

{G3,H3}

{G4,H9}

{G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Control Policy:

� If the plant gets to G4 by

executing a1a2, then S disables b2.

� If the plant gets to G4 by

executing a2a1 and S disables b1.

42

Example 2

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

� Events a1, b1 are controllable

� Events a2, b2 are uncontrollable

� G0 is the initial state

� G8 is the marked state

Same Requirement: a1 precedes a2 if and only if b1 precedes b2

43

Example 2 - Plant and Requirement

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

44

Example 2 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Tentative Supervisor G‖H
{G0,H0}start {G1,H1} {G2,H2}

{G3,H3}

{G4,H9}

{G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

� Any problems?

45

Example 2 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Tentative Supervisor G‖H
{G0,H0}start {G1,H1} {G2,H2}

{G3,H3}

{G4,H9}

{G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

� {G4,H9} is uncontrollable

46

Example 2 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

{G0,H0}start {G1,H1} {G2,H2}

{G3,H3} {G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a1

a2

b1

a2

a1

b2

b2
b2

a1 b1

� {G1,H1} is uncontrollable

47

Example 2 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Tentative Supervisor G‖H
{G0,H0}start {G2,H2}

{G3,H3} {G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a2 a2

a1

b2

b2
b2

a1 b1

� {G2,H2} is non-accessible

(unreachable from the initial

state {G0,H0})

48

Example 2 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Tentative Supervisor G‖H
{G0,H0}start

{G3,H3} {G4,H4} {G5,H5}

{G6,H6} {G7,H7} {G8,H8}

a2

a1

b2

b2
b2

a1 b1

� {G5,H5} is non-accessible

(unreachable from the initial

state {G0,H0})

49

Example 2 - Controller Synthesis

Plant G
G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Final Supervisor S

{G0,H0}start

{G3,H3} {G4,H4}

{G6,H6} {G7,H7} {G8,H8}

a2

a1

b2

b2

a1 b1

Control Policy:

� At the beginning S disables a1.

� If the plant G is in state G4, S

disables b1.

50

Essential Requirement

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement: a1 precedes a2 if and only if b1 precedes b2

Question: Can we write some other R so that G‖R ≡ G‖H (i.e.,

such that L(G‖R) = L(G‖H) and Lm(G‖R) = Lm(G‖H))?

51

Essential Requirement - Decomposition

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement:

A︷ ︸︸ ︷
a1 precedes a2

⇔︷ ︸︸ ︷
if and only if

B︷ ︸︸ ︷
b1 precedes b2

� A⇒ B : If a1 precedes a2, then b1 precedes b2

� B ⇒ A : If b1 precedes b2, then a1 precedes a2

52

Essential Requirement - Logical Equivalence Rewriting

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement:

A︷ ︸︸ ︷
a1 precedes a2

⇔︷ ︸︸ ︷
if and only if

B︷ ︸︸ ︷
b1 precedes b2

� A⇒ B : If a1 precedes a2, then b1 precedes b2

� B ⇒ A : If b1 precedes b2, then a1 precedes a2

� ¬A⇒ ¬B : If a1 does not precede a2, then b1 does not

precede b2
53

Essential Requirement - Logical Equivalence Rewriting

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement:

A︷ ︸︸ ︷
a1 precedes a2

⇔︷ ︸︸ ︷
if and only if

B︷ ︸︸ ︷
b1 precedes b2

� A⇒ B : If a1 precedes a2, then b1 precedes b2

� ¬A⇒ ¬B : If a1 does not precede a2, then b1 does not

precede b2

� ¬A⇒ ¬B : If a2 precedes a1, then b2 precedes b1
54

Essential Requirement - Better Equivalent Decomposition

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Full Requirement H

H0start H1 H2

H3

H9

H4 H5

H6 H7 H8

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

Requirement:

A︷ ︸︸ ︷
a1 precedes a2

⇔︷ ︸︸ ︷
if and only if

B︷ ︸︸ ︷
b1 precedes b2

� A⇒ B : If a1 precedes a2, then b1 precedes b2 (R1)

� ¬A⇒ ¬B : If a2 precedes a1, then b2 precedes b1 (R2)

55

Essential Requirement - R1 - Attempt 1

Plant G

G0start G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Essential Requirement R1

� States?

