Network simulation with SystemC

Davide Quaglia
Outline

- Motivation
- Architecture
- Experimental results
- Advantages of the proposed framework
Motivation

- Design of Networked Embedded Systems (smartphones, routers, wireless sensor networks)
- Network (protocols and channels) may be a design-space dimension (e.g., Networked Control Systems)
- System and Network may be reciprocally affected during design
- Pure network simulators are not well integrated with EDA tools
SystemC Network Simulation Library (SCNSL)

Let’s change the scale!

SystemC model of a System on Chip

Packet-based Network

SystemC model of several networked embedded systems AND the network among them
Problems to be solved

• Packet-based simulation in order to be fast
• Packets are not Signals (RTL) or Payloads (TLM)
 – Variable size
 – Variable formats (during simulation !)
• Network simulation requires that setup can change at simulation time (binding is not enough)
 – Traffic activation/de-activation
 – Node mobility
 – Channel failure
• Efficient way to handle collisions on the channel
Architecture

User domain

- Description of the Embedded Systems
- Description of the Network Scenario

New library

- SystemC Network Simulation Library: packet and channel model

Legacy libraries

- SystemC primitives: module, process, port, event, simulation engine
- C++
Architecture

Description of the Network Scenario

Description of the Embedded Systems

User domain

Traditional description of behavior and communication between intra-node components

New library

SystemC Network Simulation Library: packet and channel model

Legacy libraries

SystemC primitives: module, process, port, event, simulation engine

C++
Architecture

User domain

Description of the Embedded Systems

Network Scenario

Packets transmission & reception, carrier sense

SystemC Network Simulation Library:
packet and channel model

SystemC primitives: module, process, port, event, simulation engine

C++

New library

Legacy libraries
Description of the Network Scenario
- Topology definition
- Traffic sources
- Scenario changes at simulation time

SystemC Network Simulation Library: packet and channel model

SystemC primitives: module, process, port, event, simulation engine

C++

Legacy libraries

New library

User domain

Architecture
Architecture

Description of the Network Scenario

- Binding of network components
- Mapping of network events onto SystemC events

User domain

SystemC primitives: module, process, port, event, simulation engine

New library

C++

Legacy libraries

SystemC Network Simulation Library: packet and channel model
Architecture

User domain

Description of the Embedded Systems

Description of the Network Scenario

SystemC Network Simulation Library: packet and channel model

Basic data structures

SystemC primitives: module, process, port, event, simulation engine

Legacy libraries

C++
SCNSL components
Simulation flow

Network scenario

Task implementation

Header files of the simulator and SystemC

Compilation process

Linking

Executable

- sc_main() in main.cc
- MyTask.cc
- MyTask.hh
- *.hh
- Simulator library
- SystemC library
Simulation flow (2)
Provided objects

- **Task**
 - Interfaces for TLM and RTL custom tasks
 - Traffic sources (CBR, bursty traffic, etc.)

- **Node**

- **Protocol**

- **Channel**
 - Simple link
 - Full duplex link
 - Shared
 - Delayed shared

 - To model wired or abstract channels
 - To model wireless channels
Experimental setup

- Wireless sensor network
 - 1 master requesting temperature to N-1 slaves
 - IEEE 802.15.4 MAC (the base for ZigBee)
 - Peer un-slotted communication with ack

- Description of the node at different abstraction levels
 - TLM (Approximate Timing) → 633 lines of code
 - RTL → 688 lines
 - `sc_main()` → 172 lines

- Comparison with a well-known network simulator (NS-2)
Experimental results

CPU time for the simulation as a function of the number of wireless sensor nodes.

Uniix “time” command (system+user)
Experimental results

Simulation of all nodes at TLM is x100 faster than NS-2
Experimental results

Simulation of all nodes at RTL is slower than NS-2 as expected
Experimental results

Simulation of one node at RTL and the others at TLM is as fast as NS-2 with the advantage of a higher system accuracy.

Fine-tuning between speed and accuracy.
Advantages

• Direct use of SystemC models in network simulation → re-usability

• Single simulation tool (no need of System/Network co-simulation) → fast

• Direct support of tools from EDA ecosystem
 – SystemC TLM 2.0
 – SystemC Verification Library
 – SystemC Analog & Mixed Signals (AMS)
 – Debugging tools
 – Analysis tools
 – Synthesis
Advantages (cont.)

• Fruitful integration of Network design & simulation in the traditional design flow
• Open-source (LGPL) project on SourceForge
 – Repository with versioning
 – Bug tracking facility
 – Wiki
 – Mailing lists