
McCarthy 91 function 1

McCarthy 91 function
The McCarthy 91 function is a recursive function, defined by computer scientist John McCarthy as a test case for
formal verification within computer science.
The McCarthy 91 function is defined as

The results of evaluating the function are given by M(n) = 91 for all integer arguments n ≤ 101, and M(n) = n − 10
for n > 101.

History
The 91 function was introduced in papers published by Zohar Manna, Amir Pnueli and John McCarthy in 1970.
These papers represented early developments towards the application of formal methods to program verification. The
91 function was chosen for having a complex recursion pattern (contrasted with simple patterns, such as defining

by means of). The example was popularized by Manna's book, Mathematical Theory of

Computation (1974). As the field of Formal Methods advanced, this example appeared repetitively in the research
literature. In particular, it is viewed as a "challenge problem" for automated program verification.
Often, it is easier to reason about non-recursive computation. As one of the examples used to demonstrate such
reasoning, Manna's book includes a non-recursive algorithm that simulates the original (recursive) 91 function.
Many of the papers that report an "automated verification" (or termination proof) of the 91 function only handle the
non-recursive version.
A formal derivation of the non-recursive version from the recursive one was given in a 1980 article by Mitchell
Wand, based on the use of continuations.

Examples
Example A:

M(99) = M(M(110)) since 99 ≤ 100
 = M(100) since 110 > 100

 = M(M(111)) since 100 ≤ 100
 = M(101) since 111 > 100

 = 91 since 101 > 100

Example B:

M(87) = M(M(98))

 = M(M(M(109)))

 = M(M(99))

 = M(M(M(110)))

 = M(M(100))

 = M(M(M(111)))

 = M(M(101))

 = M(91)

 = M(M(102))

 = M(92)

 = M(M(103))

http://en.wikipedia.org/w/index.php?title=Recursion_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer_scientist
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Formal_verification
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Zohar_Manna
http://en.wikipedia.org/w/index.php?title=Amir_Pnueli
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Formal_methods
http://en.wikipedia.org/w/index.php?title=Formal_verification
http://en.wikipedia.org/w/index.php?title=Termination_proof
http://en.wikipedia.org/w/index.php?title=Mitchell_Wand
http://en.wikipedia.org/w/index.php?title=Mitchell_Wand
http://en.wikipedia.org/w/index.php?title=Continuation

McCarthy 91 function 2

 = M(93)

 Pattern continues

 = M(99)

 (same as example A)

 = 91

Code
Here is how John McCarthy may have written this function in Lisp, the language he invented:

(defun mc91 (n)

 (cond ((<= n 100) (mc91 (mc91 (+ n 11))))

 (t (- n 10))))

Here is an implementation of the non-recursive algorithm in C:

int mccarthy(int n)

{

 for (int c = 1; c != 0;) {

 if (n > 100) {

 n = n - 10;

 c--;

 } else {

 n = n + 11;

 c++;

 }

 }

 return n;

}

Proof
Here is a proof that the function behaves as expected.
For 90 ≤ n < 101,

M(n) = M(M(n + 11))

 = M(n + 11 - 10), where n + 11 >= 101 since n >= 90

 = M(n + 1)

So M(n) = 91 for 90 ≤ n < 101.
We can use this as a base case for induction on blocks of 11 numbers, like so:
Assume that M(n) = 91 for a ≤ n < a + 11.
Then, for any n such that a - 11 ≤ n < a,

M(n) = M(M(n + 11))

 = M(91), by hypothesis, since a ≤ n + 11 < a + 11
 = 91, by the base case.

Now by induction M(n) = 91 for any n in such a block. There are no holes between the blocks, so M(n) = 91 for n <
101. We can also add n = 101 as a special case.

http://en.wikipedia.org/w/index.php?title=Lisp_programming_language
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Inductive_proof

McCarthy 91 function 3

Knuth's generalization
Donald Knuth generalized the 91 function to include additional parameters. John Cowles developed a formal proof
that Knuth's generalized function was total, using the ACL2 theorem prover.

References
• Zohar Manna and Amir Pnueli (July 1970). "Formalization of Properties of Functional Programs". Journal of the

ACM 17 (3): 555–569. doi:10.1145/321592.321606.
• Zohar Manna and John McCarthy (1970). "Properties of programs and partial function logic". Machine

Intelligence 5.
• Zohar Manna. Mathematical Theory of Computation. McGraw-Hill Book Company, New-York, 1974. Reprinted

in 2003 by Dover Publications.
• Mitchell Wand (January 1980). "Continuation-Based Program Transformation Strategies". Journal of the ACM 27

(1): 164–180. doi:10.1145/322169.322183.
• Donald E. Knuth (1991). "Textbook Examples of Recursion". arXiv:cs/9301113.
• John Cowles (2000). "Knuth's generalization of McCarthy's 91 function" [1]. Computer-Aided reasoning: ACL2

case studies. Kluwer Academic Publishers. pp. 283–299.

References
[1] http:/ / www. cs. utexas. edu/ users/ moore/ acl2/ workshop-1999/ Cowles-abstract. html

http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=ACL2
http://www.cs.utexas.edu/users/moore/acl2/workshop-1999/Cowles-abstract.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-1999/Cowles-abstract.html

Article Sources and Contributors 4

Article Sources and Contributors
McCarthy 91 function Source: http://en.wikipedia.org/w/index.php?oldid=419848037 Contributors: AHM, AmirOnWiki, Anog, Arthena, Brentsmith101, CBM, David Eppstein, Dysprosia,
Frencheigh, Headbomb, Jamelan, Joseph Solis in Australia, Mrrusof, Mshonle, Nick8325, Oleg Alexandrov, Pchugh, Piet Delport, Poor Yorick, Quarkflavour, Rheun, SarekOfVulcan, 21
anonymous edits

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	McCarthy 91 function
	History
	Examples
	Code
	Proof
	Knuth's generalization
	References

	License