� Transitions?

Requirement: A⇒ B : If a1 precedes a2, then b1 precedes b2

56

Essential Requirement - R1 - Attempt 1

Plant G

G0

start

G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Structure! Every path from G0

to G8 contains exactly 1

occurrence of each event.

Essential Requirement R1

S0

start

S1 S2 S3

a1 b1 b2

a1, a2, b1, b2

a2 a2

a2

Rationale:

� We care about seeing either a1 or a2 at

the beginning.

� If it's going to be a2, then whatever

happens is ok.

� Otherwise it's going to be a1 and the idea

is that we eventually see a2 (it's not

important exactly when) and we need to

see b1 before b2.

Can we improve R1?

Requirement R1: A⇒ B : If a1 precedes a2, then b1 precedes b2
57

Essential Requirement - R1 - Attempt 2

Plant G

G0

start

G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Structure! Every path from G0

to G8 contains exactly 1

occurrence of each event.

Essential Requirement R1

S0

start

S1 S2

a1 b1

a1, a2, b1, b2

a2

a2

Rationale:

� We care about seeing either a1 or a2 at

the beginning.

� If it's going to be a2, then whatever

happens is ok.

� Otherwise it's going to be a1 and the idea

is that we eventually see a2 (it's not

important exactly when) and we need to

see b1 before b2.

Requirement R1: A⇒ B : If a1 precedes a2, then b1 precedes b2

58

Essential Requirement - R2 - Attempt 1

Plant G

G0

start

G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Structure! Every path from G0

to G8 contains exactly 1

occurrence of each event.

Essential Requirement R2

S0

start

S1 S2 S3

a2 b2 b1

a1, a2, b1, b2

a1 a1

a1

Rationale:

� We care about seeing either a1 or a2 at

the beginning.

� If it's going to be a1, then whatever

happens is ok.

� Otherwise it's going to be a2 and the idea

is that we eventually see a1 (it's not

important exactly when) and we need to

see b2 before b1.

Can we improve R2?

Requirement R2: ¬A⇒ ¬B : If a2 precedes a1, then b2 precedes b1
59

Essential Requirement - R2 - Attempt 2

Plant G

G0

start

G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Structure! Every path from G0

to G8 contains exactly 1

occurrence of each event.

Essential Requirement R2

S0

start

S1 S2

a2 b2

a1, a2, b1, b2

a1

a1

Rationale:

� We care about seeing either a1 or a2 at

the beginning.

� If it's going to be a1, then whatever

happens is ok.

� Otherwise it's going to be a2 and the idea

is that we eventually see a1 (it's not

important exactly when) and we need to

see b2 before b1.

Requirement R2: ¬A⇒ ¬B : If a2 precedes a1, then b2 precedes b1

60

Essential Requirement - R := R1‖R2

Plant G

G0

start

G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Structure! Every path from G0 to G8

contains exactly 1 occurrence of each

event.

Requirement R: A ⇔ B : a2 precedes a1

i� b2 precedes b1

Essential Requirement R1

S0

start

S1 S2

a1 b1
a1, a2, b1, b2

a2

a2

Essential Requirement R2

S0

start

S1 S2

a2 b2
a1, a2, b1, b2

a1

a1

Essential Requirement R := R1‖R2

S0

start
S1

S ′
1

S2

a1

a2

b1

b2

a1, a2, b1, b2
a2

a1 61

Essential Requirement - R

Plant G

G0

start

G1 G2

G3 G4 G5

G6 G7 G8

a1

a2

b1

a2 a2

a1

b2

b1

b2 b2

a1 b1

Structure! Every path from G0 to

G8 contains exactly 1 occurrence

of each event.

Requirement R: A⇔ B : a2

precedes a1 i� b2 precedes b1

Essential Requirement R

S0

start
S1

S ′
1

S2

a1

a2

b1

b2

a1, a2, b1, b2
a2

a1

Full Requirement H := G‖R
{G0, S0}start {G1, S1} {G2, S2}

{G3, S
′
1}

{G4, S1}

{G4, S
′
1} {G5, S2}

{G6, S2} {G7, S7} {G8, S2}

a1

a2

b1

a2

a2

a1

b2

b1

b2
b2

a1 b1

62

